
Download time analysis for distributed storage
systems with node failures

Tim Hellemans
University of Antwerp, Belgium
Tim.Hellemans@uantwerpen.be

Arti Yardi
IIIT Bangalore

arti.yardi@gmail.com

Tejas Bodas
IIT Dharwad

tejaspbodas@gmail.com

Abstract—We consider a distributed storage system which
stores several hot (popular) and cold (less popular) data files
across multiple nodes or servers. Hot files are stored using
repetition codes while cold files are stored using erasure codes.
The nodes are prone to failure and hence at any given time,
we assume that only a fraction of the nodes are available.
Using a cavity process based mean field framework, we analyze
the download time for users accessing hot or cold data in
the presence of failed nodes. Our work also illustrates the
impact of the choice of the storage code on the download time
performance of users in the system.

I. INTRODUCTION

The use of distributed storage systems (DSS) has become
widespread due to the large amount of data that is being
generated everyday. The idea behind DSS is to store data
across multiple data centers in a distributed manner. To
ensure that data is not lost due to node failures, coding
theoretic techniques are used to introduce redundancy across
stored data [1], [2]. In its simplest form, replication codes
are very effective in preventing data loss since multiple
copies of the same file are stored across different nodes.
Due to its simplicity, replication codes are used to store
hot data, i.e., data or content that is very popular [3]–[5].
Recent techniques for data storage use erasure codes such
as maximum distance separable (MDS) codes [6], regener-
ating (RG) codes [6], minimum storage regenerating (MSR)
codes, minimum bandwidth regeneration (MBR) codes [7],
[8], and locally recoverable (LR) codes [9]. In such codes,
a file of size B is divided into k equal parts which are then
encoded into d ≥ k parts each of size θ with θ ≥ B

k (the
total storage needed is dθ > B). The original file can be
reconstructed after downloading any k out of these d parts.
Compared to repetition codes, erasure codes are effective
in introducing redundancy and are robust to the problem of
node failures [10]. However, reconstructing a coded file from
its fragments involves overheads and hence erasure codes are
only used to store less popular content.

Node failure is a major issue plaguing DSS. When a
node fails, a repair is initiated to recover the lost data and
this recovery traffic is non-negligible and can even impact
the download time for hot and cold data. Therefore node
recovery is only performed periodically at a time when the
network activity is at its minimum. This leaves a lot of nodes
unavailable for use during peak activity and this impacts the
download time for file request. A clear understanding of

this impact is missing in the literature. When it comes to
analyzing the download time, an important open problem is
the exact download time analysis for erasure coded data.
While the literature predominantly offers bounds on the
mean download time or on the tail latency, the analysis
is also under simplifying assumptions such as unique file
to download, exponential service times, absence of node
failures etc. For example, in one of the earliest work on
MDS codes, Shah et al [11] provide bounds on the mean
download time for a single erasure coded file stored across
all its servers. [12], [13] consider the trade-off between
storage space and download time of a DSS and show that the
download time can be reduced by using erasure codes over
replication. [14] demonstrates the latency gains with respect
to using erasure coding over replication in DSS. [15], [16]
provide bounds on the tail latency of a distributed storage
system with multiple files under probabilistic scheduling of
jobs and general service times. [17] analyzes the MDS queue
and offers yet another bound on the mean download time
for erasure codes. The download time analysis for repetition
codes is relatively easy and closed form expressions for the
mean response time have been obtained recently in [18]–[20]
for exponential service times. For general service times, a
mean field analysis is presented in [21].

In this work we consider the download time analysis in a
DSS with N nodes that store several hot and cold files and
where only a fraction q of the nodes are available. Nodes
follow a first in first out (FIFO) scheduling policy to serve
requests and the service time variable has a general distribu-
tion. Files of type i are downloaded using the least loaded
ki out of di policy (LL(di, ki)) policy where i ∈ {h, c} for
hot and cold files. In this policy, each type i component is
requested from di appropriate servers that store it. The first
ki file components that start being downloaded are retained
and the rest are canceled. For hot files, i = h and kh = 1.
The novelty of this paper is in its ability to model a DSS with
node failures, that stores several hot and cold files and where
the random service requirement follows a shifted phase-type
distribution. To accommodate all these features, we model
the system as a workload dependent load balancing policy
and employ the cavity process based mean field method for
its analysis. We believe that this method is a very powerful
tool that is able to model and analyze such intricate system
details accurately. To the best of our knowledge, no recent or

ar
X

iv
:2

10
5.

