
1

Numerically stable coded matrix computations

via circulant and rotation matrix embeddings
Aditya Ramamoorthy and Li Tang

Department of Electrical and Computer Engineering

Iowa State University, Ames, IA 50011

{adityar,litang}@iastate.edu

Abstract

Polynomial based methods have recently been used in several works for mitigating the effect of stragglers (slow

or failed nodes) in distributed matrix computations. For a system with n worker nodes where s can be stragglers,

these approaches allow for an optimal recovery threshold, whereby the intended result can be decoded as long as

any (n − s) worker nodes complete their tasks. However, they suffer from serious numerical issues owing to the

condition number of the corresponding real Vandermonde-structured recovery matrices; this condition number grows

exponentially in n. We present a novel approach that leverages the properties of circulant permutation matrices and

rotation matrices for coded matrix computation. In addition to having an optimal recovery threshold, we demonstrate

an upper bound on the worst-case condition number of our recovery matrices which grows as ≈ O(ns+5.5); in

the practical scenario where s is a constant, this grows polynomially in n. Our schemes leverage the well-behaved

conditioning of complex Vandermonde matrices with parameters on the complex unit circle, while still working with

computation over the reals. Exhaustive experimental results demonstrate that our proposed method has condition

numbers that are orders of magnitude lower than prior work.

I. INTRODUCTION

Present day computing needs necessitate the usage of large computation clusters that regularly process huge

amounts of data on a regular basis. In several of the relevant application domains such as machine learning,

datasets are often so large that they cannot even be stored in the disk of a single server. Thus, both storage and

computational speed limitations require the computation to be spread over several worker nodes. Such large scale

clusters also present attendant operational challenges. These clusters (which can be heterogeneous in nature) suffer

from the problem of “stragglers”, which are defined as slow nodes (node failures are an extreme form of a straggler).

The overall speed of a computational job on these clusters is typically dominated by stragglers in the absence of

a sophisticated assignment of tasks to the worker nodes. In particular, simply creating multiple copies of a task to

protect against worker node failure can be rather wasteful of computational resources.

This work was supported in part by the National Science Foundation (NSF) under Grant CCF-1718470 and Grant CCF-1910840. The material

in this work will appear in part at the 2021 IEEE International Symposium on Information Theory.

DRAFT

ar
X

iv
:1

91
0.

06
51

5v
4

 [
cs

.I
T

]
 9

 J
un

 2
02

1

2

In recent years, approaches based on coding theory (referred to as “coded computation”) have been effectively

used for straggler mitigation. Coded computation offers significant benefits for specific classes of problems such

as matrix computations. The essential idea is to create redundant tasks so that the desired result can be recovered

as long as a certain number of worker nodes complete their tasks. For instance, suppose that a designated master

node wants to compute ATx where the matrix A is very large. It can decompose A into block-columns so that

A = [A0 A1] and assign three worker nodes the tasks of determining AT
0 x, AT

1 x and (AT
0 + AT

1)x respectively.

It is easy to see that even if one worker node fails, there is enough information for the master node to compute

the final result [1]. Thus, the core idea is to introduce redundancy within the distributed computation by coding

across submatrices of the input matrices A and B. The worker nodes are assigned computational tasks, such that

the master node can decode ATB as long as a certain minimum number of the worker nodes complete their tasks.

There have been several works, that have exploited the correspondence of coded computation with erasure codes

(see [2] for a tutorial introduction and relevant references). The matrix computation is embedded into the structure

of an underlying erasure code and stragglers are treated as erasures. A scheme is said to have a threshold τ if the

master node can decode the intended result (matrix-vector or matrix-matrix multiplication) as long any τ nodes

complete their tasks. The work of [3], [4] has investigated the tradeoff between the threshold and the tasks assigned

to the worker nodes. We discuss related work in more detail in the upcoming Section III.

In this work we examine coded computation from the perspective of numerical stability. Erasure coding typically

works with operations over finite fields. Solving a linear system of equation over a finite field only requires the

corresponding system to be full-rank. However, when operating over the real field, a numerically robust solution can

only be obtained if the condition number (ratio of maximum to minimum singular value) [5] of the system of the

equations is small. It turns out that several of the well-known coded computation schemes that work by polynomial

evaluation/interpolation have serious numerical stability issues owing to the high condition number of corresponding

real Vandermonde system of equations. In this work, we present a scheme that leverages the proporties of structured

matrices such as circulant permutation matrices and rotation matrices for coded computation. These matrices have

eigenvalues that lie on the complex unit circle. Our scheme allows us to exploit the significantly better behaved

conditioning of complex Vandermonde matrices while still working with computation over the reals. We also present

exhaustive comparisons with existing work.

This paper is organized as follow. Section II presents the problem formulation and Section III overviews related

work and summarizes our contributions. Section IV and V discuss our proposed schemes, while Section VI presents

numerical experiments and comparisons with existing approaches. Section VII concludes the paper with a discussion

of future work. Several of our proofs appear in the Appendix.

