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Evaluating Multiple Guesses by an Adversary via a

Tunable Loss Function

Gowtham R. Kurri, Oliver Kosut, Lalitha Sankar

Abstract—We consider a problem of guessing, wherein an
adversary is interested in knowing the value of the realization of
a discrete random variable X on observing another correlated
random variable Y . The adversary can make multiple (say, k)
guesses. The adversary’s guessing strategy is assumed to minimize
α-loss, a class of tunable loss functions parameterized by α. It has
been shown before that this loss function captures well known loss
functions including the exponential loss (α = 1/2), the log-loss
(α = 1) and the 0-1 loss (α = ∞). We completely characterize
the optimal adversarial strategy and the resulting expected α-
loss, thereby recovering known results for α = ∞. We define
an information leakage measure from the k-guesses setup and
derive a condition under which the leakage is unchanged from
a single guess.

I. INTRODUCTION

The classical guessing problem involves an adversary in-

terested in finding the value of a realization of a discrete

random variable X by asking a series of questions in an

adaptive manner until an affirmative answer is received. A

commonly used performance metric for the guessing prob-

lem is the expected number of guesses required until X is

guessed correctly, or more generally a moment of this number.

Massey [1] established a lower bound on the expected number

of guesses in terms of the entropy of X . Later, Arikan [2]

investigated the problem of bounding the moments of the

number of guesses in terms of the Rényi entropy [3] of X .

Further connections between Rényi entropy and guessing are

explored in [4]–[7].

We study the guessing problem where an adversary makes

a fixed number of guesses. Such a setting finds applications

in several practical scenarios. For example, an adversary is

allowed several guesses to login with a password before

getting locked-out. We consider a setup where an adversary

is interested in guessing the unknown value of a random

variable X on observing another correlated random variable Y ,

where X and Y are jointly distributed according to PXY over

the finite support X × Y . Since the adversary makes a fixed

number of guesses k, we focus on evaluating the adversary’s

success using loss functions that in turn can measure the

information leaked by Y about X . To this end, we model

the adversary’s strategy using α-loss, a class of tunable loss

functions parameterized by α ∈ (0,∞] [8], [9]. This class

captures the well-known exponential loss (α = 1/2) [10],
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log-loss (α = 1) [11]–[13], and the 0-1 loss (α = ∞) [12],

[14]. The adversary then seeks to find the optimal (possibly

randomized) guessing strategy that minimizes the expected α-

loss over k guesses.

Devising guessing strategies with the quest to optimize

certain performance metrics of an adversary has several appli-

cations in information theory and related fields; this includes

sequential decoding [2], guessing codewords [15], botnet

attacks [5], [7], to name a few. In [5], the authors consider

a guessing problem with a fixed number of guesses allowing

for randomized guessing strategies (similar to our setting) and

analyze the exponential behaviour of the probability of success

in guessing the sequences. A closely related work is that of

maximal leakage [16] which captures the information leaked

when an adversary maximizes its probability of correctly

guessing (equivalent to minimizing 0-1 loss) an unknown

function of X ; they further generalize this notion to k-guesses,

and they show the resulting leakage measure is unchanged.

Our main contributions are as follows:

• We completely characterize the minimal expected α-loss

for k guesses (Theorem 1), thereby recovering known

results for α = ∞ [16]. To the best of our knowledge,

such a result even for log-loss (α = 1) under multiple

guesses was not explored earlier. We derive a technique

for transforming the optimization problem over the prob-

ability simplex associated with multiple random variables

to that of with a single random variable using tools drawn

from duality in linear programming, which may be of

independent interest (Lemma 2).

• We define a measure of information leakage for k guesses

of an adversary motivated by α-leakage [8, Definition 5]

and show that it does not change with the number of

guesses for a class of probability distributions PXY

(Theorem 2).

II. BACKGROUND AND PROBLEM DEFINITION

We first review α-loss and then define the minimal expected

α-loss for k guesses. Later, we define a measure of information

leakage based on this.

Definition 1 (α-loss [8], [9]). For α ∈ (0, 1) ∪ (1,∞), the

α-loss is a function defined from [0, 1] to R+ as

ℓα(p) :=
α

α− 1

(

1− p
α−1
α

)

. (1)
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It is defined by continuous extension for α = 1 and α = ∞,

respectively, and is given by

ℓ1(p) = log
1

p
, ℓ∞(p) = 1− p. (2)

Notice that ℓα(p) is decreasing in p.

