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Abstract—Deep Neural Networks (DNNs) are a revolutionary
force in the ongoing information revolution, and yet their intrinsic
properties remain a mystery. In particular, it is widely known
that DNNs are highly sensitive to noise, whether adversarial
or random. This poses a fundamental challenge for hardware
implementations of DNNs, and for their deployment in critical
applications such as autonomous driving.

In this paper we construct robust DNNs via error correcting
codes. By our approach, either the data or internal layers of
the DNN are coded with error correcting codes, and successful
computation under noise is guaranteed. Since DNNs can be seen
as a layered concatenation of classification tasks, our research
begins with the core task of classifying noisy coded inputs, and
progresses towards robust DNNs.

We focus on binary data and linear codes. Our main result is
that the prevalent parity code can guarantee robustness for a large
family of DNNs, which includes the recently popularized binarized
neural networks. Further, we show that the coded classification
problem has a deep connection to Fourier analysis of Boolean
functions.

In contrast to existing solutions in the literature, our results do
not rely on altering the training process of the DNN, and provide
mathematically rigorous guarantees rather than experimental
evidence.

I. INTRODUCTION

Deep Neural Networks (DNNs) have become a dominating

force in Artificial Intelligence (AI), bringing revolutions in

science and technology. A massive amount of academic and

industrial research is being devoted to implementing DNNs in

hardware [4]. Hardware-implemented DNNs are appearing in

phones, sensors, healthcare devices, and more, which will rev-

olutionize every sector of society [10], and make AI systems

increasingly energy-efficient and ubiquitous.

In parallel, DNNs are known to be highly susceptible to

adversarial interventions. In a recent line of works which

followed [16], it was shown that by adding a small (and often

indistinguishable to humans) amount of noise to the inputs of a

DNN, one can cause it to reach nonsensical conclusions. More

recently, it was shown [15] that in some DNN architectures

one can attain similar effects by changing as little as one or

two entries of the input. This reveals an orthogonal concern

of a similar nature from the adversarial machine learning

perspective: performance degradation due to malicious attacks.

There exists a rich body of research which studies how

to make DNNs robust to noise. This includes noise that is

injected into the neurons/synapses, or into the inputs. Even

though computation under noise has been studied since the

1950’s [12], solutions have been almost exclusively heuristic.

To combat adversarial attacks to the inputs, much focus was

given on adjusting the training process to produce more robust

DNNs, e.g., by adjusting the regularization expression [3],

or the loss function [7]. These approaches usually involve

intractable optimization problems, and succeed insofar as the

underlying optimization succeeds.

Combating noise in neurons/synapses has also enjoyed a

recent surge of interest [17], which builds upon the previous

wave of interest in DNNs in the early 1990’s [14]. Most of

this line of research focuses on replication methods (called

augmentation), retraining, and providing statistical frameworks

for testing fault tolerance of DNNs (e.g., training a DNN to

remember a coded version of all possible outputs [6]). It is

also worth mentioning that to a certain degree, DNNs tend to

present some natural fault-tolerance without any intervention.

This phenomenon is conjectured to be connected to over-

provisioning [1], i.e., the fact that in most cases one uses

more neurons than necessary, but rigorous guarantees remain

elusive.

In this paper we propose a fundamentally new approach

for handling noise in DNNs. In this approach, the inputs to

neurons are coded by using an error correcting code, and

the neurons are modified accordingly, so that correct output

is guaranteed as long as the noise level is below a certain

threshold. Clearly, the encoding function must be simpler

than conducting the computation itself, and should apply

universally to a large family of neurons; we also aim for an

efficient end-to-end design that does not require decoding.

Our approach is depicted in Fig. 1 for the famous case-

study of stop-sign classification [2]. In this case-study, an

autonomous vehicle uses a DNN to classify a stop sign as such,

exposing the passenger to the perils of misclassification due to

noise (e.g., a sticker). In our approach we envision addition of

redundancy to the actual physical object (Fig. 1a), which aids

the DNN in classification under noise (Fig. 1b). To facilitate

this vision, the neurons inside the network must be revised

accordingly, e.g., by adding weighted synapses (Fig. 1c and

Fig. 1d). Alternatively, the inputs to some neurons might come

from other neurons inside the network, rather than from the

physical world; this case better encapsulates hardware failures,

and redundancy is computed by additional components inside

the DNN (Fig. 1e).
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Fig. 1: (a) a stop sign with added redundancy; (b) the added redundancy guarantees correct classification under noise, e.g., a

sticker; (c) an uncoded neuron; (d) a coded neuron with one extra bit of redundancy, guaranteed to compute τ(x) correctly,

even if any synapse is erased (see Example 2); (e) added redundancy inside the DNN–the coded neuron τ ′4 computes τ4(y)
even if any of its incoming synapses is erased, where y is the output of the neurons τ1, τ2, and τ3 in the previous layer.