II. PROBLEM FORMULATION

Consider a scenario where the master node has a large t×r matrix A ∈ Rt×r and either a t×1 vector x ∈ Rt×1

or a t × w matrix B ∈ Rt×w. The master node wishes to compute ATx or ATB in a distributed manner over

n worker nodes in the matrix-vector and matrix-matrix setting respectively. Towards this end, the master node

partitions A (respectively B) into ∆A (respectively ∆B) block-columns. Each worker node is assigned δA ≤ ∆A

DRAFT

3

and δB ≤ ∆B linearly encoded block-columns of A0, . . . ,A∆A−1 and B0, . . . ,B∆B−1, so that δA/∆A ≤ γA and

δB/∆B ≤ γB , where γA and γB represent the storage fraction constraints for A and B respectively.

In the matrix-vector case, the i-th worker is assigned encoded submatrices of A and the vector x and computes

their inner product. In the matrix-matrix case it computes pairwise products of submatrices assigned to it (either all

or some subset thereof). We say that a given scheme has computation threshold τ if the master node can decode

the intended result as long as any τ out of n worker nodes complete their tasks. In this case we say that the scheme

is resilient to s = n− τ stragglers. We say that this threshold is optimal if the value of τ is the smallest possible

for the given storage capacity constraints.

The overall goal is to (i) design schemes that are resilient to s stragglers (s is a design parameter), while ensuring

that the (ii) desired result can be decoded in a efficient manner, and (iii) the decoded result is numerically robust

even in the presence of round-off errors and other sources of noise.

An analysis of numerical stability is closely related to the condition number of matrices. Let ||M|| denote the

maximum singular value of a matrix M of dimension l × l.

Definition 1. Condition number. The condition number of a l × l matrix M is defined as κ(M) = ||M||||M−1||.

It is infinite if the minimum singular value of M is zero.

Consider the system of equations My = z, where z is known and y is to be determined. If κ(M) ≈ 10b, then

the decoded result loses approximately b digits of precision [5]. In particular, matrices that are ill-conditioned lead

to significant numerical problems when solving linear equations.

III. BACKGROUND, RELATED WORK AND SUMMARY OF CONTRIBUTIONS

A significant amount of prior work [3], [4], [6], [7] has demonstrated interesting and elegant approaches based

on embedding the distributed matrix computation into the structure of polynomials. Specifically, the encoding at

the master node can be viewed as evaluating certain polynomials at distinct real values. Each worker node gets a

particular evaluation. When at least τ workers finish their tasks, the master node can decode the intended result

by performing polynomial interpolation. The work of [6] demonstrates that when A and B are split column-wise

and δA = δB = 1, the optimal threshold for matrix multiplication is ∆A∆B and that polynomial based approaches

(henceforth referred to as polynomial codes) achieve this threshold. Prior work has also considered other ways in

which the matrices A and B can be partitioned. For instance, they can be partitioned both along rows and columns.

The work of [3], [4] has obtained threshold results in those cases as well. The so called Entangled Polynomial and

Mat-Dot codes [3], [4], also use polynomial encodings. The key point is that in all these approaches, polynomial

interpolation is required when decoding the required result. We note here that to our best knowledge, the idea of

embedding matrix multiplication using polynomial maps goes back much further to Yagle [8] (the motivation there

was fast matrix multiplication).

Polynomial interpolation corresponds to solving a real Vandermonde system of equations at the master node. In

the work of [6], this would require solving a ∆A∆B×∆A∆B Vandermonde system. Unfortunately, it can be shown

that the condition number of these matrices grows exponentially in ∆A∆B [9]. This is a significant drawback and

DRAFT

4

even for systems with around ∆A∆B ≈ 30, the condition number is so high that the decoded results are essentially

useless (see Section VI).

In Section VII of [3], it is remarked that when operating over infinite fields such as the reals, one can embed the

computation into finite fields to avoid numerical errors. They advocate encoding and decoding over a large enough

finite field of prime order p. However, this method would require “quantizing” real matrices A and B so that the

entries are integers. We demonstrate that the performance of this method can be catastrophically bad. In particular,

for this method to work, the maximum possible absolute value of each entry of the quantized matrices, α should be

such that α2t < p, since each entry in the result corresponds to the inner product of columns of A and columns of

B. This “dynamic range constraint (DRC)” means that the error in the computation depends strongly on the actual

matrix entries and the value of t is quite limited. If the DRC is violated, the error in the underlying computation

can be catastrophic. Even if the DRC is not violated, the dependence of the error on the entries can make it very

bad. We discuss this issue in detail in Section VI.