02
92

6v
1 

 [
cs

.P
F]

  6
 M

ay
 2

02
1



previous work has been able to analyze the download time
for erasure coded data with all these features at once.

The use of mean field approximation for analyzing load
balancing policies is quite popular [21]–[25]. Our download
time approximation is based on mean field asymptotics
(N → ∞) for the workload distribution at an arbitrary
queue. Here, the workload at a node represents the actual
pending requests that will be served at the node (ignoring
the pending requests at the node that will be canceled due to
the LL(d, k) policy employed). Based on the cavity queue
approach used in [21], [23], [26]–[28], and the asymptotic
independence of the node workloads under the LL(d, k)
policy [29], we obtain an integro-differential equation (IDE)
characterizing the workload distribution at an arbitrary queue
(the cavity queue). This enables us to obtain the download
time distribution for hot and cold file requests.

Organization: In Section II we describe the system model
along with some preliminaries. Our main results on the
workload and download time distribution are presented in
Section III. Numerical results are presented in Section IV
followed by a conclusion in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

In this work, we perceive a DSS as a load balancing
system with N data storage servers. Requests for file down-
loads arrive at a dispatcher which forwards the requests to
appropriate nodes that store the file. Each server has a FIFO
queue for placing the file requests and hence the download
time of a file not only depends on its file size (or service
time) but also on other file requests that have arrived before
it. We assume that file requests arrive according to a Poisson
process with rate λN . Further the requested file is of type
i with probability pi for i ∈ {h, c}. For ease of exposition,
we assume that each file (irrespective of its type) has size
B and each server has the same storage capacity. Each type
i file is stored across di distinct servers using a (di, ki)−
erasure code Ci of dimension ki for i ∈ {h, c}. In such a
coding technique, a file is encoded into di fragments (to be
stored across di servers) and any ki out of the di fragments
are sufficient to reconstruct the file. We assume that each
fragment belongs to some finite field Fq̂ and the size of each
coded fragment for a type i file is θi. When the underlying
code Cc is an MDS code, we have θi = B

ki
. When the

underlying code Cc is an RG code, each node stores θi ≥ B
ki

symbols from Fq̂ . An erasure coded file of size B therefore
requires a storage space of diθi and can be reconstructed
after downloading kiθi ≥ B units. We use repetition code
Ch for hot files and hence kh = 1 and θh = B.

A requirement of the cavity process method is that differ-
ent servers must be sampled at an identical rate and hence
should have identical load. If this is not the case, we would
have to use multiple cavity queues to represent differently
loaded servers, thus complicating the analysis. To alleviate
these difficulties, we make the following assumptions. While
storing a type i file (this happens only once and at the time
of setting up the DSS), we assume that the corresponding

di servers are chosen uniformly at random, i ∈ {h, c}. We
further assume that two files of the same type are not stored
on the same set of di servers. For hot files, this ensures that
at most one hot file is lost from any di node failures. Under
such storage restrictions, our DSS can store

(
N
di

)
distinct

type i files across N nodes. This allows us to map a set
of di servers to a unique type i file. We assume that files
have identical popularity and hence each file is requested
uniformly at random. With these assumptions, we can now
view the DSS as a power-of-di choice load balancing system
where an arriving request of type i samples di servers
uniformly at random [18], [28]. See [30] for a similar file
placement policy that ensure symmetry across storage nodes.

We assume that a type i file is downloaded according to
the LL(di, ki) policy (LL stands for Least Loaded). When
a request for a type i file arrives, the dispatcher copies this
request on the corresponding di servers. For each file, the
first ki out of di copies to reach the head of their respective
queue are retained while the remaining di − ki copies are
deleted. The ki components are downloaded from the least
loaded ki out of di servers and are sufficient to reconstruct
the file. Here the load (or workload) at a server as seen by an
arriving request is the pending work at the server that will
be served before this request starts receiving any service.
See [28] for more details of the policy.

For a type i file, we define the fragment service time
X̂i associated with a file fragment as the time taken to
serve the particular fragment request once it is picked by
a server for service (actual download). We assume that
X̂i = δi + Yi where δi is a non-negative constant startup
time taken by the server while serving the fragment. Yi is
a PH(αi, Ai) (phase-type) random variable where αi ∈ Rn
and matrix Ai ∈ Rn×n for n ∈ N. Defining µi = −Ai1,
the probability density function (pdf) fYi

(w) = αie
Aiwµi.

