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Abstract—In this paper we consider the problem of binary
hypothesis testing with finite memory systems. Let X1, X2, . . .
be a sequence of independent identically distributed Bernoulli
random variables, with expectation p under H0 and q under H1.
Consider a finite-memory deterministic machine with S states
that updates its state Mn ∈ {1, 2, . . . , S} at each time according
to the rule Mn = f(Mn−1, Xn), where f is a deterministic time-
invariant function. Assume that we let the process run for a very
long time (n → ∞), and then make our decision according to
some mapping from the state space to the hypothesis space. The
main contribution of this paper is a lower bound on the Bayes
error probability Pe of any such machine. In particular, our
findings show that the ratio between the maximal exponential
decay rate of Pe with S for a deterministic machine and for a
randomized one, can become unbounded, complementing a result
by Hellman.

I. INTRODUCTION

Consider the following binary hypothesis testing problem:
X1, X2, . . . is a sequence of independent identically distributed
random variables drawn according to either the Bern(p) dis-
tribution, under hypothesis H0, or the Bern(q) distribution,
under hypothesis H1, for 0 < q < p < 1. For simplicity,
we assume throughout that the prior probabilities of both
hypothesis are given and are equal. A finite memory decision
rule for this problem is a triplet (S, f, d) where S is the number
of states used by the machine, f : [S] × {0, 1} → [S] is
the state transition function, and d : [S] → {H0,H1} is the
decision function. In contrast to much of the prior work, where
randomized state-transition functions f were allowed, here we
restrict our attention to deterministic f .

Letting Mn denote the state of the memory at time n, the
finite state machine evolves according to the rule

M0 = s, (1)

Mn = f(Mn−1, Xn) ∈ [S], (2)

for some s ∈ [S]. If the machine is stopped at time n, it
outputs the decision d(Mn).

Conditioned on H0, the process {Mn}, induced by the
function f , is a Markov chain with stochastic transition matrix

P(p) = [Pr (f(i,X) = j|H0)] = [pij(p)], (3)

for all i, j ∈ [S]. Similarly, under H1, the induced
Markov chain has stochastic transition matrix P(q) =
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[Pr (f(i,X) = j|H1)] = [pij(q)]. Following [1], we define
the asymptotic probability of error of an algorithm as

Pe(S, f, d) = lim
n→∞

1

n

n
∑

i=1

Pr(ei = 1), (4)

where ei = 1{d(Mi) 6=Ht}, and Ht is the true hypothesis.
Arguably, a more natural definition of error probability is

Pe(S, f, d) = lim sup
n→∞

Pr (d(Mn) 6= Ht) . (5)

However, as (5) is always larger than (4), by a factor of at
most S, the two definitions are equivalent for the purposes of
this study.

The focus of this paper is the quantity

P
∗
e (S) = min

deterministicf,d
Pe(f, d) (6)

where the minimum is taken over all S-state machines with
deterministic transition functions f . We are specifically inter-
ested in the asymptotics of the error exponent with regards to
S,

E(p, q) = − lim inf
S→∞

1

S
logP*

e
(S), (7)

E(p, q) = − lim sup
S→∞

1

S
logP*

e (S). (8)

A. Related work

It seems that interest in the limited memory binary hypoth-
esis testing problem was sparked by the work of Robbins [2]
on the Two-Armed Bandit problem: A player is given two
coins, with parameters unknown to him, and is required to
maximize the long-run proportions of "heads" obtained, by
successively choosing which coin to flip at any moment. Rob-
bins proposed an algorithm that works with limited memory S.
Cover [3] discovered a time-varying finite memory algorithm
that achieves the maximum with S = 2, and in a subsequent
paper addressing the binary hypothesis problem [4] described
a time-varying finite memory machine that has probability of
error approaching zero with S = 4. Due to the unlimited
memory that is needed to implement a time-varying machine,
Hellman and Cover [1] addressed the problem of binary
hypothesis testing within the class of time-invariant finite
memory machines. They have studied the quantity

