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Abstract—While Internet of Things (IoT) devices and sensors
create continuous streams of information, Big Data infrastruc-
tures are deemed to handle the influx of data in real-time. One
type of such a continuous stream of information is time series
data. Due to the richness of information in time series and
inadequacy of summary statistics to encapsulate structures and
patterns in such data, development of new approaches to learn
time series is of interest. In this paper, we propose a novel method,
called pattern tree, to learn patterns in the times-series using a
binary-structured tree. While a pattern tree can be used for many
purposes such as lossless compression, prediction and anomaly
detection, in this paper we focus on its application in time series
estimation and forecasting. In comparison to other methods, our
proposed pattern tree method improves the mean squared error
of estimation.

I. INTRODUCTION
With the enormous amount of data being collected by the

smart devices and sensors, Internet of Things (IoT), high
resolution time series are becoming one of the main types of
Big Data. Due to the long temporal length and high temporal
resolution of time series, efficient processing of such data
can be challenging. One possibility is characterization through
low order statistics, but such approaches may lead to the
loss of information-rich parts of time series, since in many
applications most of the value in the information is in the parts
that deviates from the low order statistics, i.e. in the atypical
parts [1], [2]. For example, consider the heart rate time series
recorded by wearables that are being used as remote health
monitoring devices (IoT in health care [3]), there are short-
duration arrhythmic patterns that are valuable in the sense that
they are known to indicate possible onset of disease, but not
fully reflected in simple summary statistics like the sample
mean, variance or covariance. Another example is stock market
data, for which hourly stock data is more eventful than the
daily data. Hence, the availability of such time series data
and the richness of information they contain encourage new
approaches in order to efficiently learn the structure of the
time series, and extract patterns for more accurate processing
(e.g. estimation, prediction and detection).

Regression and classification trees (CART) and random
forests [4] constitute a general approach to non-parametric
analysis of data developed in the early 1980’s. More recently,
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model-free pattern-based analysis has been considered in the
literature [5]–[13]. Kozat et al. [14] used a universal prediction
approach, called a context tree to partition the regressors space
resulting in a piece-wise linear prediction technique. Chung
et al. [5] developed a dynamic approach using evolutionary
computation for pattern-based segmentation of time series.
Ouyang et al. [6] proposed a dissimilarity measure based on
ordinal patterns of EEG (electroencephalogram) time series
in order to identify nonlinear dynamics of different brain
states. Liu et al. [7] proposed a pattern-based strategy for
prediction of short-duration and long-term activities in work-
flow systems. Berndt [8] et al. used dynamic time warping
to identify patterns in time series. Fu et al. [9] developed
a framework for identification of the perceptually important
points in order to find patterns in stock market data and
analyze the trends. Alvisi et al. [10] proposed a water-demand
forecasting model based on the periodic patterns observed at
various levels (annual, weekly and daily) and used it in a
feed-forward control system for decision-making. Alvarez et
al. [11] introduced a pattern-based approach to forecasting in
time series using the similarity of patterns to historical data.
Hu et al. [13] used generalized principal component analysis to
identify the patterns in the historical wind speed data and used
them in the wind speed prediction. Among the aforementioned
approaches, [10], [11], [13] are the only works that focused
on using the observed patterns in data to forecast. However,
their approaches require pattern classification methods and
historical data as a reference. In this paper, we intend to use a
binary structure tree to naturally classify and learn the patterns
in the time series and use it for online estimation without
historical data requirement.

In this paper, we first introduce an analytic method to
identify and learn patterns in time series using a binary-
structured tree (similar to context tree [15]–[17]), and then we
present how these patterns can be used for estimation in time
series data. While assuming a single generative distribution
with fixed parameters for time series samples does not seem
to be fully practical, it serve as our starting point to see
how such a hypothetical distribution may be decomposed
based on patterns in the time series. Albeit the focus of this
paper is on how patterns in the time series can be used for
estimation, the proposed pattern-based analysis can be used for
many purposes including compression and anomaly detection.
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In fact, our proposed methodology allows the extension of
Context-Tree Weighting [15]–[17] to real-valued case.

This paper is organized as follows: in Section II, the notation
used in this paper is introduced. Section III develops a pattern-
based decomposition of distributions. Section IV represents
our proposed estimation method using the patterns in time
series. Finally, section V presents numerical results.