We denote the cumulative distribution function (CDF) of
X̂i by Gi(·), its complimentary CDF (CCDF) by Ḡi(·),
its pdf by gi(·) and its mean by E[X̂i]. Note that we
have modeled X̂i by a shifted-phase type distribution. The
shifted exponential distribution that is used to model jobs
in distributed computing [31] is a special case of this
distribution. We use phase type distribution because they are
known to be dense in the class of all distributions and hence
any distribution may be approximated by it. We also assume
that for a file request, the corresponding X̂i for each of the
ki fragments is identical. We denote the file service time
for a type i file by Xi where due to identical fragment size
assumption, we have Xi = kiX̂i with mean E[Xi]. A file
service time models the random time taken to retrieve kiθi
amount of data directly from a single server. We use the term
fragment download time or response time to indicate the total
time spent by a fragment in the system (sum of the fetching
time and its waiting time). The download time or response
time Ri for a type i file then denotes the time taken by the
file request since its arrival to finish downloading all the ki
components. As part of our main result, we characterize the
CCDF of Ri using the mean field approach.



The cavity process method: This is a mean field approx-
imation method used to obtain the workload distribution
F (·) at an arbitrary queue of our DSS when N goes to
infinity. In order to employ this methodology, the asymptotic
independence of the workload at different queues must be
established. Fortunately for load balancing policies that are
combinations of LL(dj , kj) (which form the basis of our
paper), this was proven by Shneer and Stoylar [29]. The
asymptotic independence ensures that the workload at the
different queues are independent and governed by the same
law F (·). We will denote the workload density by f(·) and
its CCDF by F̄ (·). The main task is to characterize F̄ (·)
for an arbitrary queue in our DSS. Following an approach
similar to that in [21], [26], [28] we consider a tagged queue
(or a cavity queue) and analyze it as an M/G/1 queue
with workload CCDF F̄ (·) (this is yet to be identified)
and workload dependent arrival rate λ(w) (this can be
determined for the LL(di, ki) policy). Without divulging too
much details (c.f. [21], [23]), the high level idea involved
in obtaining F̄ (·) comprises the following two steps. In
the first step, assuming that F̄ (·) is given, one uses the
properties of LL(di, ki) to obtain the arrival rate λ(w) to
a cavity queue with workload w. We denote this step by
the expression λ(w) = H(F̄ (w)). As part of the second
step, for a given workload dependent arrival rate λ(w) to
the cavity queue, we use properties of a standard M/G/1
queue to obtain F̄ (w) for w ≥ 0. This step is denoted as
F̄ (w) = Φ(λ(w)). The two steps are combined to obtain a
functional fixed point equation for the stationary workload
distribution Φ(H(F̄ (w))) = F̄ (w). See [28] for details on
obtaining the functional differential equation for F̄ (·) in a
system with a vanilla LL(d, k) policy. At a high level, our
DSS model with node failures can be seen as a combination
of the LL(d, k) policy for different choices of d and k.
However the application of the cavity process method to
obtain F̄ (·) for our DSS is straightforward (see below).

III. MAIN RESULTS

In order to analyze the impact of node failures, we assume
that a randomly sampled node is available (not failed) with
probability q. Failed nodes affect the data availability which
in turn affects the download time. For example, for a cold
file request, it may happen that less than kc out of the dc
nodes storing the required fragments are available. This not
only leads to a loss of the file request but also wastes server
resources due to download of available fragments (which
are not sufficient to reconstruct the file). We first define the
quantity Bj(di) as the probability that exactly j out of di
selected servers are working (and di−j servers have failed).
It is easy to see that the probability that an arriving type i
request is lost, denoted by pl,i is given by:

pl,i =
ki−1∑
j=0

Bj(di) (1)

where i ∈ {h, c} and Bj(di) =
(
di
j

)
qj · (1 − q)di−j . Note

that Bj(di) plays a role in characterizing the load at a server.