The issue of numerical stability in the coded computation context has been considered in a few recent works

[10]–[17]. The work of [11], [13] presented strategies for distributed matrix-vector multiplication and demonstrated

some schemes that empirically have better numerical performance than polynomial based schemes for some values

of n and s. However, both these approaches work only for the matrix-vector problem. Reference [14] presents a

random convolutional coding approach that applies for both the matrix-vector and the matrix-matrix multiplications

problems. Their work demonstrates a computable upper bound on the worst-case condition number of the decoding

matrices by drawing on connections with the asymptotic analysis of large Toeplitz matrices. The recent preprint

[16] presents constructions that are based on random linear coding ideas where the encoding coefficients are chosen

at random from a continuous distribution. These exhibit better condition number properties.

Reference [15] which considers an alternative approach for polynomial based schemes by working within the

basis of orthogonal polynomials is most closely related to our work. It demonstrates an upper bound on the worst-

case condition number of the decoding matrices which grows as O(n2s) where s is the number of stragglers that

the scheme is resilient to. They also demonstrate experimentally that their performance is better than the polynomial

code approach. In contrast we demonstrate an upper bound that is ≈ O(ns+5.5). Furthermore, in Section VI we

show that in numerical experiments our worst-case condition numbers are much better than [15] (even when s ≤ 6).

A. Summary of contributions

The work of [9] shows that unless all (or almost all) the parameters of the Vandermonde matrix lie on the unit

circle, its condition number is badly behaved. However, most of these parameters are complex-valued (except ±1),

whereas our matrices A and B are real-valued. Using complex evaluation points in the polynomial code scheme,

will increase the cost of computations approximately four times for matrix-matrix multiplication and around two

times for matrix-vector multiplication. This is an unacceptable hit in computation time.

The main idea of our work is to consider alternate embeddings of distributed matrix computations that are based

on rotation and circulant permutation matrices. We demonstrate that these are significantly better behaved from a

DRAFT

5

TABLE I: Comparison with existing schemes in the literature. The last column indicates the known analytical results about

the worst-case condition number of the corresponding recovery matrices. The abbreviations M-V and M-M in the last four

rows refer to matrix-vector and matrix-matrix multiplication, respectively. For the M-V cases only the storage fraction γA is

relevant. For the circulant embedding q̃ needs to be prime. The constant c1 = 5.5.

CODE STORAGE

FRACTION

(γA, γB)

MATRIX SPLIT THRESHOLD (τ) CONDITION NUMBER

POLYNOMIAL [6] 1/kA, 1/kB COLUMN-WISE kAkB ≥ Ω(eτ)

ENT. POLYNO-

MIAL [3]

1/pkA, 1/pkB ROW AND COLUMN-

WISE

pkAkB + p− 1 ≥ Ω(eτ)

ORTHO-POLY [15] 1/kA, 1/kB COLUMN-WISE kAkB ≤ O(n2(n−τ))

ORTHO-POLY [15] 1/pkA, 1/pkB ROW AND COLUMN-

WISE

4kAkBp−2(kAkB+pkA+

pkB) + kA + kB + 2p− 1

≤ O(n2(n−τ))

CONVOL. [14] 1/kA, 1/kB COLUMN-WISE kAkB COMPUTABLE UPPER

BOUND

RKRP [16] 1/kA, 1/kB COLUMN-WISE kAkB ANALYTICAL UPPER

BOUND UNKNOWN

ROT. EMBED. (M-

V)

1/kA COLUMN-WISE kA O(nn−τ+c1)

CIRC EMBED. (M-

V)

q̃/kA(q̃ − 1) COLUMN-WISE kA O(nn−τ+c1)

ROT. EMBED. (M-

M)

1/kA, 1/kB COLUMN-WISE kAkB ≤ O(nn−τ+c1)

ROT. EMBED. (M-

M)

1/pkA, 1/pkB ROW AND COLUMN-

WISE

2pkAkB − 1 ≤ O(nn−τ+c1)

numerical stability perspective. Furthermore, the worker nodes only work with real computation, thus our method

does not incur the complex arithmetic overhead.

• Our main finding in this paper is that we can work with matrix embeddings that allow the worker nodes to

perform real-valued computation. Our scheme (i) continues to have the optimal threshold of polynomial based

approaches when the storage fractions are 1
kA

and 1
kB

and (ii) enjoys the low condition number of complex

Vandermonde matrices with all parameters on the unit circle. In particular, we demonstrate that rotation matrices

and circulant permutation matrices of appropriate sizes can be used within the framework of polynomial codes.

At the top level, instead of evaluating polynomials at real values, our approach evaluates the polynomials at

matrices.

• Using these embeddings we show that the worst-case condition number over all
(
n
n−s
)

possible recovery

matrices is upper bounded by ≈ O(ns+5.5). Furthermore, our experimental results indicate that the actual

values are significantly smaller, i.e., the analytical upper bounds are pessimistic.

DRAFT

6

• An exhaustive numerical comparison with other approaches in the literature shows that the numerical stability

of our scheme is currently the best known.