II. NOTATION

For any binary variable b ∈ {0, 1}, we define

x
b
≶ y ,

{
x > y, b = 1;

x ≤ y, b = 0.

x
b
≶ y ⇐⇒ y

1−b
≶ x.

x
b
≶ y ⇐⇒ x

b
≷ y.

which characterizes the non-symmetric binary operators ≶ and
≷; note that x ≶ y and y ≶ x are different. Suppose B(D) =
b1b2 · · · bD is a binary string of length D, and let B(D) be
the set of all possible binary strings of length D. For instance,
B(2) = {00, 01, 10, 11}. In this paper, we use B(D) to indicate
a pattern and we consider two types of patterns: static pattern
and dynamic pattern. These patterns are defined as

B
(D)
st (i) ,

i⋂
n=i−D+1

{
xi

b−n+i+1

≶ xn−1

}
,

B
(D)
dy (i) ,

i⋂
n=i−D+1

{
xn

b−n+i+1

≶ xn−1

}
.

It follows that B(D)
st (i) =

⋂{
xi

b1
≶ xi−1, B

(D)
st (i− 1)

}
and

similarly B(D)
dy (i) =

⋂{
xi

b1
≶ xi−1, B

(D)
dy (i− 1)

}
. As easily

seen, at any time i, B(D)
st (i) is used to compare the current

sample xi with previous D samples, and B(D)
dy (i) is used to

compare the past D consecutive pairs. While the dynamic
pattern B

(D)
dy (i), represents the actual pattern in the time

series, we show below that it is closely tied to the static
pattern B(D)

st (i). Given depth D and pattern B(D), we define
the following probability distribution functions (p.d.f.)

f

(
B

(D)
st

)
(x) = f

(
x = xi

∣∣∣∣B(D)
st (i)

)
= f

(
x = xi

∣∣∣∣ i⋂
n=i−D+1

{
xi

b−n+i+1

≶ xn−1

})
,

f

(
B

(D)
dy

)
(x) = f

(
x = xi

∣∣∣∣B(D)
dy (i)

)
= f

(
x = xi

∣∣∣∣ i⋂
n=i−D+1

{
xn

b−n+i+1

≶ xn−1

})
.

Also, f
(
B

(D)
st

)
(x) and f

(B(D))
st (x) can be used interchange-

ably (similarly f

(
B

(D)
dy

)
(x) might be used interchangeably

with f(B(D))
dy (x)).

III. PATTERN-BASED DECOMPOSITION OF DISTRIBUTIONS

Suppose xi, i = 1, 2, . . . , are time series samples drawn
i.i.d. according to the Gaussian distribution N

(
µ, σ2

)
with

known mean µ and variance σ2 (the i.i.d. assumption will
be relaxed in Section IV). We call such a time series an
independent normally distributed time series. Given any static
or dynamic pattern B(D), we would like to calculate the
probability Pr

(
B(D)

)
of observing such a pattern and the

distribution f(B(D)) (x) of samples compatible with such a
pattern. As presented in Theorem 1 and Theorem 2, these
quantities depend on the beta-normal distribution [18], [19]
whose p.d.f. is given by

BN (α, β, µ, σ) ,
1

B (α, β)

[
Φ

(
x− µ
σ

)]α−1

×
[
1− Φ

(
x− µ
σ

)]β−1
1

σ
φ

(
x− µ
σ

)
, (1)

where φ (x) and Φ (x) are the standard normal p.d.f. and c.d.f.
respectively, and B (α, β) = Γ(α)Γ(β)

Γ(α+β) is the beta function. In
Theorem 1, given a static pattern B(D), closed-form equations
for Pr

(
B(D)

)
and f(B(D)) (x) are presented. These results

are then generalized to dynamic patterns in Theorem 2. Due
to the page limitation and similarity of the proof steps, we
only provide the proof of Theorem 2 which is more general
than Theorem 1.

Theorem 1. Suppose xi, i = 1, 2, . . . , are time series samples
drawn i.i.d. according to the Gaussian distribution N

(
µ, σ2

)
.

Given depth D and any static pattern B(D)
st we have

1) Pr
(
B

(D)
st (i)

)
= B (α, β)

2) f

(
B

(D)
st

)
(x) = BN (α, β, µ, σ)

where α =
∑D
i=1 bi+1 and β = D−

∑D
i=1 bi+1 are integers.

Theorem 2. Suppose xi, i = 1, 2, . . . , are time series samples
drawn i.i.d. according to the Gaussian distribution N

(
µ, σ2

)
.