For our system, we find that the system load (defined as the
proportion of servers that are busy) is given by:

ρ = λphE[X̂h](1−B0(dh))

+ λpcE[X̂c] ·

(∑
i≥1

min{i, kc}
kc

Bi(dc)

)
. (2)

The right hand side can be interpreted as the amount of
incoming work per unit time. As servers work at unit rate
when they have some work, the conservation of work implies
that, at equilibrium, the probability that a server is busy must
equal the amount of incoming work per unit time.

Workload distribution: To obtain an Integro Differential
Equation (IDE) in terms of F̄ (·), we distinguish between
potential and actual arrivals at the cavity queue. We say
a potential arrival of type i occurs at the cavity queue
whenever it is selected by a file request for service. As
arrivals of type i occur with a rate piλN , and any queue has
a probability of diN of being selected, the potential arrival rate
of type i files is piλdi. The main idea of the following proof
is to note that the LL(d, k) policy in the presence of failed
servers reduces to a convex combination of LL(j,min{k, j})
type policies. Indeed, when only j of the d selected servers
are available (say j ≥ k), we try to finish the k fragments
on these j servers.

Proposition 1. The equilibrium workload distribution for
our DSS model satisfies the following IDE:

F̄ ′(w) = −
∑

i∈{h,c}
λpi

di∑
j=1

Bj(di)
[
Ḡi(w) +Hj,min (j,ki)(w)

−
∫ w

0

Hj,min (j,ki)(u)gi(w − u) du

]
with F̄ (0) = ρ (as in (2)) and:

Hj,k(w) =
j∑
i=1

min{i, k}
(
j

i

)
F̄ (w)j−i(1−F̄ (w))i−1. (3)

Proof: Assume we have some policy P which applies
policy P1 with probability p1, and P2 with probability p2.
Moreover, denote by di the number of servers selected for
policy Pi. Let U denote the workload at the cavity queue
right before a potential arrival, Q(U) the workload at the
cavity queue right after the potential arrival and Qj(U) the
workload right after a potential arrival under policy Pj . Note
that the potential arrival is an actual arrival if and only if
Q(U) > U . From Theorem 5.2 in [28], one can see that
F̄ ′(w) satisfies

F̄ ′(w) = −λd1p1P{Q1(U) > w,U ≤ w}
− λd2p2P{Q2(U) > w,U ≤ w}. (4)

For our DSS with hot and cold files, this implies that

F̄ ′(w) = −λdcpcP{Qc(U) > w,U ≤ w}
− λdhphP{Qh(U) > w,U ≤ w}, (5)

with Qc(U) and Qh(U) denotes the workload at the cavity
queue right after a potential cold and hot arrival. Let



us now consider the case when a cold file request finds
exactly j functioning servers out of dc. This happens with
probability Bj(dc) and the file is served using the policy
LL(j,min{kc, j}). For a hot file that finds j out of dh servers
available, the file is served using LL(j, 1). Treating each such
case as a separate policy and using (4), we can now write
the right hand side of (5) as:

− λdcpc
dc∑
j=1

Bj(dc)P{QLL(j,min{kc,j})(U) > w,U ≤ w}

− λdhph
dh∑
j=1

Bj(dh)P{QLL(j,1)(U) > w,U ≤ w},

The proof now follows from Proposition 6.8 in [28], where
P{QLL(d,k)(U) > w,U ≤ w} is computed.

Remark 1. From this result one easily finds the mean
workload E[W ] =

∫∞
0
F̄ (w) dw for the cavity queue.

Remark 2. There are two special cases for Hj,k(w) as
defined in (3). The first is the case where k = 1, in which
case Hj,1(w) = −F̄ (w)j (as is the case for hot jobs). The
second special case is ki = di in which case we have
Hj,j(w) = j − 1 − jF̄ (w) (as is the case for cold jobs
which find j ≤ kc functioning servers).

Using the fact that Yi is a PH(αi, Ai) variable, we can
instead obtain F̄ (w) as the solution of a delayed differential
equation (DDE). Note that solving a DDE requires only
O(K) computations while the IDE requires O(K2) (K de-
notes the number of points used to discretize the workload).

Corollary 1. When X̂i = δi + Yi with δi ∈ [0,∞) and Yi
has distribution PH(αi, Ai) for i ∈ {h, c}, the equilibrium
workload distribution satisfies the following DDE:

F̄ ′(w) = −
∑

i∈{h,c}
λpi

di∑
j=1

Bj(di)

×
[
Ḡi(w) +Hj,min{j,ki}(w)− αiξ(i)j,min{j,ki},δi(w)

]
with ξ(i).,.,δi(w) = 0 (for w ≤ δi, F̄ (0) = ρ (as in (2)) and:

ξ
′(i)
j,k,δi

(w) = Aiξ
(i)
j,k,δi

(w) +Hj,k(w − δi)diµi, w > δi.