Table I contains a comparison of our work with other schemes in the literature. The columns indicate the corre-

sponding storage fractions, matrix splitting methods, threshold and bounds on the condition number.

IV. NUMERICALLY STABLE DISTRIBUTED MATRIX COMPUTATION SCHEMES

Our schemes in this work will be defined by the encoding matrices used by the master node, which are such that

the master node only needs to perform scalar multiplications and additions. The computationally intensive tasks,

i.e., matrix operations are performed by the worker nodes. We begin by defining certain classes of matrices, discuss

their relevant properties and present an example that outlines the basic idea of our work.

In what follows, we let i =
√
−1 and let [m] denote the set {0, . . . ,m − 1}. For a matrix M, M(i, j) denotes

its (i, j)-th entry, whereas Mi,j denotes the (i, j)-th block sub-matrix of M. We use MATLAB inspired notation

at certain places. For instance, diag(a1, a2, . . . , am) denotes a m ×m diagonal matrix with ai’s on the diagonal

and M(:, j) denotes the j-th column of matrix M. The notation M1 ⊗M2 denotes the Kronecker product of M1

and M2 and the superscript ∗ for a matrix denotes the complex conjugation operator.

Definition 2. Rotation matrix. The 2× 2 matrix Rθ below is called a rotation matrix.

Rθ =

cos θ − sin θ

sin θ cos θ

 = QΛQ∗, where (1)

Q =
1√
2

 i −i

1 1

 , and Λ =

eiθ 0

0 e−iθ

 . (2)

Definition 3. Circulant Permutation Matrix. Let e be a row vector of length m with e = [0 1 0 . . . 0]. Let P be

a m×m matrix with e as its first row. The remaining rows are obtained by cyclicly shifting the first row with the

shift index equal to the row index. Then Pi, i ∈ [m] are said to be circulant permutation matrices. Let W denote the

m-point Discrete Fourier Transform (DFT) matrix, i.e., W(i, j) = 1√
m
ωijm for i ∈ [m], j ∈ [m] where ωm = ei 2πm

denotes the m-th root of unity. Then, it can be shown [18] that P = Wdiag(1, ωm, ω
2
m, . . . , ω

(m−1)
m)W∗.

Example 1. For m = 4, the four possible circulation permutation matrices are

P =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 ,P
0 = I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

P2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,P
3 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 .

DRAFT

7

Remark 1. Rotation matrices and circulant permutation matrices have the useful property that they are “real”

matrices with complex eigenvalues that lie on the unit circle. We use this property extensively in the sequel.

Definition 4. Vandermonde Matrix. A m ×m Vandermonde matrix V with parameters s0, s1, . . . , sm−1 ∈ C is

such that V(i, j) = sij , i ∈ [m], j ∈ [m]. If the si’s are distinct, then V is nonsingular [19]. In this work, we will

also assume that the si’s are non-zero.

Condition Number of Vandermonde Matrices: Let V be a m × m Vandermonde matrix with parameters

s0, s1, . . . , sm−1. The following facts about κ(V) follow from prior work [9].

• Real Vandermonde matrices. If si ∈ R, i ∈ [m], i.e., if V is a real Vandermonde matrix, then it is known that its

condition number is exponential in m.

• Complex Vandermonde matrices with parameters “not” on the unit circle. Suppose that the si’s are complex and

let s+ = maxm−1
i=0 |si|. If s+ > 1 then κ(V) is exponential in m. Furthermore, if 1/|si| ≥ ν > 1 for at least β ≤ m

of the m parameters, then κ(V) is exponential in β.

Based on the above facts, the only scenario where the condition number is somewhat well-behaved is if most or

all of the parameters of V are complex and lie on the unit-circle. In the Appendix C, we show the following result

which is one of our key technical contributions.

Theorem 1. Consider a m ×m Vandermonde matrix V where m < q (where q is odd) with distinct parameters

{s0, s1, . . . , sm−1} ⊂ {1, ωq, ω2
q , . . . , ω

q−1
q }. Let c1 = 5.5. Then,

κ(V) ≤ O(qq−m+c1).

Remark 2. For the remainder of the paper, we continue to use this theorem with c1 = 5.5. If q−m is a constant,

then κ(V) grows only polynomially in q. In the subsequent discussion, we will leverage Theorem 1 extensively.

Example 2. Polynomial Codes. Consider the matrix-vector case where ∆A = 3 and δA = 1. In the polynomial

approach, the master node forms A(z) = A0 + A1z+ A2z
2 and evaluates it at distinct real values z1, . . . , zn. The

i-th evaluation is sent to the i-th worker node which computes AT (zi)x. From polynomial interpolation, it follows

that as long as the master node receives results from any three workers, it can decode ATx. However, when ∆A

is large, the interpolation is numerically unstable [9].

The basic idea of our approach to tackle the numerical stability issue is as follows. We further split each Ai into

two equal sized block-columns. Thus, we now have six block-columns, indexed as A0, . . .A5. Consider the 6× 2

matrix defined below; its columns are specified by g0 and g1.