Definition 2 (Minimal expected α-loss for k guesses). Con-

sider random variables (X,Y ) ∼ PXY and an adversary that

makes k guesses X̂[1:k] = X̂1, X̂2, . . . , X̂k on observing Y

such that X−Y −X̂[1:k] is a Markov chain. Let P
X̂[1:k]|Y

be a

strategy for estimating X from Y in k guesses. For α ∈ (0,∞],
the minimal expected α-loss for k guesses is defined as

ME(k)
α (PXY )

:= min
P

X̂[1:k]|Y

∑

x,y

PXY (x, y)ℓα

(

P

(

k
⋃

i=1

(X̂i = x|Y = y)

))

.

(3)

We interpret P

(

k
⋃

i=1

(X̂i = x)|Y = y

)

as the probability of

correctly estimating X = x given Y = y in k guesses. An

adversary seeks to find the optimal guessing strategy in (3).

Note that the optimization problem in (3) was solved for a

special case of k = 1 by Liao et al. [8, Lemma 1]. Notice that

ME(k)
α (PXY ) =

∑

y

PY (y)ME(k)
α (PX|Y=y), (4)

where we have slightly abused the notation in the R.H.S. of

(4). Hence, in view of (4), in order to solve the optimization

problem in (3), it suffices to solve for a case where Y = ∅,

i.e.,

ME(k)
α (PX) := min

P
X̂[1:k]

∑

x

PX(x)ℓα

(

P

(

k
⋃

i=1

(X̂i = x)

))

.

(5)

Also, in the sequel, it suffices to consider the optimization

problem in (5) only for the case where k < n, where PX

is supported on X = {x1, x2, . . . , xn} because if k ≥ n,

we have ME(k)
α (PX) = 0, since a strategy P ∗

X̂[1:k]
such that

P ∗
X̂[1:n]

(x1, x2, . . . , xn) = 1 is optimal.

Motivated by α-leakage [8, Definition 5] which captures

how much information an adversary can learn about a random

variable X from a correlated random variable Y when a single

guess is allowed, we define a leakage measure which captures

the information an adversary can learn when k guesses are

allowed. This definition is also related to maximal leakage

under k guesses [16].

Definition 3 (α-leakage with k guesses). Given a joint distri-

bution PXY and k estimators X̂1, X̂2, . . . , X̂k with the same

support as X , the α-leakage from X to Y with k guesses is

defined as

L(k)
α (X → Y ) ,

α

α− 1
log

max
P

X̂[1:k]|Y

E



P

(

k
⋃

i=1

(X̂i = X)|Y

)

α−1
α





max
P

X̂[1:k]

E



P

(

k
⋃

i=1

(X̂i = X)

)

α−1
α





, (6)

for α ∈ (0, 1) ∪ (1,∞).

III. MAIN RESULTS

Theorem 1 (Minimal expected α-loss for k guesses). Con-

sider a PX supported on X = {x1, x2, . . . , xn} such that

p1 ≥ p2 ≥ · · · ≥ pn, where pi := PX(xi), for i ∈ [1 : n].
Then the minimal expected α-loss for k guesses is given by

ME(k)
α (PX) =

α

α− 1

n
∑

i=s∗

pi



1−

(

(k − s∗ + 1)pαi
∑n

j=s∗ p
α
j

)
α−1
α



 ,

(7)

where

s∗ = min

{

r ∈ {1, 2, . . . , k} :
(k − r + 1)pαr
∑n

i=r p
α
i

≤ 1

}

. (8)

Remark 1. It can be inferred from Theorem 1 that in the

optimal guessing strategy, the adversary guesses the s∗ − 1
most likely outcomes, and uses an updated tilted distribution

on the rest of the outcomes (see also (28)). For the special case

when k = s∗ = 2, this optimal strategy is exactly the same as

that of a seemingly different guessing problem considered in

[17, Section II-B].

Remark 2. Notice that whenever s∗ = 1 in (8), the expression

in (7) simplifies to

α

α− 1

(

1− k
α−1
α exp

(

1− α

α
Hα(X)

))

, (9)

where Hα(X) = 1
1−α

log (
∑n

i=1 p
α
i ) is the Rényi entropy of

order α [3]. Also, note that for the special case of k = 1, we

always have s∗ = 1, thereby recovering [8, Lemma 1].