P
∗
erand

(S) = inf
randomizedf,d

Pe(f, d), (9)
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where Pe(f, d) is as defined in (4), and the infimum is
over all time-invariant S-state machines with randomized

transition functions f . It was shown in [1] that P∗
erand

(S) ≥
(

1 + γ
S−1

2

)−1

where γ = p(1−q)
q(1−p) , and that this value can be

approached arbitrarily closely using a randomized algorithm.
To demonstrate the important role randomization plays in

approaching this value, the same authors show in [5] that for
any memory size S < ∞ and δ > 0 there exists problems
such that any S-state deterministic machine has probability of
error Pe ≥ 1

2 − δ, while the randomized machine from [1] has
Pe ≤ δ. When no external source of randomness is available,
one can use some of the samples of {Xn} for randomness
extraction, e.g., using von Neumann extraction [6]. However,
the extracted random bits must be stored, which could result
in a substantial increase in memory [7].

In [8] (see also [9]) it is shown that E(p, q), as defined in (8),
is positive for all p 6= q.1 Thus, recalling that P

∗
erand

(S) ≥
(

1 + γ
S−1

2

)−1

, we see that whenever γ < ∞, i.e., for any 0 <

p, q < 1, there exists some integer 1 ≤ C = C(p, q) < ∞ such
that P*

e(S ·C) ≤ P
∗
erand

(S), for all S. Our main result, stated
in Theorem 1 below, may be interpreted as a lower bound on
the required C(p, q). Moreover, our Corollary 1 below shows
that C(p, q) grows unbounded for fixed q < 1/2 and p → 1.

Finally, we note that after being abandoned for decades, the
problem of learning under memory constraints is again attract-
ing considerable attention in the machine learning literature,
see, e.g., [11]–[16]. Another closely related active line of work
is that of learning under communication constraints [17]–[22].

II. MAIN RESULT

We are now ready to present our main result.

Theorem 1. Define

d(p, q) , − log(min{p, 1− p}) · log(min{q, 1− q})
log(min{p, 1− p}) + log(min{q, 1− q}) . (10)

Then

E(p, q) ≤ d(p, q). (11)

As it turns out, for extreme values of p (resp. q), the bound
is tight. To show that, we need the following theorem.

Theorem 2. Define

r(p, q) ,
log p log(1− q)− log q log(1− p)

log p(1− p) + log q(1− q)
. (12)

Then for every p > q,

E(p, q) ≥ r(p, q). (13)

This lower bound on the error exponent is not tight in
general, and in particular, for the symmetric case p = 1− q it
is worse then the exponent derived in [10]. We introduce it
for the sole purpose of showing the tightness of our converse
in certain regimes. The following corollary shows that in the

1For the symmetric setting, where p = 1 − q, Shubert et al. [10] have
also derived an upper bound on P

*
e (S) that yields a positive error exponent

E(p, q).

limit of fixed q < 1
2 (resp. p > 1

2 ) and p → 1 (resp. q → 0)
our upper and lower bounds coincide.

Corollary 1. For any fixed q < 1
2 ,

lim
p→1

E(p, q) = lim
p→1

E(p, q) = − log q. (14)

Similarly, For any fixed p > 1
2 ,

lim
q→0

E(p, q) = lim
q→0

E(p, q) = − log(1− p). (15)

Our converse, though in general not tight, demonstrates the
gap between the error exponent for deterministic machines,
and that of randomized ones, which was derived in [1]. Recall-
ing that for any q < 1/2 , the error exponent for randomized
machines grows unbounded in the limit of p → 1, Corollary 1
reveals that the restriction to deterministic machines may
arbitrarily degrade the error exponent.

III. ACHIEVABILITY

Before we proceed to the proof of Theorem 1, which is our
main result, we start with upper bounding P

*
e(S) by analyzing

various machines. It may be instructive to review some intu-
itive algorithms first, in order of increasing complexity, and
evaluate their respective error probabilities.

A. Storing Sequences

Assume S is a power of 2, such that k = log(S), and
store X1, . . . Xk. With this strategy, the problem reduces to the
standard binary hypothesis testing for which the error prob-
ability is given by 2−kD∗(1+o(1)), where D∗ is the Chernoff
information between the two hypotheses [23]. Therefore, the
error probability is polynomially decreasing in S.