Proof: The proof follows by defining:

ξ
(i)
j,k,δi

(w) =

∫ w−δi

0

Hj,k(u)eAi(w−u−δi)µi du,w > δi,

and ξ(i).,.,δi(w) = 0 for w ≤ δi.
Download time distribution: We now characterize the

download time or response time distribution for hot and cold
requests. Note that a type i file request can be successfully
downloaded only if at least ki of the di nodes storing
the file have not failed. Now consider such a type i file
request which has exactly j of its di nodes available where
j ≥ ki. Let {Un, n = 1, . . . , j} denote the workload variable
(pending work) at each of the j available servers. Since the
policy employed is LL(di, ki) and the fragment service time

is identical, the file is downloaded once the file request at
the kthi least loaded queue reaches the head of the queue
and the corresponding fragment is served. Therefore the
download time variable Ri for this particular type i file (that
has exactly j nodes available) is equal to U(j,ki) +X̂i where
U(j,ki) denotes the kthi order statistic of {Un, n = 1, . . . , j}
where ki ≤ j ≤ di. Due to the asymptotic independence of
the queues, {Un, n = 1, . . . , j} are i.i.d random variables
with CDF F (·) and hence U(j,ki) now denotes the kthi order
statistic of j i.i.d random variables. Let R(j,ki) denote the
download time variable for a type i file request for which
exactly j out of di nodes are available and j ≥ ki. We find
that R(j,ki) = U(j,ki) + X̂i and hence its CCDF is given by:

F̄R(j,ki)
(w) = Ḡi(w) +

∫ w

0

F̄U(j,ki)
(u) · gi(w − u) du.

(6)

Now if the kthi order statistic satisfies U(j,ki) > u, then this
implies that at least j− ki + 1 nodes have workload greater
than u. Therefore:

F̄U(j,ki)
(u) =

ki∑
i=0

(
j

i

)
F̄ j−i(u)F i(u).

We use the preceding discussion to characterize the condi-
tional download time or response time distribution FRi for
an arriving type i job conditioned on the fact that it finds at
least ki out of di nodes available (otherwise the file cannot
be reconstructed). Let p̃(i)j , j ≥ ki denote the probability
that an arriving job is of type i and it finds exactly j out
of the di nodes storing this file to be available. Clearly we
have p̃(i)j = piBj(di) for i ∈ {h, c}. To account for only
those file requests that can be reconstructed, we normalize
p̃
(i)
j by dividing it with pi

∑di
j=ki

Bj(di) for each j. The
resulting quantity denoted by p(i)j is the probability that an
arriving request for a type i file finds j out of its di servers
available given that at least ki out of di files storing it are
available. From this we are able to compute the response
time distribution for a type i job as:

F̄Ri
(w) =

∑
j≥ki

p
(i)
j F̄R(j,ki)

(w), (7)

where F̄R(j,ki)
(w) is given by (6). Integrating these functions

yields the mean response time for cold and hot jobs given by
E[Ri] =

∫∞
0
F̄Ri

(w) dw. In order to compute the response
time distribution of an arbitrary job, we need to compute
the probability that an arbitrary job which is finished is a
hot/cold job. To this end we denote β̃i =

∑
j≥ki p̃

(i)
j and

then re-normalize these to have βi, such that βh + βc = 1.
We find that the CCDF of the response time is given by:
F̄R(w) = βhF̄Rh

(w) + βcF̄Rc
(w), integrating again yields

the mean response time.

IV. NUMERICAL RESULTS

In this section, we offer numerical insights into the impact
of node failures on E[Ri] for different types of erasure
codes. In all our results, the numerical evaluation for E[Ri]



(a) (b) (c)

Fig. 1: Plot of mean response time for various parameters

first involves evaluating F̄ (·) using Corollary 1. This is then
used for the numerical evaluation of F̄Ri(·) in (7) which is
then integrated to obtain E[Ri]. Needless to say, our results
are for the limiting regime when N →∞. Having said that,
the results are very accurate for finite but large values of N .
We do not exhibit such results here for space constraint but
refer readers to [21], [28] for similar observations.