[g0 g1] =


I

Ri
θ

R2i
θ


The master node forms “two” encoded matrices for the i-th worker:

∑5
j=0 Ajg0(j) and

∑5
j=0 Ajg1(j) (where

gi(l) denotes the l-th component of the vector gi). Thus, the storage capacity constraint fraction γA is still 1
3 .

DRAFT

8

Worker node i computes the inner product of these two encoded matrices with x and sends the result to the

master node. It turns out that in this case when any three workers i0, i1, and i2 complete their tasks, the decodability

and numerical stability of recovering ATx depends on the condition number of the following matrix.
I I I

Ri0
θ Ri1

θ Ri2
θ

R2i0
θ R2i1

θ R2i2
θ

 .
Using the eigen-decomposition of Rθ (cf. (1)) the above block matrix can expressed as

Q 0 0

0 Q 0

0 0 Q




I I I

Λi0 Λi1 Λi2

Λ2i0 Λ2i1 Λ2i2


︸ ︷︷ ︸

Σ


Q∗ 0 0

0 Q∗ 0

0 0 Q∗

 .

As the pre- and post-multiplying matrices are unitary, the condition number of the above matrix only depends on

the properties of the middle matrix, denoted by Σ. In what follows, we show that upon appropriate column and row

permutations, Σ can be shown equivalent to a block diagonal matrix where each of the blocks is a Vandermonde

matrix with parameters on the unit circle. Thus, the matrix is invertible if the corresponding parameters are distinct.

Furthermore, even though we use real computation, the numerical stability of our scheme depends on Vandermonde

matrices with parameters on the unit circle. Theorem 1 shows that the condition number of such matrices is much

better behaved.

In the sequel we show that this argument can be significantly generalized and adapted for the case of circulant

permutation embeddings. The matrix-matrix case requires the development of more ideas that we also present. In

this section we consider (i) the matrix-vector case where the storage fraction γA = 1/kA and (ii) the matrix-matrix

case where the storage fractions are γA = 1/kA, γB = 1/kB respectively.

A. Matrix Splitting Scheme

We partition the matrices A and B into ∆A = kA` and ∆B = kB` block-columns respectively. However, we

use two indices to refer to their respective constituent block-columns as this simplifies our later presentation. To

avoid confusion, we use the subscript 〈i, j〉 to refer to the corresponding (i, j)-th block-columns. In particular

A〈i,j〉, i ∈ [kA], j ∈ [`] and B〈i,j〉, i ∈ [kB], j ∈ [`] refer to the (i, j)-th block-column of A and B respectively,

such that

A = [A〈0,0〉 . . . A〈0,`−1〉 | . . . | A〈kA−1,0〉 . . . A〈kA−1,`−1〉], and

B = [B〈0,0〉 . . . B〈0,`−1〉 | . . . | B〈kB−1,0〉 . . . B〈kB−1,`−1〉]. (3)

B. Distributed Matrix-Vector Multiplication

In the matrix-vector case, the encoding matrix for A will be specified by a kA`×n` “generator” matrix G such

that

Â〈i,j〉 =
∑

α∈[kA],β∈[`]

G(α`+ β, i`+ j)A〈α,β〉 (4)

DRAFT

9

Algorithm 1 Encoding scheme for distributed matrix-vector multiplication
Input: Matrix A and vector x. Storage fraction γA = 1/kA, positive integer ` and encoding matrix G of dimension

kA`× n`.

Output: Worker task assignment.

Partition A into ∆A block-columns as in (3).

for i = 0 to n− 1 do

Worker i is assigned Â〈i,j〉 =
∑
α∈[kA],β∈[`] G(α`+ β, i`+ j)A〈α,β〉, for all j ∈ [`] and the vector x.

end for

Worker i computes ÂT
〈i,j〉x for j ∈ [`].

for i ∈ [n], j ∈ [`]. The worker node i stores Â〈i,j〉 for j ∈ [`] and x, i.e., it stores γA = `/∆A = 1/kA fraction

of matrix A. Furthermore, it computes ÂT
〈i,j〉x for j ∈ [`] and transmits them to the master node.

Thus, the master node receives ÂT
〈i,j〉x of length r/∆A for j ∈ [`] from a certain number of worker nodes and

wants to decode ATx of length r. Based on our encoding scheme, this can be done by solving a ∆A ×∆A linear

system of equations r/∆A times. The structure of this linear system is inherited from the encoding matrix G. The

precise details of the encoding schemes can be found in Algorithm 1 (an example appears above).

1) Rotation Matrix Embedding: Let q be an odd number such that q ≥ n, θ = 2π/q and ` = 2 (cf. block column

decomposition in (3)). We choose the generator matrix such that its (i, j)-th block-submatrix for i ∈ [kA], j ∈ [n]

is given by

Grot
i,j = Rji

θ . (5)

Theorem 2. The threshold for the rotation matrix based scheme specified above is kA. Furthermore, the worst-case

condition number of the recovery matrices is upper bounded by O(qq−kA+c1).