Preliminaries are discussed in Section II, where a tight

connection to the ℓ1-metric is revealed. Simple but inefficient

solutions, that rely on replication or Fourier analysis, are

discussed in Section III. Finally, the main result of this paper

is given in Section IV, where it is shown that the well-known

parity code can guarantee successful classification under noise,

and applications to a large family of DNNs are discussed.

II. PRELIMINARIES

A DNN is a layered and directed acyclic graph, in which

the first layer is called the input layer. Each edge (or synapse)

corresponds to a real number called weight, and nodes in

intermediate layers (also called hidden layers) are called neu-

rons. Each neuron acts as computation unit, that applies some

activation function on its inputs, weighted by the respective

synapses. The result of the computation in the last layer are

the outputs of the DNN.

Traditionally, the activation function is sign(xw⊤ − θ),
where x is a vector of inputs, w is a vector of weights, θ
is a constant called bias, and

sign(x) =

{

1 if x ≥ 0

−1 if x < 0
.

However, contemporary DNNs often employ continuous ap-

proximations of sign(·), known as sigmoid functions (such

as logistic(x) = 1
1+exp(−x) or tanh(x)) or piecewise linear al-

ternatives (such as ReLU(x) = max{0, x}) in order to enable

analytic learning algorithms (such as backpropagation). In our

work, in order to establish rigorous and discrete guarantees,

we focus on sign(·). Further, we focus on binary ±1 inputs,

which correspond to the binary field F2 by identifying 0 as 1
and 1 as −1, and exclusive or as product.

At the computational level, faults in DNN hardware appear

as bit-errors, bit-erasures or analog noise, which can be

permanent or transient. In this work we focus on bit-errors

and bit-erasures, that are formally defined shortly. We denote

scalars by lowercase letters a, b, . . ., vectors by lowercase

boldface letters a,b, . . ., and use the same letter to refer

to a vector and its entries (e.g., a = (a1, a2, . . .)). We

use di(·, ·), ‖·‖i, and Bi(z, r) to denote the ℓi-distance, ℓi-
norm, and ℓi-ball cantered at z with radius r, respectively,

for i ∈ {0, 1, 2, . . . ,∞}. We use dH(·, ·) to denote Hamming

distance, and let 1m be a vector of m ones.

A. Framework and problem definition

For a given neuron τ : Fn
2 → F2, where τ(x) = sign(x ·

w⊤ − θ) for some w ∈ R
n and θ ∈ R, a triple (E,v, µ) is

called a solution, where E : Fn
2 → F

m
2 , v ∈ R

m, and µ ∈ R.

The respective coded neuron is τ ′(E(x)) = sign(E(x)v⊤ −
µ). For nonnegative integers t and s, the coded neuron τ ′ is

robust against t erasures and s errors ((t, s)-robust, for short)

if for every disjoint t-subset T ⊆ [m], and s-subset S ⊆ [m],
we have that

sign(x ·w⊤ − θ) =

sign




∑

j∈[m]\(T ∪S)

E(x)jvj −
∑

j∈S

E(x)jvj − µ



 (1)



for every x ∈ F
n
2 .

Namely, when computing over data encoded by E, correct

output for every x ∈ F
n
2 is guaranteed, even if at most t of the

inputs to τ ′ are omitted (erasures), and at most s are negated

(errors). Further, for a nonnegative integer r we say that τ ′

is r-robust if it is (t, s)-robust for every nonnegative t and s
such that t+ 2s ≤ r.

For v ∈ R
m and µ ∈ R, let H(v, µ) = {y ∈ R

m|yv⊤ =
µ}. For a given solution (E,v, µ), we say that the minimum

distance of the respective coded neuron is

d = d(E,v, µ) = d1(E(Fn
2 ),H(v, µ))

= min
x∈F

n

2

d1(E(x),H(v, µ)).

The choice of the ℓ1-metric will be made clear in the sequel.

The figure of merit by which we measure a given solution is

its relative distance d/m.