Given depth D and any dynamic pattern B(D)
dy , the distribution

f

(
B

(D)
dy

)
(x) can be written as the mixture of beta-normal

distribution.

Proof: In order to derive f
(
B

(D)
dy

)
(x), we first need to

find Pr
(
B

(D)
dy (i)

)
= Pr

(⋂i
n=i−D+1

{
xn

b−n+i+1

≶ xn−1

})
(to reduce clutter, the definite integrals

∫ +∞
−∞ is abbreviated to∫

)
A = Pr

(
B

(D)
dy (i)

)
=

∫
Pr
(
xi, B

(D)
dy (i)

)
dxi

=

∫
Pr

(
xi, xi

b1
≶ xi−1, B

(D)
dy (i− 1)

)
dxi

=

∫
Pr

(
B

(D)
dy (i− 1)

∣∣∣∣xi, xi b1
≶ xi−1

)
× Pr

(
xi

b1
≶ xi−1

∣∣∣∣xi) f (xi) dxi

=

∫ ∑
K

[
Pr

(
B

(D)
dy (i− 1)

∣∣∣∣xi, xi b1
≶ xi−1,K

(D−1)
st (i− 1)

)



× Pr

(
K

(D−1)
st (i− 1)

∣∣∣∣xi)
]

Pr

(
xi

b1
≶ xi−1|xi

)
f (xi) dxi

where
∑
K is an abbreviation for

∑
K(D−1)∈B(D−1) , and

K
(D−1)
st (i− 1) =

⋂i−1
n=i−D+1

{
xi

k−n+i

≶ xn−1

}
. Therefore

A =

∫ ∑
K

[
Pr

(
B

(D)
dy (i− 1)

∣∣∣∣xi, xi b1
≶ xi−1,K

(D−1)
st (i− 1)

)

× Pr

(
K

(D−1)
st (i− 1)

∣∣∣∣xi)
]

Pr

(
xi

b1
≶ xi−1|xi

)
f (xi) dxi

=

∫ ∑
K

[
Pr

(
B

(D)
dy (i− 1)

∣∣∣∣xi, xi b1
≶ xi−1,K

(D−1)
st (i− 1)

)

×
i−1∏

n=i−D+1

Pr

(
xi

k−n+i

≶ xn−1

∣∣∣∣xi
)]

Pr

(
xi

b1
≶ xi−1

∣∣∣∣xi) f (xi) dxi

=

∫ ∑
K

[
Pr

(
xi−1

b2
≶ xi−2

∣∣∣∣xi, xi b1
≶ xi−1, xi

k1

≶ xi−2

)

×
i−2∏

n=i−D+1

Pr

(
xn

b−n+i+1

≶ xn−1

∣∣∣∣xi, xik−n+i−1

≶ xn, xi
k−n+i

≶ xn−1

)

×
i−1∏

n=i−D+1

Pr

(
xi
k−n+i

≶ xn−1

∣∣∣∣xi
)]

Pr

(
xi

b1
≶ xi−1

∣∣∣∣xi) f (xi) dxi

where Pr

(
xi−1

b2
≶ xi−2

∣∣∣∣xi, xi b1≶ xi−1, xi
k1
≶ xi−2

)
and

Pr

(
xn

b−n+i+1

≶ xn−1

∣∣∣∣xi, xi k−n+i−1

≶ xn, xi
k−n+i

≶ xn−1

)
are either zero, or one or 1

2 since for i.i.d. samples
Pr (xl > xm) = 1

2 for any integer l,m. Thus we have

Pr (xn > xn−1|xi, xi > xn, xi > xn−1) =
1

2
;

Pr (xn > xn−1|xi, xi > xn, xi < xn−1) = 0;

Pr (xn > xn−1|xi, xi < xn, xi > xn−1) = 1;

Pr (xn > xn−1|xi, xi < xn, xi < xn−1) =
1

2
;

Pr (xn < xn−1|xi, xi > xn, xi > xn−1) =
1

2
;

Pr (xn < xn−1|xi, xi > xn, xi < xn−1) = 1;

Pr (xn < xn−1|xi, xi < xn, xi > xn−1) = 0;

Pr (xn < xn−1|xi, xi < xn, xi < xn−1) =
1

2
.