Example 1: We first consider a DSS with the following
set of parameters. The arrival rate is λ = 0.7. In practice,
around 70 percent of the download traffic comprises of hot
files and hence we choose ph = 0.7. Hot files are stored
using 3-replication (dh = 3) and have a mean file service
time E[Xh] = 1. Cold files are stored using a (4,2)-MDS
code (dc = 4 and kc = 2) with mean file service time
also satisfying E[Xc] = 1. We assume that the correspond-
ing file service time distribution is hyper-exponential with
two phases and with parameters adjusted to have squared
coefficient of variation SCV = 2 and shape parameter
f = 0.5 (balanced means for the phases). See [21] for
details on relating SCV and f of a hyper-exponential with
the underlying phase-type parameters. Finally we assume
that the constant startup time for serving a fragment is
δh = δc = 0.2. For a DSS with these parameters, Table I
compares E[Ri] for type i files for various values of q
(fraction of available nodes). As the table suggests, as q
decreases, E[Ri] increases and so does the loss probabilities.
To illustrate the impact of node failure, the table outlines the
percentage increase in E[Ri] compared with the q = 1 case.

Example 2: We consider a (9,6)-MDS code with dc =
9, kc = 6. The file service time distribution is again a hyper-
exponential distribution with E[Xc] = 1, SCV = 2 and
f = 0.5. For hot files, we have ph = 0.7, dh = 3, E[Xh] =
1, and the constant startup time δh = 0.1 and δc = 0.1.
Assuming that the fraction of available nodes is 0.8, we plot
E[R], E[Rh] and E[Rc] versus λ for our DSS in Fig. 1-(a).
While the response time increases with λ, it is interesting
to note that the gains due to download parallelism involved
in cold files decreases with λ.

Example 3: In Fig. 1-(b) and Fig. 1-(c) we plot E[Rc]
versus q and λ respectively for (9,6)-RG codes with different

q
Percentage increase Loss probability

in response time
Hot file Cold file Hot file Cold file

1 0% 0% 0 0
0.95 2.3% 8.08% 0.0001 0.005
0.9 5.16% 18.01% 0.001 0.0037
0.85 8.51% 29.2% 0.0034 0.0120
0.8 12.24% 41.13% 0.008 0.0272
0.75 16.21% 53.31% 0.0156 0.0508
0.7 20.26% 65.23% 0.027 0.0837
0.65 24.19% 76.32% 0.0429 0.1265
0.6 27.78% 85.98% 0.064 0.1792

TABLE I: Percentage increase in E[Ri] versus q

fragment sizes θ. The corresponding file service time is set
as E[Xc] = kcθ. The remaining parameters are chosen as in
Example 2. For this example, we assume a normalized file
size of B = 1. Since dc = 9 and kc = 6, the MSR code
variant has θ = 1

6 . These codes have the lowest value of θ
and hence have the lowest E[Rc] across the two plots. The
other extreme are the MBR codes with θ = 0.2424. Since
their mean file service time is highest of the 4 codes we
consider, they have the highest value of E[Rc]. In both the
plots, E[Rc] decreases with q and increases with λ.

V. CONCLUSION

In this work, we have used the cavity process method to
characterize the mean download time for a DSS with hot
and cold files and node failures. We obtain the DDE for the
workload CCDF which can be easily evaluated numerically.
This is then used to obtain the mean download time for hot
and cold jobs. A clear advantage of the mean field approach
is that we are able to model node failures and also account
for multiple hot and cold files, something which has not been
possible to analyze till now. Our method also allows us to see
the impact of erasure codes and their parameters on the mean
download time. As future work, we would like to account
for recovery traffic and their impact on the download time of
hot and cold files. Further, it would be interesting to have
an accurate model to account for node failures where the
nodes resume service as soon as they have been recovered.



REFERENCES

[1] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey
on network codes for distributed storage,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 476–489, 2011.

[2] S. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan, and
P. V. Kumar, “Erasure coding for distributed storage: An overview,”
Science China Information Sciences, vol. 61, no. 10, p. 100301, 2018.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating
systems principles, 2003, pp. 29–43.

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass
storage systems and technologies (MSST). Ieee, 2010, pp. 1–10.