Proof. Suppose that workers indexed by i0, . . . , ikA−1 complete their tasks. We extract the corresponding block-

columns of Grot to obtain

G̃rot =


I I · · · I

Ri0
θ Ri1

θ · · · R
ikA−1

θ

...
...

. . .
...

R
i0(kA−1)
θ R

i1(kA−1)
θ · · · R

ikA−1(kA−1)

θ

 .

We note here that the decoder attempts to recover each entry of AT
〈i,j〉x from the results sent by the worker nodes.

Thus, we can equivalently analyze the decoding by considering the system of equations as

mG̃rot = c,

DRAFT

10

where m, c ∈ R1×kA` are row-vectors such that

m = [m0, · · · ,mkA−1]

= [m〈0,0〉, · · · ,m〈0,`−1〉, · · · , · · · ,m〈kA−1,0〉, · · · ,m〈kA−1,`−1〉],

and

c = [ci0 , · · · , cikA−1
]

= [c〈i0,0〉, · · · , c〈i0,`−1〉, · · · , · · · , c〈ikA−1,0〉, · · · , c〈ikA−1,`−1〉].

In the expression above, terms of the form m〈i,j〉 and c〈i,j〉 are scalars. We need to analyze κ(G̃rot). Towards this

end, using the eigenvalue decomposition of Rθ, we have

G̃rot =


Q

. . .

Q

 Λ̃


Q∗

. . .

Q∗

 , where (6)

Λ̃ =


I I · · · I

Λi0 Λi1 · · · ΛikA−1

...
...

. . .
...

Λi0(kA−1) Λi1(kA−1) · · · ΛikA−1(kA−1)


and Λ is specified in (2). Note that the pre- and post-multiplying matrices in the RHS of (6) above are both unitary.

Therefore κ(G̃rot) is the same as κ(Λ̃) [19].

Using Claim 2 in the Appendix E, we can permute Λ̃ to put it in block-diagonal form so that

Λ̃d =

Λ̃d[0] 0

0 Λ̃d[1]

 ,
where Λ̃d[0] and Λ̃d[1] are Vandermonde matrices with parameter sets {eiθi0 , . . . , eiθikA−1} and {e−iθi0 , . . . , e−iθikA−1}

respectively. Note that these parameters are distinct points on the unit circle. Thus, Λ̃d[0] and Λ̃d[1] are both

invertible which implies that Λ̃ is invertible. This allows us to conclude that the threshold of the scheme is kA. The

upper bound on the condition number follows from Theorem 1.

Complexity Analysis: Creating an encoded matrix requires a total of ∆A scalar multiplications and ∆A−1 additions

of block-columns of size t × r/∆A. Therefore, the total encoding complexity is given by O(rtn). Each worker

node computes the product of submatrix of size r/∆A × t with a vector of size t, i.e., the computational cost is

O(rt/∆A). Finally, the decoding process involves inverting a ∆A×∆A matrix once and using the inverse to solve

r/∆A systems of equations. Thus, the overall decoding complexity is O(∆3
A + r∆A) where typically, r � ∆2

A.

2) Circulant Permutation Embedding: Let q̃ be a prime number which is greater than or equal to n. We set

` = q̃−1, so that A is sub-divided into kA(q̃−1) block-columns as in (3). In this embedding we have an additional

step. Specifically, the master node generates the following “precoded” matrices.

A〈i,q̃−1〉 = −
q̃−2∑
j=0

A〈i,j〉, i ∈ [kA]. (7)

DRAFT

11

Algorithm 2 Decoding Algorithm for Circulant Permutation Scheme
Input: Gcirc

I where |I| = kA (block-columns of G corresponding to block-columns in I). Row vector c

corresponding to observed values in one system of equations. Permutation π specified in the proof of Theorem 3.

Output: m which is the solution to mGcirc
I = c.

1. procedure: Block Fourier Transform and permute c.

for j = 0 to kA − 1 do

Apply FFT to cij = [c〈ij ,0〉, · · · , c〈ij ,q̃−1〉] to obtain cFij = [cF〈ij ,0〉, · · · , c
F
〈ij ,q̃−1〉].

end for

Permute cF = [cFi0 , · · · , c
F
ikA−1

] by π to obtain cF,π = [cF,π0 , · · · , cF,πq̃−1] where cF,πj =

[cF〈i0,j〉, c
F
〈i1,j〉, · · · , c

F
〈ikA−1,j〉], for j = 0, . . . , q̃ − 1.

end procedure

2. procedure: Decode mF,π from cF,π .