Corollary 1 (Minimal expected log-loss {α = 1} for k
guesses). Under the notations of Theorem 1, the minimal

expected log-loss for k guesses is given by

ME
(k)
1 (PX) = H(X)−Hs∗

(

p1, p2, . . . , ps∗−1,
n
∑

i=s∗

pi

)

−

(

n
∑

i=s∗

pi

)

log (k − s∗ + 1), (10)

where s∗ = min
{

r ∈ {1, 2, . . . , k} : (k−r+1)pr∑
n
i=r

pi
≤ 1
}

and

Hs∗(q1, q2, . . . , qs∗) :=
∑s∗

i=1 qi log
1
qi

is the entropy function.



Corollary 2 (Minimal expected 0-1 loss {α = ∞} for k
guesses). Under the notations of Theorem 1, the minimal

expected 0-1 loss for k guesses is given by

ME(k)
∞ (PX) = 1−

k
∑

i=1

pi

= 1− max
a1,a2,...,ak:
al 6=am,l 6=m

k
∑

i=1

PX(ai). (11)

The following theorem shows the robustness of α-leakage

to the number of guesses for a class of probability distributions

PXY . Let P
(α)
X|Y=y

denote the tilted distribution of PX|Y =y,

i.e., P
(α)
X|Y (x|y) =

PX|Y (x|y)α
∑

x PX|Y (x|y)α .

Theorem 2 (Robustness of α-leakage to number of guesses).

Consider a PXY such that P
(α)
X|Y (x|y) ≤

1
k

, for all x, y and

P
(α)
X (x) ≤ 1

k
, for all x. Then

L(k)
α = L(1)

α . (12)

The proofs of Theorems 1 and 2 are given in the following

section.

IV. PROOFS OF MAIN RESULTS

We begin with the following lemmas which will be useful

in the proof of Theorem 1. It is intuitive to expect that an

optimal strategy, P ∗
X̂[1:k]

, puts zero weight on ordered tuples

(a1, a2, . . . , ak) (denoted as a[1:k] in the sequel) whenever

ai = aj for some i 6= j, since there is no advantage in guessing

the same estimate more than once. The following lemma based

on the monotonicity of the α-loss formalizes this.

Lemma 1. If P ∗
X̂[1:k]

is an optimal strategy for the optimization

problem in (5), then

P ∗
X̂[1:k]

(a[1:k]) = 0, for all a[1:k] s.t. ai = aj , for some i 6= j.

The proof of Lemma 1 is deferred to Appendix A.

Remark 3. An important consequence of Lemma 1 is that, if

P ∗
X̂[1:k]

is an optimal strategy for the optimization problem in

(5), then we have

∑

x

P∗

(

k
⋃

i=1

(X̂i = x)

)

= k, (13)

where the probability P∗ is taken with respect to an optimal

strategy P ∗
X̂[1:k]

. Hence, it suffices to consider the optimization

in (5) over all the strategies P
X̂[1:k]

satisfying (13).

Let X = {x1, x2, . . . , xn} be the support of PX . A vector

(t1, t2, . . . , tn) such that
∑n

i=1 ti = k is said to be admissible

if there exists a strategy P
X̂[1:k]

satisfying

ti = P





k
⋃

j=1

(X̂j = xi)



 , for all i ∈ [1 : n]. (14)

Equivalently, (14) can be written as the following system of

linear equations.

ti =
∑

a[1:k]:
k⋃

j=1

(aj=xi)

P
X̂[1:k]

(a[1:k]), for all i ∈ [1 : n]. (15)

In general, in order to determine whether a vector

(t1, t2, . . . , tn) is admissible or not, we need to solve a linear

programming problem (LPP) with number of variables and

constraints that are polynomial in the support size of PX ,

i.e, n. Nonetheless, the following lemma based on Farkas’

lemma [18, Proposition 6.4.3] completely characterizes the

necessary and sufficient conditions for the admissibility of a

vector (t1, t2, . . . , tn).

Lemma 2. A vector (t1, t2, . . . , tn) such that
n
∑

i=1

ti = k is

admissible if and only if 0 ≤ ti ≤ 1, for all i ∈ [1 : n].

The proof of Lemma 2 is deferred to Appendix B. We are

now ready to prove Theorem 1.