[5] M. Aktas, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service
rate region: A new aspect of coded distributed system design,” arXiv
preprint arXiv:2009.01598, 2020.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE transactions on information theory, vol. 56, no. 9, pp. 4539–
4551, 2010.

[7] K. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit
construction of optimal exact regenerating codes for distributed stor-
age,” in 2009 47th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2009, pp. 1243–1249.

[8] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-
regenerating codes for distributed storage at the msr and mbr points
via a product-matrix construction,” IEEE Transactions on Information
Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

[9] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Transactions on Information Theory, vol. 60, no. 10, pp. 5843–
5855, 2014.

[10] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in Pre-
sented as part of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), 2012, pp. 15–26.

[11] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant
requests reduce latency?” IEEE Transactions on Communications,
vol. 64, no. 2, pp. 715–722, 2016.

[12] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Communication, Control, and Computing (Allerton), 2012 50th
Annual Allerton Conference on. IEEE, 2012, pp. 326–333.

[13] G. Joshi, E. Soljanin, and G. Wornell, “Queues with redundancy:
Latency-cost analysis,” ACM SIGMETRICS Performance Evaluation
Review, vol. 43, no. 2, pp. 54–56, 2015.

[14] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field analysis of
coding versus replication in large data storage systems,” ACM Trans-
actions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS), vol. 3, no. 1, p. 3, 2018.

[15] V. Aggarwal, J. Fan, and T. Lan, “Taming tail latency for erasure-
coded, distributee storage systems,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE, 2017, pp. 1–9.

[16] A. O. Al-Abbasi, V. Aggarwal, and T. Lan, “Ttloc: Taming tail
latency for erasure-coded cloud storage systems,” IEEE Transactions
on Network and Service Management, vol. 16, no. 4, pp. 1609–1623,
2019.

[17] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Transactions on Information
Theory, 2019.

[18] U. Ayesta, T. Bodas, and I. M. Verloop, “On a unifying product
form framework for redundancy models,” Performance Evaluation,
vol. 127, pp. 93–119, 2018.

[19] ——, “On redundancy-d with cancel-on-start aka join-shortest-work
(d),” ACM SIGMETRICS Performance Evaluation Review, vol. 46,
no. 2, pp. 24–26, 2019.

[20] U. Ayesta, T. Bodas, J. Dorsman, and I. Verloop, “A token-based
central queue with order-independent service rates,” arXiv preprint
arXiv:1902.02137, 2019.

[21] T. Hellemans and B. Van Houdt, “On the power-of-d-choices with
least loaded server selection,” Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, vol. 2, no. 2, p. 27, 2018.

[22] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[23] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized load balanc-
ing with general service time distributions,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 38, no. 1. ACM, 2010, pp.
275–286.

[24] D. Mukherjee, S. C. Borst, J. S. van Leeuwaarden, and P. A. Whiting,
“Universality of power-of-d load balancing in many-server systems,”
arXiv preprint arXiv:1612.00723, 2016.

[25] R. Jinan, A. Badita, T. Bodas, and P. Parag, “Load balancing
policies with server-side cancellation of replicas,” arXiv preprint
arXiv:2010.13575, 2020.

[26] M. Bramson et al., “Stability of join the shortest queue networks,”
The Annals of Applied Probability, vol. 21, no. 4, pp. 1568–1625,
2011.

[27] M. Bramson, Y. Lu, and B. Prabhakar, “Asymptotic independence of
queues under randomized load balancing,” Queueing Systems, vol. 71,
no. 3, pp. 247–292, 2012.

[28] T. Hellemans, T. Bodas, and B. Van Houdt, “Performance analysis
of workload dependent load balancing policies,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 3,
no. 2, pp. 1–35, 2019.

[29] S. Shneer and A. Stolyar, “Large-scale parallel server system with
multi-component jobs,” arXiv preprint arXiv:2006.11256, 2020.

[30] V. Shah, A. Bouillard, and F. Baccelli, “Delay comparison of delivery
and coding policies in data clusters,” in Communication, Control,
and Computing (Allerton), 2017 55th Annual Allerton Conference on.
IEEE, 2017, pp. 397–404.

[31] P. Peng, E. Soljanin, and P. Whiting, “Diversity/parallelism
trade-off in distributed systems with redundancy,” arXiv preprint
arXiv:2010.02147, 2020.


	I Introduction
	II System Model and Preliminaries 
	III Main Results
	IV Numerical results
	V Conclusion
	References