B. Counting Ones

The flaw in the above storage mechanism is that it wastes
a tremendous amount of memory by storing all sequences,
where it is sufficient to keep track of the number of ones in
the sequence.

Claim 1. Let S∗ be the minimal number of states required to

determine whether or not a sequence of length k contains at

least tk− 1 ones, for some 0 < t < 1 such that tk ∈ Z. Then

1

2
min{t2, (1− t)2}k2 ≤ S∗ ≤ tk2. (16)

The (straightforward) proof is omitted. From the claim we
conclude that we can attain Pe that decreases exponentially in√
S.

C. Proof of Theorem 2 - Detecting Discriminating Sequences

We begin by providing some high-level intuition guiding
our construction. Since the sequence length is unbounded, one
can afford to wait for the events that most sharply distinguish
between the hypotheses, even if these events are arbitrarily
rare. A reasonable choice for such events is a long consecutive
run of either zeros or ones. We choose integers a and b such
that S = a + b + 1. If we observe a run of a consecutive
ones before a run of b consecutive zeros we decide H0, and
if we observe a run of b consecutive zeros before a run



of a consecutive ones, we decide H1. This algorithm can
be implemented using the finite-state machine with S states
depicted in Figure 1, for which a = S − s and b = s− 1 (the
probabilities on the arrows correspond to H0), where s is the
initial state.

1 · · · s · · · S

1− p 1− p
1− p

1− p

1− p

p

p
p p p

1 1

Figure 1: Counting consecutive runs of heads or tails

According to ( [24], chapter VIII) the probability of observing
a run of a consecutive ones before a run of b consecutive zeros
under H0, which corresponds to the probability of absorption
in state S when starting in state s for the machine of Figure 1,
is

p00(s) ,
1− (1 − p)b

1 + (1−p)b−1

pa−1 − (1− p)b−1
(17)

=
1− (1− p)s−1

1 + (1−p)s−2

pS−s−1 − (1− p)s−2
. (18)

Consequently, the probability of absorption in state 1 when
starting in state s under the same hypothesis is

p10(s) ,
1− pa

1 + pa−1

(1−p)b−1 − pa−1
(19)

=
1− pS−s

1 + pS−s−1

(1−p)s−2 − pS−s−1
. (20)

Similarly, the respective probabilities under H1 are

p01(s) ,
1− (1− q)s−1

1 + (1−q)s−2

qS−s−1 − (1− q)s−2
, (21)

p11(s) ,
1− qS−s

1 + qS−s−1

(1−q)s−2 − qS−s−1
. (22)

Since all states on the chain are transient apart from {1, S},
when n is large the machine converges to one of these states
with probability one. Hence, the error probability is

Pe(s) =
1

2
(p01(s) + p10(s)). (23)

Choosing s = s∗, where s∗ is

log pq

log p(1− p) + log q(1− q)
S + log





(1−q)2

q
log q(1 − q)

p

(1−p)2 log p(1− p)



 ,

(24)

rounded to the nearest integer, we have

Pe(s
∗) ≤max

{

p1+c

(1 − p)2−c
,
(1 − q)1+c

q2−c

}

· 2−r(p,q)(S−1)

(25)

where c = log (1−p)2(1−q)2 log q(1−q)
pq log p(1−p) and the result follows.

IV. CONVERSE

The converse of Hellman and Cover implicitly assumes that
the transition probabilities between states can be as small as
desired, which is true when local randomness is an unlimited
resource. In deterministic machines, however, the transition
probabilities can only be as small as min(p, 1− p) under H0,
or min(q, 1 − q) under H1, a fact that plays a crucial role
in the proof of our converse result. We note that any finite-
state machine induces a Markov chain, and proceed to prove
Theorem 1 in steps, first for ergodic Markov chains, and then
for non-ergodic ones. For brevity, we denote Pe = Pe(f, d).

A. Ergodic Markov chains

Assume the finite state machine is irreducible and aperiodic,
such that the induced Markov chain is ergodic under both
hypotheses. We note that, due to irreducibility, the average
fraction of time spent in each state converges to a unique
stationary distribution. Thus, the proof below still holds for
periodic chains.