For i ∈ {1, . . . , q̃ − 1}, decode mF,πi from cF,πi by polynomial interpolation or matrix inversion of G̃Fd [i] (see

(13) in Appendix B). Set mF,π0 = [0, · · · , 0].

end procedure

3. procedure: Inverse permute and Block Inverse Fourier Transform mF,π .

Permute mF,π by π−1 to obtain mF = [mF0 , · · · ,mFkA−1]. Apply inverse FFT to each mFi in mF to obtain

m = [m0, · · · ,mkA−1].

end procedure

In the subsequent discussion, we work with the set of block-columns A〈i,j〉 for i ∈ [kA], j ∈ [q̃]. The coded

submatrices Â〈i,j〉 for i ∈ [n], j ∈ [q̃] are generated by means of a kAq̃× nq̃ matrix Gcirc using Algorithm 1. The

(i, j)-th block of Gcirc can be expressed as

Gcirc
i,j = Pji, for i ∈ [kA], j ∈ [n], (8)

where the matrix P denotes the q̃× q̃ circulant permutation matrix introduced in Definition 3. For this scheme the

storage fraction γA = q̃/(kA(q̃ − 1)), i.e., it is slightly higher than 1/kA.

Theorem 3. The threshold for the circulant permutation based scheme specified above is kA. Furthermore, the

worst-case condition number of the recovery matrices is upper bounded by O(q̃q̃−kA+c1) and the scheme can be

decoded by using Algorithm 2.

The proof appears in the Appendix B. It is conceptually similar to the proof of Theorem 2 and relies critically

on the fact that all eigenvalues of P lie on the unit circle and that P can be diagonalized by the DFT matrix W.

Complexity Analysis: The complexity analysis closely mirrors the analyses for the case of the rotation matrix

embedding. However, we note that for the circulant permutation embedding, the Â〈i,j〉’s can simply be generated

by additions since Gcirc is a binary matrix. Furthermore, the fact that P can be diagonalized by the DFT matrix W

DRAFT

12

suggests an efficient decoding algorithm where the fast Fourier Transform (FFT) plays a key role (see Algorithm

2). In particular, we have the following claim.

Claim 1. The decoding complexity of recovering ATx is O(r(log q̃ + log2 kA)).

Remark 3. Both circulant permutation matrices and rotation matrices allow us to achieve a specified threshold

for distributed matrix vector multiplication. The required storage fraction γA is slightly higher for the circulant

permutation case and it requires q̃ to be prime. However, it allows for an efficient FFT based decoding algorithm. On

the other hand, the rotation matrix case requires a smaller ∆A, but the decoding requires solving the corresponding

system of equations the complexity of which can be cubic in ∆A. We note that when the size of A is large, the

decoding time will be much lesser than the worker node computation time; we demonstrate this numerically as

well in Section VI. In Section VI, we show results that demonstrate that the normalized mean-square error when

circulant permutation matrices are used is lower than the rotation matrix case.

C. Distributed Matrix-Matrix Multiplication

The matrix-matrix case requires the introduction of newer ideas within this overall framework. In this case, a

given worker obtains encoded block-columns of both A and B and representing the underlying computations is

somewhat more involved. Once again we let θ = 2π/q, where q ≥ n (n is the number of worker nodes) is an

odd integer and set ` = 2. Furthermore, let kAkB < n. The (i, j)-th blocks of the encoding matrices are given by

appropriate powers of rotation matrices, i.e.,

GA
i,j = Rji

θ , for i ∈ [kA], j ∈ [n], and

GB
i,j = R

(jkA)i
θ , for i ∈ [kB], j ∈ [n].

The master node operates according to the encoding rule discussed previously in the matrix-vector case; the details

can be found in Algorithm 3. Thus, each worker node stores γA = 1/kA and γB = 1/kB fraction of A and B

respectively. The i-th worker node computes the pair-wise product of the matrices ÂT
〈i,l1〉B̂〈i,l2〉 for l1, l2 = 0, 1

and returns the result to the master node. Thus, the master node needs to recover all pair-wise products of the form

AT
〈i,α〉B〈j,β〉 for i ∈ [kA], j ∈ [kB] and α, β = 0, 1. Let Z denote a 1 × 4kAkB block matrix that contains all of

these pair-wise products. The details of the encoding scheme can be found in Algorithm 3 (an example appears

below).

Example 3. Suppose kA = 2, kB = 2. Let n = q = 5, θ = 2π/5. The matrix A and B can be partitioned as

follows.

A = [A〈0,0〉 A〈0,1〉 | A〈1,0〉 A〈1,1〉], and

B = [B〈0,0〉 B〈0,1〉 | B〈1,0〉 B〈1,1〉].

DRAFT

13

Algorithm 3 Encoding scheme for distributed matrix-matrix multiplication
Input: Matrices A and B. Storage fractions γA = 1/kA, γB = 1/kB , positive integer ` and encoding matrices GA

and GB of dimensions kA`× n` and kB`× n respectively.

Output: Worker task assignment.