Proof of Theorem 1. From the definition of the minimal ex-

pected α-loss for k guesses in (5), we have

ME(k)
α (PX)

= min
P

X̂[1:k]

α

α− 1





n
∑

i=1

pi



1− P

(

k
⋃

j=1

(X̂j = xi)

)

α−1
α









(16)

= min
P

X̂[1:k]

α

α− 1





n
∑

i=1

pi



1− P

(

k
⋃

j=1

(X̂j = xi)

)

α−1
α









s.t.

n
∑

i=1

P





k
⋃

j=1

(X̂j = xi)



 = k (17)

= min
t1,...,tn

α

α− 1

[

n
∑

i=1

pi(1− t
α−1
α

i )

]

s.t.

n
∑

i=1

ti = k,

0 ≤ ti ≤ 1, i ∈ [1 : n], (18)

where (17) follows from Lemma 1 and Remark 3, and (18)

follows from the change of variable ti = P

(

k
⋃

j=1

(X̂j = xi)

)

and Lemma 2. Consider the Lagrangian

L =
α

α− 1

[

n
∑

i=1

pi(1− t
α−1
α

i )

]

+ λ

(

n
∑

i=1

ti − k

)

+

n
∑

i=1

µi(ti − 1) (19)



The Karush-Kuhn-Tucker (KKT) conditions [19, Chap-

ter 5.5.3] are given by

(Stationarity):
∂L

∂ti
= 0, i ∈ [1 : n],

i.e., ti =

(

pi
λ+ µi

)α

, i ∈ [1 : n], (20)

(Primal feasibility):

n
∑

i=1

ti = k, 0 ≤ ti ≤ 1, i ∈ [1 : n], (21)

(Dual feasibility): µi ≥ 0, i ∈ [1 : n], (22)

(Complementary slackness): µi(ti − 1) = 0, i ∈ [1 : n].
(23)

Notice that for α > 1, t
α−1
α is a concave function of t, meaning

the overall objective function in (18) is convex. For α < 1,

t
α−1
α is a convex function of t, but since α

α−1 is negative,

the overall function is again convex. Thus (18) amounts to a

convex optimization problem. Now since KKT conditions are

necessary and sufficient conditions for optimality in a convex

optimization problem, it suffices to find values of ti, i ∈ [1 :
n], λ, µi, i ∈ [1 : n] satisfying (20)–(23) in order to solve the

optimization problem (18).

First we simplify the KKT conditions (20)–(23) in the

following manner.

• For i such that
(

pi

λ

)α
≤ 1, we take µi = 0 and ti =

(

pi

λ

)α
.

• For i such that
(

pi

λ

)α
> 1, we take µi = pi − λ and

ti = 1. Notice that for such i, we have µi > 0, since

pi > λ.

This is equivalent to choosing ti = min
{(

pi

λ

)α
, 1
}

and µi =

0 or µi = pi−λ depending on whether ti =
(

pi

λ

)α
or ti = 1,

respectively, for each i ∈ [1 : n]. Notice that this choice is

consistent with the KKT conditions (20)–(23) except for that λ
has to be chosen appropriately satisfying

∑n
i=1 ti = k also. In

effect, we have essentially reduced the KKT conditions (20)–

(23) to the following equations by eliminating µi’s:

ti = min
{(pi

λ

)α

, 1
}

, i ∈ [1 : n], (24)

n
∑

i=1

ti = k. (25)

We solve the equations (24) and (25) by considering the

following k mutually exclusive and exhaustive cases (clarified

later) based on PX .

Case 1
(

pα
1∑

n
i=1 pα

i

≤ 1
k

)

:

Consider the choice

λ =

(∑n
i=1 p

α
i

k

)
1
α

, ti =
kpαi

∑n
j=1 p

α
j

, i ∈ [1 : n]. (26)

This choice satisfies (24) and (25) since
kpα

1∑
n
i=1 pα

i

≤ 1 and

p1 ≥ p2 · · · ≥ pn.