Denote by µp
i (resp. µq

i ) the stationary probability of state i
in the chain, under hypothesis H0 (resp. H1). Due to the equal
prior on the hypotheses, the decision rule d that minimizes (4)
maps each state to the hypothesis with the larger stationary
probability. We show that there must exist a state i ∈ [S] for
which both µp

i and µq
i are large, and that this forces Pe to be

large as well. We now proceed to formalize this idea.

Lemma 1. Let {µp
i }Si=1 be the stationary probabilities corre-

sponding to P(p), and let {µq
i }Si=1 be the stationary proba-

bilities corresponding to P(q). Then

Pe ≥
1

2
max

i
min{µp

i , µ
q
i } , Pmin ({µp

i }, {µ
q
i }) . (26)

Proof. Since the prior on the hypotheses is uniform, the
decision rule d that minimizes (4) is of the form d(i) =
1(µq

i ≥ µp
i ). Hence

Pe =
1

2

∑

i

µp
i 1(µ

q
i ≥ µp

i ) +
1

2

∑

i

µq
i 1(µ

p
i > µq

i ) (27)

=
1

2

∑

i

min{µp
i , µ

q
i } (28)

≥ 1

2
max

i
min{µp

i , µ
q
i }. (29)

Lemma 2. Let {µ↓p
i }Si=1 be an arrangement of {µp

i } in

non-increasing order and {µ↑q
i }Si=1 be an arrangement of

{µq
i } in non-decreasing order. Then Pmin ({µp

i }, {µ
q
i }) ≥

Pmin

(

{µ↓p
i }, {µ↑q

i }
)

.

Proof. Since Pmin ({µp
i }, {µ

q
i}) is invariant to relabeling of

the states, without loss of generality, we may assume {µp
i } =

{µ↓p
i }. It suffices to show that if µq

j ≤ µq
i for j > i, then

swapping µq
j with µq

i cannot increase the maxmin in (26). Let
j > i and let (µp

i , µ
q
i ) = (a, c),

(

µp
j , µ

q
j

)

= (b, d), where



a ≥ b, c ≥ d. The restriction of the maxmin to the nodes (i, j)
is given by

max (min{a, c},min{b, d}) ≥ min{a, c}. (30)

Replacing µq
j with µq

i changes this value to

max (min{a, d},min{b, c}) ≤ max (min{a, c},min{a, c})
= min{a, c}, (31)

which clearly cannot increase the maxmin.

The next lemma exploits the restriction to deterministic
machines.

Lemma 3. Let {µ↓p
i }Si=1 be an arrangement of {µp

i } in non-

increasing order. Then:

µ↓p
i+1 ≥ µ↓p

i ·min{p, 1− p}. (32)

Proof. Without loss of generality, we may relabel the states
such that µ↓p

i = µp
i , for all i. Let A = {1, . . . , i} and consider

the partition of S to S = A∪Ac. Since the chain is irreducible,
there is some j ∈ Ac that is accessible from some j′ ∈ A in
one step. Then

µ↓p
i+1 ≥ µ↓p

j ≥ µ↓p
j′ ·min{p, 1− p} (33)

≥ µ↓p
i ·min{p, 1− p}. (34)

Proof of Theorem 1 for ergodic Markov chains:

A repeated application of Lemma 3 implies that

µ↓p
i ≥ µ↓p

1 min{p, 1− p}i−1 (35)

≥ 1

S
min{p, 1− p}i−1, (36)

as well as

µ↑q
i ≥ µ↑q

S min{q, 1− q}S−i (37)

≥ 1

S
min{q, 1− q}S−i, (38)

where we used the fact that the largest stationary probability
among all states must be at least 1

S
. From Lemma 1 and

Lemma 2, by ordering µp
i in decreasing order and µq

i in
increasing order, we get the following lower bound on the
error probability,

Pe ≥
1

S
·max

i
min

{

min{p, 1− p}i−1,min{q, 1− q}S−i
}

.