Defining Ψ
(
B(D),K(D−1)

)
,

Pr

(
xi−1

b2
≶ xi−2

∣∣∣∣xi, xi b1≶ xi−1, xi
k1
≶ xi−2

)
×∏i−2

n=i−D+1 Pr

(
xn
b−n+i+1

≶ xn−1

∣∣∣∣xi, xik−n+i−1

≶ xn, xi
k−n+i

≶ xn−1

)
,

we obtain

A =
∑
K

Ψ
(
B(D),K(D−1)

)∫ i−1∏
n=i−D+1

Pr

(
xi

k−n+i

≶ xn−1

∣∣∣∣xi
)

× Pr

(
xi

b1
≶ xi−1

∣∣∣∣xi) f (xi) dxi

=
∑
K

Ψ
(
B(D),K(D−1)

)∫
Φ

(
xi − µ
σ

)∑ kj+b1

×
[
1− Φ

(
xi − µ
σ

)](D−1−
∑

kj)+(1−b1) 1

σ
φ

(
xi − µ
σ

)
dxi

=
∑

K(D−1)∈B(D−1)

Ψ
(
B(D),K(D−1)

)
B (αK , βK) ,

where αK =
∑D−1
j=1 kj+b1+1 and βK = D−b1−

∑D−1
j=1 kj+

1 and B (αK , βK) is the beta function. Finally we need
to calculate Ψ

(
B(D),K(D−1)

)
. After some manipulations,

Ψ
(
B(D),K(D−1)

)
can be calculated recursively for D ≥ 3

as follows

Ψ
(
B(D),K(D−1)

)
= Ψ

(
B(D−1),K(D−2)

)[1

2
(kD−2 � kD−1)

+ (kD−2 ⊕ kD−1) (kD−1bD + kD−2 (1− bD))

]
(2)

with Ψ (11, 1) = 1
2 , Ψ (11, 0) = 0, Ψ (10, 1) = 1

2 and
Ψ (10, 0) = 1 initialization for D < 3. Here ⊕ represents
the xor operator and � represents the xnor operator. Thus, the

distribution f
(
B

(D)
dy

)
(x) can be written as

f

(
B

(D)
dy

)
(x) = f

(
x = xi

∣∣∣∣B(D)
dy

)

=
Pr
(
xi, B

(D)
dy

)
Pr
(
B

(D)
dy

)
=

∑
K(D−1)∈B(D−1)

Ψw

(
B(D),K(D−1)

)
BN (αK , βK , µ, σ) ,

where BN (αK , βK , µ, σ) is the beta-normal distribution and

Ψw

(
B(D),K(D−1)

)
=

Ψ
(
B(D),K(D−1)

)
B (αk, βk)∑

L Ψ
(
B(D), L(D−1)

)
B (αL, βL)

.

(3)

Since
∑
K(D−1)∈B(D−1) Ψw

(
B(D),K(D−1)

)
= 1 the proof is

complete.

Example 3. Assume xi, i = 1, 2, . . . satisfies the assumptions
of Theorem 2, and consider f (101)

dy (x). Using Equation (2)
we have Ψ (101, 11) = Ψ (10, 1) × 1

2 = 1
4 , Ψ (101, 10) =

Ψ (10, 1) × 0 = 0, Ψ (101, 01) = Ψ (10, 0) × 1 = 1 and
Ψ (101, 00) = Ψ (10, 0) × 1

2 = 1
2 . Hence using Equation (3)

we can write

Ψw (101, 11) =
1
4 B (4, 1)

1
4 B (4, 1) + B (3, 2) + 1

2 B (2, 3)
=

3

9
,

Ψw (101, 10) = 0,

Ψw (101, 01) =
B (3, 2)

1
4 B (4, 1) + B (3, 2) + 1

2 B (2, 3)
=

4

9
,

Ψw (101, 00) =
1
2 B (2, 3)

1
4 B (4, 1) + B (3, 2) + 1

2 B (2, 3)
=

2

9
.

Therefore the distribution f (101)
dy (x) is

f (101) (x) =
3

9
BN (4, 1, µ, σ) +

4

9
BN (3, 2, µ, σ)

+
2

9
BN (2, 3, µ, σ) .



Also note that for static pattern f (101)
st (x) = BN (3.2, µ, σ).

Fig. 1 represents the p.d.f.s of the samples following the
static and dynamic depth-one and depth-two patterns. Obvi-
ously, at depth one the static and dynamic patterns are the
same, and for D ≥ 2, only all-zero and all-one static and
dynamic patterns result in the same distributions.