Case ‘s’ (2 ≤ s ≤ k)
(

(k−s+2)pα
s−1∑

n
i=s−1 pα

i

> 1,
(k−s+1)pα

s∑
n
i=s pα

i

≤ 1
)

:

Consider the choice

λ =

( ∑n
i=s p

α
i

k − s+ 1

)
1
α

, (27)

ti = 1, i ∈ [1 : s− 1], ti =
(k − s+ 1)pαi
∑n

j=s p
α
j

, i ∈ [s : n]. (28)

This choice satisfies (24)

• for i ∈ [1 : s − 1] because
(k−s+2)pα

s−1∑
n
i=s−1 pα

i

> 1 and p1 ≥

p2 ≥ · · · ≥ ps−1, and

• for i ∈ [s : n] because
(k−s+1)pα

s∑
n
i=s

pα
i

≤ 1 and ps ≥ ps+1 ≥
· · · ≥ pn.

Also, this choice clearly satisfies (25). Finally, notice that the

condition for Case ‘s’, 2 ≤ s ≤ n, can be written as

(k − i+ 1)pαi
n
∑

j=i

pαj

> 1, for i ∈ [1 : s− 1],
(k − s+ 1)pαs

n
∑

i=s

pαi

≤ 1

(29)

since
(k−s+2)pα

s−1
n∑

i=s−1

pα
i

> 1 and p1 ≥ p2 ≥ · · · ≥ ps−1. This

proves that the cases considered above are mutually exclusive

and exhaustive, and together with the case-wise analysis gives

the expression for the minimal expected α-loss for k guesses

as presented in Theorem 1.

The proof of Corollary 1 follows by taking limit α → 1
using L’Hôpital’s rule in the result of Theorem 1 and rear-

ranging the terms. The proof of Corollary 2 follows by taking

limit α → ∞ in Theorem 1.

Proof of Theorem 2. From the definition of α-leakage with k
guesses in (6), we have

L(k)
α (X → Y )

=
α

α− 1
log

max
P

X̂[1:k]|Y

E



P

(

k
⋃

i=1

(X̂i = X)|Y

)

α−1
α





max
P

X̂[1:k]

E



P

(

k
⋃

i=1

(X̂i = X)

)

α−1
α





(30)

=
α

α− 1
log

k
α−1
α exp (1−α

α
HA

α (X |Y ))

k
α−1
α exp (1−α

α
Hα(X))

(31)

=
α

α− 1
log

exp (1−α
α

HA
α (X |Y ))

exp (1−α
α

Hα(X))
(32)

= L(1)
α , (33)

where (31) follows from Theorem 1, in particular from the

case when s∗ = 1 since P
(α)
X|Y (x|y) ≤ 1

k
, for all x, y

and P
(α)
X (x) ≤ 1

k
, for all x, and HA

α (X |Y ) in (31) is the

Arimoto conditional entropy [20] defined as HA
α (X |Y ) =

α
1−α

log
∑

y

(

∑

x

PXY (x, y)
α

)
1
α

.



V. CONCLUSION

There are many questions to be further studied. For example,

analogously to maximal leakage [16] and maximal α-leakage

[8], we can define a maximal version of α-leakage with k
guesses. As shown in [16], for α = ∞, this quantity does not

change with k; it would be interesting to understand whether

this is also true for other α.

APPENDIX A

PROOF OF LEMMA 1

Let X = {x1, x2, . . . , xn} and PX(xi) = pi, for i ∈ [1 : n].
Consider a[1:k] such that ai = aj for some i 6= j. There exists

a b[1:k] such that for each i ∈ [1 : k], we have ai = bj for

some j and br 6= aj for some r and any j. Consider

α

α− 1





n
∑

i=1

pi



1− P∗

(

k
⋃

j=1

(X̂j = xi)

)

α−1
α







. (34)

Let A and B denote the sets of all multiset permutations of

a[1:k] and b[1:k], respectively, when a[1:k] and b[1:k] are treated

as multisets. Let qa1,a2,...,ak
:=
∑

r[1:k]∈A P
X̂[1:k]

(r[1:k]) and

qb1,b2,...,bk :=
∑

r[1:k]∈B P
X̂[1:k]

(r[1:k]). Each term out of the

n terms in (34) will either contain both qa[1:k]
and qb[1:k]

(say, type 1), contain just qb[1:k]
alone (say, type 2), or does

not contain both (say, type 3). We now construct a new

strategy P
X̂[1:k]

by incorporating the value of qa[1:k]
into

qb[1:k]
making the value of new qa[1:k]

equal to zero. Now

the values of the terms of type 2 strictly decrease as the

α-loss function is strictly decreasing in its argument while

retaining the values of the terms of types 1 and 3. This leads

to a contradiction since P ∗
X[1:k]

is assumed to be an optimal

strategy. So, P
X̂[1:k]

(a[1:k]) = 0. Repeating the same argument

as above for all such a[1:k] s.t. ai = aj , for some i 6= j
completes the proof.