(39)

Since both functions are monotone in 1 ≤ i ≤ S, one
is decreasing from 1 and the other is increasing to 1, the
maximum over i ∈ [1, S] is attained for i such that min{p, 1−
p}i−1 = min{q, 1− q}S−i, namely, for

i =
logmin{q, 1− q}

log (min{p, 1− p}min{q, 1− q})S + logmin{p, 1− p}.
(40)

As i must be an integer, the expression above should be
rounded up or down. However, asymptotically this has no
effect on the bound. Substituting (40) into (39), the theorem
follows for the ergodic case.

B. Non-Ergodic Markov chains

Consider first the case where we have only two absorbing
states, one for each hypothesis, i.e., assume that we decide H0

if the process is absorbed in state S and H1 if the process is
absorbed in state 1 . Define X0 and X1 as the independent
random walks under H0 and H1. Then X0 (resp. X1) is a
stochastic process over the alphabet [S] that starts at s and
evolves according to the stochastic matrix P(p) (resp. P(q)).
Define the conditional error probabilities:

p0 = Pr(1 ∈ X0), (41)

p1 = Pr(S ∈ X1), (42)

and hence Pe = 1
2 (p0 + p1). Define the total distance of

a state u to be the smallest sum of lengths of two simple
paths from u to 1 and from u to S, and denote it by td(u).
Furthermore, define the occupancy of a state u to be the
minimal probability that one of the random walks will visit
it, i.e., occ(u) , mini Pr(u

∗ ∈ Xi). A simple bound on
the error probability of any system is the probability of the
shortest path from s to the incorrect absorbing state under
either hypothesis. However, such a bound may not be tight,
since s itself can only be guaranteed to have td(s) ≤ 2S. To
see this, consider that the shortest path to each state cannot be
larger than S, and is exactly S for the linear graph that splits
at the last node to either absorbing state. On the other hand,
the best possible guarantee we can hope for is total distance
of S, which corresponds to a chain in which the shortest
paths are non-intersecting. This motivates us to find a state
with the smallest possible total distance and a non-negligible
occupancy.

Lemma 4. There exists a state u∗ with td(u∗) ≤ S and

occ(u∗) ≥ 1−max{p0, p1}
S

, (43)

where p0 and p1 are as in (41), (42).

Proof. Let A (resp. B) denote the collection of all simple
paths that start at s and terminate at 1 (resp. S). Let C be the
set of all vertices v ∈ [S], for which there exist two simple
paths a ∈ A and b ∈ B, where v is the last vertex in a that
also appears in b. This implies that the sum of path lengths
from any v ∈ C to 1 and S is smaller than S, i.e., ∀v ∈ C
we have td(v) ≤ S. Define X̃0 (resp. X̃1) to be a stochastic
process with the distribution of X0 (resp. X1) conditioned on
the event that X0 terminated at S (resp. 1). Define U to be the
last state on X̃0 that also appears on X̃1. Then by definition
Pr(U ∈ C) = 1, so there must be a state u∗ ∈ S such that

Pr(U = u∗) ≥ 1

|C| ≥
1

S
. (44)

This in particular implies that Pr(u∗ ∈ X̃0) ≥ 1
S

and Pr(u∗ ∈
X̃1) ≥ 1

S
. Now, the probability of the unconditioned walk X1,



to pass through u∗ is lower bounded by

Pr (u∗ ∈ X1) ≥ Pr(1 ∈ X1) Pr(u
∗ ∈ X1|1 ∈ X1) (45)

= Pr(1 ∈ X1) Pr(u
∗ ∈ X̃1) (46)

≥ 1

S
(1− p1) . (47)

Similarly bounding Pr (u∗ ∈ X0), the lemma follows.