Example 1. For a given neuron τ , and an integer m, let

E(x) =

{

1m if τ(x) = 1

−1m if τ(x) = −1
.

It is readily verified that the solution (E, 1m, 0) is (m − 1)-
robust.

Since layers in DNNs normally contain multiple neurons,

the solution in Example 1 is useless for constructing robust

DNNs. Instead, one would like to have joint coding E for a

large family of neurons.

Problem Definition: For a given set of neurons {τi(x) =
sign(xw⊤

i − θi)}
ℓ
i=1 find a joint coding function E

and {vi, µi}
ℓ
i=1 which maximize dmin/m, where dmin =

mini∈[ℓ] d(E,vi, µi).

Furthermore, we restrict our attention to functions E which

encode binary linear codes, due to their prevalence in hardware

and ease of analysis. Since we use the {±1}-representation

of F2, every entry of E(x) is a multilinear monomial in the

entries of x.

Example 2. Fig. 1c depicts the uncoded neuron τ(x) =
sign(x1 + x2 − x3), and Fig. 1d depicts its coded ver-

sion τ ′(x) = sign(x1 + x2 − x3 + r), where r = x1x2x3.

Table I shows two examples of robustness to any 1-erasure.

(x1, x2, x3, r) Erasure τ ′(noisy E(x)) = τ (x)

x1 sign(0− 1− 1− 1) = −1
x2 sign(1− 0− 1− 1) = −1
x3 sign(1− 1− 0− 1) = −1

(1,−1, 1,−1)

r sign(1− 1− 1− 0) = −1
x1 sign(−0 + 1 + 1 + 1) = 1
x2 sign(−1 + 0 + 1 + 1) = 1
x3 sign(−1 + 1 + 0 + 1) = 1

(−1, 1,−1, 1)

r sign(−1 + 1 + 1 + 0) = 1

TABLE I: Two examples of correct computation of τ(·) (Fig-

ure 1c) by τ ′(E(·)) (Figure 1d). This holds for the remaining

six inputs as well.

B. Robustness and the ℓ1-metric

In this section we justify the above definitions, and in

particular, the use of the ℓ1-metric to obtain robustness. First,

notice that errors and erasures while evaluating τ ′ can be

seen as changes in E(x). For example, let v = (v1, v2, v3)
and E(x) = (y1, y2, y3), and then an erasure at entry 1 is

equivalent to evaluating τ ′ at the point (0, y2, y3). Similarly, an

error in entry 2 is equivalent to evaluating τ ′ at (y1,−y2, y3).
As such, both errors and erasure can be seen as evaluation

of the same coded neuron τ ′ on a data point which is shifted

along axis-parallel lines. Therefore, the encoded points must

be far away from H(v, µ) in ℓ1-distance. More precisely, since

error and erasures do not cause any point to shift outside

the closed hypercube [−1, 1]m, it is only necessary to have

large ℓ1-distance from H′ = H′(v, µ) = H(v, µ) ∩ [−1, 1]m.

First, we provide the formula for the ℓ1-distance of a point

from a hyperplane.

Lemma 1. [8, Sec. 5] For every z ∈ R
m we have that

d1(z,H) = |z·v⊤−µ|
‖v‖∞

.

Second, we provide a necessary and sufficient condition for

the robustness of a coded neuron τ ′(E(x)) = sign(E(x)v⊤−
µ). We denote the positive points of τ by F+, and the negative

points by F−.

Theorem 1. For a positive integer r and a neuron τ(x) =
sign(xw⊤ − θ), a coded neuron τ ′(x) = sign(E(x)v⊤ − µ)
is r-robust if and only if

sign(xw⊤ − θ) = sign(E(x)v⊤ − µ) for every x ∈ F
n
2 ,

r ≤ d1(E(F+),H′), and

r < d1(E(F−),H′). (2)

Proof. Assume that the conditions in (2) hold. To show that τ ′

is r-robust we must show that (1) holds for every x ∈ F
n
2 and

every mutually disjoint S and T such that |T | + 2|S| ≤ r.

Assuming for contradiction that τ ′ is not r-robust, there exists

some x ∈ F
n
2 and corresponding sets S and T such that E(x)

is misclassified under erasures in T and errors in S. Since any

set of errors or erasures keeps E(x) inside [−1, 1]m, it follows

that this misclassification of E(x) corresponds to moving it

along an axis-parallel path P of length |P | = |T | + 2|S|,
which crosses H′.