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6
Pattern-Based Decomposition of Distribution

f(x): Root
f
dy

(x): Depth 1

f
st

(x): Depth 1

f
dy

(x): Depth 2

f
st

(x): Depth 2

Figure 1. p.d.f.s of the pattern-based decomposed samples of standard normal
time series (for both static and dynamic patterns at depth one and depth two):
f (x), f (0) (x), f (1) (x), f (11) (x), f (10) (x), f (01) (x) and f (00) (x).

IV. PATTERN-BASED ESTIMATION MODEL

So far we have assumed i.i.d. samples, in which for any
m ∈ N such that m < i we have Pr (xi < xi−m) =
Pr (xi > xi−m) = 1

2 . This leads to a symmetric decom-
position of the distributions of interest. Note that in many
real-world applications such symmetric and i.i.d. assumptions
are not valid, especially in finite time series. In fact, such
asymmetry may be learned and used for prediction, estimation
and compression. In this paper, we only focus on estimation.
From now on, by “pattern” we only mean dynamic pattern.

Consider the autoregressive time series xi, i = 1, 2, . . .,
satisfying xi+1 = xi+di+1 where di ∼ N

(
0, σ2

)
is assumed

to be i.i.d. and x0 = µ. The xis are dependent but identically
distributed (d.i.d.), and given xi we have xi+1 ∼ N

(
xi, σ

2
)
.

Due to the asymmetric patterns in time series, instead of the
model xi+1 = xi + di+1 we use xi+1 = xi + (−1)

qi+1 |di+1|
where qi ∈ {0, 1} and di ∼ N

(
0, σ2

)
. Considering depth D

and given a pattern B(D−1) = b1b2 · · · bD−1, the estimation
(or forecast as considered in [10], [11]) of the next sample is
x̂i+1 = xi + (−1)

q̂i+1

∣∣∣d̂i+1

∣∣∣ where

q̂i+1 =

{
0, p

(1)
i+1 > p

(0)
i+1;

1, o.w.;

p
(1)
i+1 = Pr

(
xi+1 > xi

∣∣∣∣B(D−1)
dy (i)

)
,

p
(0)
i+1 = 1− p(1)

i+1,

where B(D−1)
dy (i) =

⋂i
n=i−D+2

{
xn

b−n+i+1

≶ xn−1

}
and

d̂i+1 =


1∣∣∣S(1)
i+1

∣∣∣
∑
xk∈S(1)

i+1
(xk − xk−1) , p

(1)
i+1 > p

(0)
i+1;

1∣∣∣S(0)
i+1

∣∣∣
∑
xk∈S(0)

i+1
(xk − xk−1) , o.w.;

where S(1)
i+1 =

{
xk

∣∣∣∣1 ≤ k ≤ i, xk > xk−1, B
(D−1)
dy (k)

}
and

S
(0)
i+1 =

{
xk

∣∣∣∣1 ≤ k ≤ i, xk ≤ xk−1, B
(D−1)
dy (k)

}
. Note that

such an estimation comes down to two decisions: 1) De-

ciding xi
q̂i+1

≶ xi+1 by comparing p
(1)
i+1 and p

(0)
i+1 (where

p
(1)
i+1 and p

(0)
i+1 are calculated using the results of Theo-

rem 2 for i.i.d. case, or calculated empirically for non-i.i.d.
cases), 2) Calculating the change value d̂i+1 by averaging
the change values for the samples that had the same pattern⋂{

xi
q̂i+1

≶ xi+1, B
(D−1)
dy (i)

}
.

V. EXPERIMENT

In this section, we apply the proposed estimator on a
synthetic time series, known as Mackey-Glass [20], as well as
real-world time series of heart rate data. In these experiments,
first an empty binary-structured tree is created based on a
(predetermined) depth, then as samples of the time series are
used iteratively to fill out the tree based on the patterns, p(1)

i+1

and p
(0)
i+1 are updated and the next sample is also estimated

using the samples and patterns that have already been seen, and
finally sample-wise estimation error is calculated. Algorithm
1 summarized the step-by-step procedure. We compare the
estimation results with linear prediction and an adapted version
of the pattern-based forecasting method proposed in [11].
One of reasons for such an adaptation is that, the proposed
method in [11] needs historical data, but in our online setting
“historical” data becomes available iteratively as we see more
data samples.

While it’s not of our immediate interest and is subject of an
ongoing work, such a pattern tree can also be used in machine
learning framework, i.e. a training time series can be used
to fill a pattern tree, and then the filled tree can be used in
prediction/estimation of a test time series.