Proof of Theorem 1 for two absorbing states:

Without loss of generality, we may assume that
max{p0, p1} < 1/2 as otherwise the theorem is trivially true.
Furthermore, from Lemma 4 there is some state u∗ with
td(u∗) ≤ S and occ(u∗) ≥ 1−max{p0,p1}

S
. Write

Pe ≥
1

2
Pr(u∗ ∈ X0) Pr(1 ∈ X0|u∗ ∈ X0) (48)

+
1

2
Pr(u∗ ∈ X1) Pr(S ∈ X1|u∗ ∈ X1) (49)

≥ 1−max{p0, p1}
2S

(Pr(1 ∈ X0|u∗ ∈ X0)

+ Pr(S ∈ X1|u∗ ∈ X1)). (50)

Let mu∗ be the length of the shortest path from u∗ to 1, and
recall that we must have a path from u∗ to S of length smaller
than S −mu∗ , since that td(u∗) ≤ S. Thus,

Pr(1 ∈ X0|u∗ ∈ X0) + Pr(S ∈ X1|u∗ ∈ X1) (51)

≥ (min{p, 1− p})mu∗ + (min{q, 1− q})S−mu∗ . (52)

Minimizing the lower bound with respect to mu∗ ∈ [0, S]
yields

mu∗ =
logmin{q, 1− q}

logmin{p, 1− p}+ logmin{q, 1− q} · S, (53)

and substituting (53) into (52) implies the theorem for the case
of two absorbing states.

Proof of Theorem 1 for the general reducible case:

Consider a Markov chain with K recurrent classes
R1, . . . ,RK , and a set T of transient states with initial state
s. Note that if s /∈ T the chain is essentially an ergodic one,
hence we consider only s ∈ T . Define X0 and X1 as before,
and denote the probability that Xi ends up in class Rj as

Pr (Xi → Rj) , i = 0, 1, j = 1, . . . ,K. (54)

We further denote the probability of error under hypothesis Hi

if the initial state were in class Rj as Pe(Rj |Hi). Consider
first the case where the probability of error under H0 is larger
than the probability of error under H1 in every recurrent class.
Then

Pe ≥
1

2
min

1≤j≤K
Pe(Rj |H0) (55)

≥ 1

2
· 2

− max
1≤j≤K

|Rj |·(d(p,q)+o(1))
(56)

≥ 2−S·(d(p,q)+o(1)), (57)

where d(p, q) was defined in (10) and o(1) is relative to S.
Note that in (55) we bound the error probability under H0

with the smallest error probability across classes, and in (56)
we used the fact that the error probability under H0 in class
Rj is larger than the average error probability, and then used
Theorem 1 for the ergodic case.

For the second case, we define the non-empty sets

C1 = {Rk : Pe(Rk|H0) ≥ Pe(Rk|H1)}, (58)

C0 = {Rk : Pe(Rk|H0) < Pe(Rk|H1)}. (59)

For any k ∈ C1, we have

Pe(Rk|H0) ≥ 2−|Rk|·(d(p,q)+o(1)), (60)

and for any k ∈ C0 we have

Pe(Rk|H1) ≥ 2−|Rk|·(d(p,q)+o(1)), (61)

according to Theorem 1 for the ergodic case. Now, write

Pe ≥
1

2
Pr(X0 → C1) min

k∈C1

Pe(Rk|H0) (62)

+
1

2
Pr(X1 → C0) min

k∈C0

Pe(Rk|H1) (63)

≥ 1

2
(Pr(X0 → C1) + Pr(X1 → C0))

×2
−max{max

k∈C1

|Rk|, max
k′∈C0

|Rk′ |}·(d(p,q)+o(1))

(64)

=
1

2
(Pr(X0 → C1) + Pr(X1 → C0))

×2
−max

k
|Rk|·(d(p,q)+o(1))

. (65)

Consider a chain with |T |+2 states, obtained from the original
chain by merging the states in C0 and C1 into two respectively
absorbing states. Then Lemma 4 holds, with

p0 = Pr(X0 → C1), (66)

p1 = Pr(X1 → C0). (67)

According to (65), we may assume that maxi pi < 1/2 as
otherwise the theorem is trivially true. Now, repeating the same
arguments as in the proof of the two absorbing states, one can
show that

Pr(X0 → C1) + Pr(X1 → C0) (68)

≥1−maxi pi
|T |+ 2

· 2−(|T |+2)·(d(p,q)+o(1)). (69)

The proof follows by noting that max
k

|Rk|+ |T | ≤ S − 1.
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