If x ∈ F+, then to attain misclassification we must

have |P | > d1(E(x),H′). However, this implies that r ≥
|T | + 2|S| = |P | > d1(E(x),H′) ≥ r, a contradiction.

If x ∈ F−, then to attain misclassification we must have |P | ≥
d1(E(x),H′). However, this implies that r ≥ |T | + 2|S| =
|P | ≥ d1(E(x),H′) > r, another contradiction.

Conversely, assume that τ ′ is r-robust. Since r ≥ 0, it fol-

lows that τ ′ is in particular (0, 0)-robust, and hence according

to (1) if follows that sign(xw⊤ − θ) = sign(E(x)v⊤ − µ)
for every x ∈ F

n
2 . Assume for contradiction that r >

d1(E(F+),H′), which implies that there exists x ∈ F+ such

that r > d1(E(x),H′), and let Bx , B1(E(x), r) ∩ [−1, 1]m.

This readily implies that some vertex y of Bx lies on the



opposite side of H. It can be proved (full proof will be given

in future versions of this paper) that y is an integer point, and

that all such points correspond to erasures in some set T and

errors in some set S such that |T |+ 2|S| ≤ r. Therefore, the

existence of y contradicts the r-robustness of τ ′. The proof

that r < d1(E(F−),H′) is similar.

We conclude this section by showing that redundancy is nec-

essary for any nontrivial robustness. Since any non-constant

neuron must have a positive point x and a negative point y

such that dH(x,y) = 1, and since any hyperplane must cross

the convex hull of x and y, the following is immediate.

Lemma 2. Unless τ(x) = sign(xw⊤ − θ) is constant, the

solution (E,v, µ) = (Id,w, θ) is 0-robust.

Further, by denoting δ = d1(F
n
2 ,H(w, θ)), we have that the

relative distance of the solution (Id,w, θ) is δ/n. However,

computing δ for a given neuron τ is in general NP-complete,

by a reduction to PARTITION [9].

III. A FEW ELEMENTARY SOLUTIONS

A. Robustness by replication

For a vector v, let v(ℓ) be the result of concatenating v with

itself ℓ times, and for E : Fn
2 → F

m
2 let E(ℓ) : F

n
2 → F

ℓm
2 be

the function E(ℓ)(x) = E(x)(ℓ).

Lemma 3. Let (E,v, µ) be a solution with minimum

distance d. Then, for every positive integer ℓ, the solu-

tion (E(ℓ),v(ℓ), ℓµ) has distance ℓd and identical relative

distance d/m.

Proof. According to Lemma 1, and since ‖v(ℓ)‖∞ = ‖v‖∞,

we have that

d1
(
E(ℓ)(F

n
2 ),H(v(ℓ), ℓµ)

)
=

minx∈Fn

2
|E(ℓ)(x)v

⊤
(ℓ) − ℓµ|

‖v‖∞
,

and since E(ℓ)(x)v
⊤
(ℓ) = ℓ ·E(x)v⊤, it follows that this equals

ℓ ·
minx∈Fn

2
|E(x)v⊤ − µ|

‖v‖∞
= ℓd,

and thus the relative distance is ℓd/ℓm = d/m.

Therefore, by applying the ℓ-replication code E(x) = x(ℓ),

one can obtain robustness but not increase the relative distance.

Moreover, since computing the aforementioned δ is NP-hard,

explicit robustness guarantees are hard to come by.

B. Robustness from the Fourier spectrum

Recall that every function f : Fn
2 → R (and in particular,

every neuron τ ) can be written as a linear combination f(x) =
∑

S⊆[n] f̂(S)χS(x), where χS(x) ,
∏

s∈S xs and f̂(S) =

ExχS(x)f(x) for every S ⊆ [n]. The vector f̂ , (f̂(S))S⊆[n]

is called the Fourier spectrum of f , and if f is Boolean

then ‖f̂‖2 = 1. We denote by f̂∅ the vector f̂ with its ∅-

entry omitted, i.e., f̂∅ , (f̂(S))S⊆[n],S6=∅. We refer to the

following solution as the Fourier solution.

Lemma 4. For a neuron τ , the coded neuron τ ′(E(x)) ,

sign(
∑

S⊆[n] τ̂(S)χS (x)) has minimum distance ‖τ̂∅‖
−1
∞ .