A. Mackey-Glass

The Mackey-Glass time series is a nonlinear time delay
differential equation and was originally introduced to rep-
resent the appearance of complex dynamic in physiological
control systems. It is derived by finite difference discretization
of the nonlinear differential equation dx(t)

dt = −ax (t) +
bx(t−τ)

1+x10(t−τ) , t ≥ 0, where a, b and τ are constants. We
generated 10000 samples of this time series with a = 0.2,
b = 0.1 and τ = 17 and followed the steps described in
Section V. Table I summarizes the comparison between our
proposed pattern tree method, the pattern-based forecasting
method proposed in [11] and linear prediction in terms of



Algorithm 1 Pattern Tree algorithms (Note that each pattern
corresponds to a path in binary-structured tree).
• Inputs:

Dmax: The Predetermined maximum depth of tree
x: Time Series Data

1: procedure MAIN
2: PT = Create(Dmax)
3: PT = PT.SetPattern(x(1 : Dmax))
4: for i = Dmax + 1 : End do
5: PT = PT.Update(i, x(i))
6: x̂(i+ 1) = PT.Estimate

1: procedure CREATE(Dmax) . Create an empty tree
2: n = 2(Dmax+1) − 1 . Total number of nodes
3: I = 1 : n . Index of nodes
4: Pattern = [ ] . Vector of size Dmax

5: TS = [ ] . To record the time series

1: procedure SETPATTERN(x) . Set the initial pattern
2: for i = 2 : Dmax do
3: if x(i) > x(i− 1) then
4: Pattern(i− 1) = 1
5: else
6: Pattern(i− 1) = 0

7: TS = x

1: procedure UPDATE(i, x)
2: if x > TS(End) then
3: update Pattern = [Pattern 1]
4: else
5: update Pattern = [Pattern 0]

6: calculate Path using Pattern
7: for d = 1 : Dmax do
8: add i to the node I(d, path)

9: update Pattern = Pattern(2 : Dmax)
10: update TS = [TS x]

1: procedure ESTIMATE
2: Pattern0 = [Pattern 0]
3: Pattern1 = [Pattern 1]
4: calculate Path0 using Pattern0
5: calculate Path1 using Pattern1
6: d = Dmax, J = [ ]
7: while d ≥ 1 and J = [ ] do
8: if P (Pattern1) > P (Pattern0) then
9: J = indexes in node I(d, path1)

10: x̂ = TS(End) +mean(TS(J)− TS(J − 1))
11: else if P (Pattern0) > P (Pattern1) then
12: J = indexes in node I(d, path0)
13: x̂ = TS(End)−mean(TS(J)− TS(J − 1))

14: d = d− 1

15: return x̂

estimation mean squared error (MSE). As can be seen, our
proposed method outperforms others.
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Figure 2. The effect of time series sampling frequency on estimation error
for pattern trees of various depths.

In the second experiment using Mackey-Glass time series,
we analyze the effect of downsampling. Fig. 2 shows the
estimation MSE versus downsampling rate. As expected, esti-
mation using deeper pattern trees (D ≥ 3) are more resilient
to downsampling.

B. Heart Rate Data

In the second experiment we used the heart rate time series
recorded by E4 Empatica wristbands (sampling frequency for
hear rate measurements of this wearable device is 1 Hz).
Similar to the Mackey-Glass experiment, we used 10000
samples of recorded heart rate data and followed the steps
described in Section V. As can be seen in Table I, similar to
the previous experiment with Mackey-Glass time series, our
proposed pattern tree method performs better than others in
terms of estimation MSE.

Depth/
Order

Mackey-Glass Heart Rate
PT [11] LP PT [11] LP

1 0.0011 0.0012 0.0011 0.0101 0.0114 0.2528
2 3.95×10−4 6.15×10−4 0.0081 0.0057 0.0104 0.3915
3 3.85×10−4 6.17×10−4 0.0153 0.0055 0.0103 0.3257
4 3.84×10−4 6.11×10−4 0.0239 0.0054 0.0103 0.3279
5 3.81×10−4 5.95×10−4 0.0336 0.0054 0.0102 0.3674

Table I
COMPARISON OF MEAN SQUARED ERROR OF ESTIMATION USING OUR

PROPOSED PATTERN TREE (PT) METHOD, LINEAR PREDICTION (LP) AND
AN ADAPTED VERSION OF THE PATTERN-BASED FORECASTING METHOD

PROPOSED IN [11] FOR VARIOUS DEPTHS/ORDERS.
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