APPENDIX B

PROOF OF LEMMA 2

‘Only if’ part: Suppose a vector (t1, t2, . . . , tn) is admissible.

Then there exists P
X̂[1:k]

satisfying (15). Using (14), since ti
is probability of a certain event, we have

0 ≤ ti ≤ 1, for i ∈ [1 : n].

‘If’ part: Suppose 0 ≤ ti ≤ 1, for i ∈ [1 : n]. Summing up all

the equations in (15) over i ∈ [1 : n] and using
∑n

i=1 ti = k,

we get

P
X̂[1:k]

(a[1:k]) = 0, for all a[1:k] s.t. ai = aj , for some i 6= j.

With this, (15) can be written in the form of system of linear

equation only in terms of non-negative variables of the form

qi1,i2,...,ik :=
∑

σ∈Sn

P
X̂[1:k]

(xiσ(1)
, xiσ(2)

, . . . , xiσ(n)
), (35)

where i1, i2, . . . , ik are all distinct and belong to [1 : n]. Here

the sum is computed over all the permutations σ of the set

{1, 2, . . . , n}. The set of all such permutations is denoted by
Sn. With this, the system of equations in (15) can be written

in the form AQ = b, Q ≥ 0. Here A is a n ×
(

n
k

)

-matrix,

where the rows are indexed by i ∈ [1 : n] and columns are

indexed by (i1, i2, . . . , ik), where i1, i2, . . . , ik are all distinct

and belong to [1 : n]. In particular, in the column indexed by

(i1, i2, . . . , ik), the entry of A corresponding to ith
j row is 1, for

j ∈ [1 : k]. All the remaining entries of the matrix A are zeros.

Q is
(

n
k

)

-length vector of variables of the form qi1,i2,...,ik .

b is an n-length vector with bi = ti. We are interested in

the feasibility of the system AQ = b, Q ≥ 0. We use the

Farkas’ lemma [18, Proposition 6.4.3] in linear programming

for checking this. It states that the system AQ = b has a non-

negative solution if and only if every y ∈ Rn with y⊤A ≥ 0
also implies y⊤b ≥ 0. For our problem, y⊤A ≥ 0 is equivalent

to

k
∑

j=1

yij ≥ 0, for all distinct i1, i2, . . . , ik ∈ [1 : n]. (36)

Without loss of generality, let us assume that yi ≤ yi+1, i ∈
[1 : n− 1]. Then (36) is equivalent to

k
∑

i=1

yi ≥ 0. (37)

Now consider
n
∑

i=1

yiti

=

k
∑

i=1

yiti + yk+1tk+1 +

n
∑

i=k+2

yiti (38)

=
k
∑

i=1

yi +
k
∑

i=1

yi(ti − 1) + yk+1tk+1 +
n
∑

i=k+2

yiti (39)

≥
k
∑

i=1

yi + yk+1

k
∑

i=1

(ti − 1) + yk+1tk+1 +

n
∑

i=k+2

yiti (40)

≥
k
∑

i=1

yi + yk+1

k
∑

i=1

(ti − 1) + yk+1tk+1 + yk+1

n
∑

i=k+2

ti

(41)

=

k
∑

i=1

yi + yk+1

(

n
∑

i=1

ti − k

)

(42)

=

k
∑

i=1

yi (43)

≥ 0, (44)

where (40) follows because yi ≤ yk+1 and ti − 1 ≤ 0, for

i ∈ [1 : k], (41) follows because yi ≥ yk+1, for i ∈ [k+2 : n],
and (43) follows because

∑n

i=1 ti = k, (44) follows from (37).

Now using the Farkas’ lemma, AQ = b, has a non-negative

solution, i.e., the vector (t1, t2, . . . , tn) is admissible.



REFERENCES

[1] J. L. Massey, “Guessing and entropy,” in IEEE International Symposium

on Information Theory, 1994, p. 204.
[2] E. Arikan, “An inequality on guessing and its application to sequential

decoding,” IEEE Transactions on Information Theory, vol. 42, no. 1,
pp. 99–105, 1996.
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