Proof. Notice that τ ′ is defined by the encoding func-

tion E : Fn
2 → F

2n−1
2 such that E(x) = (χS(x))S⊆[n],S6=∅,

known as the punctured Hadamard encoder. In addition,

the respective halfspace is H = H(τ̂∅,−τ̂(∅)) , {y ∈
F
2n−1
2 |

∑

S6=∅
yS τ̂(S) + τ̂ (∅) = 0}, where the coordinates

of R2n−1 are indexed by all nonempty subsets of [n]. To find

the minimum distance of the Fourier solution, we compute

d1(E(Fn
2 ),H) =

minx∈Fn

2
|τ̂∅ · E(x) + τ̂ (∅)|

‖τ̂∅‖∞

=
minx∈F

n

2
|
∑

S⊆[n] τ̂ (S)χS(x)|

‖τ̂∅‖∞
= ‖τ̂∅‖

−1
∞ ,

where the last equality follows since τ(x) =
∑

S⊆[n] τ̂ (S)χS(x) ∈ {±1}.

The relative distance of this solution is ‖τ̂∅‖
−1
∞ /(2n − 1),

and notice that unlike replication (Subsection III-A), it does

not depend on the particular way in which τ is given. However,

this solution involves exponentially many redundant bits, and

is therefore impractical.

IV. ROBUSTNESS FROM THE PARITY CODE

The discussion in this section applies to DNNs that employ

binary neurons, i.e., neurons in which w ∈ F
n
2 . This family

of DNNs includes, as a strict subset, the recently popularized

binarized neural networks [5]. Later on, we generalize the

solution to all neurons, and show its superiority over replica-

tion in cases where ‖w‖1 is bounded. Specifically, we show

that the parity code attains relative distance 2/(n+ 1), which

outperforms replication.

We denote

U , {τ : Fn
2 → F2|τ(x) = sign(xw⊤ − θ) and w ∈ F

n
2},

and since xw⊤ ∈ {−n,−n + 2, . . . , n} for every x and w

in F
n
2 , it follows that for every τ ∈ U one can round the

respective θ to the nearest value1 in {−n−1,−n+1, . . . , n+1}
without altering τ . Hence, we assume without loss of gener-

ality that all given θ’s are in {−n − 1,−n + 1, . . . , n + 1}.

With this choice of θ, any function f ∈ U has δ = 1, since

δ = d1(F
n
2 ,H(w, θ)) =

minx∈F
n

2
|xw⊤ − θ|

‖w‖∞

= min
x∈F

n

2

|xw⊤ − θ| = 1

by Lemma 1. Thus, replication achieves relative distance 1/n
(e.g., 2-replication achieves 1-robustness with m = 2n).

We also employ the following notations from Boolean

algebra. For x,w ∈ R
n let x ⊕ w denote their pointwise

product, which amounts to Boolean sum if both x and w are

in F
n
2 . Further, for x ∈ F

n
2 we let wH(x) be the number

1More precisely, if θ ∈ (−n+2t,−n+2t+2] for an integer 0 ≤ t ≤ n,
then θ is replaced by −n+2t+1. If θ ≤ −n it is replaced by −n− 1, and
if θ > n it is replaced by n+ 1.



of (−1)-entries in x, known as Hamming weight. The next

two lemmas, whose proofs will appear in future version

of this paper, demonstrate that functions in U depend only

on wH(x⊕w).

Lemma 5. For every x and w in F
n
2 we have xw⊤ = n −

2wH(x⊕w).

Lemma 6. For every τ ∈ U and every x ∈ F
n
2 we have

τ(x) =

{

1 wH(x⊕w) ≤ n−θ−1
2

−1 wH(x⊕w) ≥ n−θ+1
2

.

In this section we let m = n+1 and define E : Fn
2 → F

n+1
2

as the parity encoder E(x) = (x1, . . . , xn, χ[n](x)). Then, we

let θ′ , n−θ−1
2 , and define the parity solution (E,v, µ), where

v = (w1, . . . , wn, (−1)θ
′

χ[n](w)), and

µ = θ.

Lemma 7. The relative distance of the parity solution

is 2/(n+ 1).

Proof. We show that d1(E(Fn
2 ),H) = 2, where H = H(v, θ).

Since ‖v‖∞ = 1, Lemma 1 implies that

d1(E(Fn
2 ),H) = min

x∈F
n

2

|E(x) · v⊤ − θ|,

and hence it suffices to show that |E(x)v⊤ − θ| ≥ 2 for

every x ∈ F
n
2 and that the coded neuron always correctly

computes τ . Since χ[n](w) · χ[n](x) = χ[n](w ⊕ x) =

(−1)wH(w⊕x), Lemma 5 implies that

E(x)v⊤ − θ = xw⊤ + (−1)θ
′

χ[n](w) · χ[n](x)− θ (3)

= n− 2wH(x⊕w) + (−1)θ
′+wH(x⊕w) − θ,

and we distinguish between the next four cases.

Case 1: If wH(x⊕w) ≤ n−θ−1
2 − 1, then

(3) ≥ n− (n− θ − 1) + 2 + (−1)θ
′+wH(w⊕x) − θ

= 3 + (−1)θ
′+wH(w⊕x) ≥ 2.

Case 2: If wH(x⊕w) = n−θ−1
2 , then

(3) = n− (n− θ − 1) + (−1)θ
′−n−θ−1

2 − θ

= 1 + (−1)0 = 2.

Case 3: If wH(x⊕w) = n−θ+1
2 , then

(3) = n− (n− θ + 1) + (−1)θ
′+n−θ+1

2 − θ

= −1 + (−1)n−θ = −2,

where the last equality follows since n−θ is always odd.

Case 4: If wH(x⊕w) ≥ n−θ+1
2 + 1, then

(3) ≤ n− (n− θ + 1)− 2 + (−1)θ
′+wH(x⊕w) − θ

= −3 + (−1)θ
′+wH (x⊕w) ≤ −2.

Now, it follows from Lemma 6 and from the first two cases

that sign(E(x)v⊤−θ) = 1 whenever τ(x) = 1. Similarly, the

latter two cases imply that sign(E(x)v⊤ − θ) = −1 when-

ever τ(x) = −1. Therefore, the coded neuron τ ′(E(x)) =
sign(E(x)v⊤ − θ) correctly computes τ on all inputs with

minimum distance d = 2, and the claim follows.

By using the parity solution, one can attain 1-robustness,

i.e., robustness against any single (adversarial) erasure, by

adding only one bit of redundancy. In contrast, to attain 1-

robustness by using replication (Subsection III-A), one should

add n bits of redundancy. Moreover, it is readily verified that

due to Lemma 2, the suggested solution is optimal in terms

of the length m = n+ 1 among all 1-robust solutions.

Since the parity function E is universal to all binary neu-

rons, every DNN which comprises of binary neurons (and in

particular, binarized DNNs) can be made robust to adversarial

tampering in its input. Furthermore, to employ this technique

for error inside the DNN, one should add a single parity gate

in every layer (see Fig. 1e). If one wishes to construct DNNs

by only using neurons, a classic result by Muroga [11] shows

how to implement the parity function by using neurons.

A. Generalized parity for all neurons

The following generalizes the parity code, and requires

integer weights. Since every neurons has a representation

with only integer weights [13, Exercise. 5.1], it applies to

all neurons. However, superiority to replication in terms of

relative distance is guaranteed only if ‖w‖1 < 2n
δ

− 1. The

proof will appear in future versions of this paper.

Theorem 2. The relative distance of the solution (Ew,v, θ)
is 2/(‖w‖1 + 1), where

v = (1w, (−1)θ
′

χ[‖w‖1](1w)),

1w = (sign(w1), . . . , sign(w1)
︸ ︷︷ ︸

|w1| times

, . . . , sign(wn), . . . , sign(wn)
︸ ︷︷ ︸

|wn| times

),

and

Ew(x) =




x1, . . . , x1
︸ ︷︷ ︸

|w1| times

, . . . , xn, . . . , xn
︸ ︷︷ ︸

|wn| times

,

n∏

i=1

xwi mod 2
i




 .

V. DISCUSSION AND FUTURE RESEARCH

In this paper we studied a novel approach for combating

noise in DNNs with error correcting codes, established basic

framework, and presented several solutions. This work can

be seen as an extension of the recently popularized coded

computation topic, which concerns computation over coded

data in distributed environments, into the realm of neural

computation. A plethora of questions remain widely open:

1) Extend the above framework to other activation func-

tions, and to sigmoid functions in particular.

2) Develop solutions with relative distance greater

than 2/(n+ 1) for binarized neurons.

3) Find other families of neurons for which robustness can

be guaranteed.

4) Extend Lemma 2 to other parameter regimes, i.e.,

establish fundamental trade-offs between the parame-

ters n,m, and d.
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