Partition A and B into ∆A and ∆B block-columns as in (3).

for i = 0 to n− 1 do

Worker i is assigned

Â〈i,j〉 =
∑

α∈[kA],β∈[`]

GA(α`+ β, i`+ j)A〈α,β〉, and

B̂〈i,j〉 =
∑

α∈[kB],β∈[`]

GB(α`+ β, i`+ j)B〈α,β〉

for all j ∈ [`].

end for

Worker i computes ÂT
〈i,l1〉B̂〈i,l2〉 for all pairs l1 ∈ [`], l2 ∈ [`].

The encoding matrices GA and GB are given by

GA =

I I I I I

I Rθ R2
θ R3

θ R4
θ

 , and

GB =

I I I I I

I R2
θ R4

θ R6
θ R8

θ

 .
Thus, for the i-th worker node, the encoded matrices are obtained as

Â〈i,0〉 = A〈0,0〉 + Ri
θ(0, 0)A〈1,0〉 + Ri

θ(1, 0)A〈1,1〉,

Â〈i,1〉 = A〈0,1〉 + Ri
θ(0, 1)A〈1,0〉 + Ri

θ(1, 1)A〈1,1〉,

B̂〈i,0〉 = B〈0,0〉 + R2i
θ (0, 0)B〈1,0〉 + R2i

θ (1, 0)B〈1,1〉, and

B̂〈i,1〉 = B〈0,1〉 + R2i
θ (0, 1)B〈1,0〉 + R2i

θ (1, 1)B〈1,1〉.

The i-th worker node computes ÂT
〈i,0〉B̂〈i,0〉, ÂT

〈i,0〉B̂〈i,1〉, ÂT
〈i,1〉B̂〈i,0〉, ÂT

〈i,1〉B̂〈i,1〉. We can represent the com-

putations in the i-th worker node using Kronecker products. We take ÂT
〈i,0〉B̂〈i,1〉 as an example. Let Z denote

a 1 × 16 block matrix that contains all of the pair-wise products AT
〈a,k1〉B〈b,k2〉, a, b, k1, k2 = 0, 1. Consider the

following vector (of length 16).


I(0, 0)

I(1, 0)

Ri
θ(0, 0)

Ri
θ(1, 0)

⊗


I(0, 1)

I(1, 1)

R2i
θ (0, 1)

R2i
θ (1, 1)

 .

DRAFT

14

Then the computation of ÂT
〈i,0〉B̂〈i,1〉 can be denoted as the product of each of the elements of Z with the

corresponding component of the above vector followed by their sum. For the sake of convenience we represent this

operation by the · operator below. Then we can verify that the computations in i-th worker node can be denoted as

Z ·

 I

Ri
θ

⊗
 I

R2i
θ


Suppose that four different worker nodes i0, i1, i2, i3 have finished their work, the master node obtain

Z ·Gd = Z ·
( I

Ri0
θ

⊗
 I

R2i0
θ

 ∣∣∣∣
 I

Ri1
θ

⊗
 I

R2i1
θ

 ∣∣∣∣
 I

Ri2
θ

⊗
 I

R2i2
θ

 ∣∣∣∣
 I

Ri3
θ

⊗
 I

R2i3
θ

)
We formalize the above construction and prove the Gd has full rank in Theorem 4.

Theorem 4. The threshold for the rotation matrix based matrix-matrix multiplication scheme is kAkB . The worst-

case condition number is bounded by O(qq−kAkB+c1).

Proof. Let τ = kAkB and suppose that the workers indexed by i0, . . . , iτ−1 complete their tasks. Let GA
l denote

the l-th block column of GA (with similar notation for GB). Note that for k1, k2 ∈ {0, 1} the l-th worker node

computes ÂT
〈l,k1〉B̂〈l,k2〉 which can be written as ∑
α∈[kA],β∈{0,1}

GA(2α+ β, 2l + k1)AT
〈α,β〉

×
 ∑
α∈[kB],β∈{0,1}

GB(2α+ β, 2l + k2)B〈α,β〉


≡ Z · (GA(:, 2l + k1)⊗GB(:, 2l + k2)),

using the properties of the Kronecker product. Based on this, it can be observed that the decodability of Z at the

master node is equivalent to checking whether the following matrix is full-rank.

G̃ = [GA
i0 ⊗GB

i0 |G
A
i1 ⊗GB

i1 | . . . |G
A
iτ−1
⊗GB

iτ−1
].

To analyze this matrix, consider the following decomposition of GA
l ⊗GB

l , for l ∈ [n].

GA
l ⊗GB

l =


QQ∗

QΛlQ∗

...

QΛl(kA−1)Q∗

⊗


QQ∗

QΛlkAQ∗

...

QΛlkA(kB−1)Q∗

 =

(IkA ⊗Q)


I

Λl

...

Λl(kA−1)


[
Q∗
]
⊗

(IkB ⊗Q)


I

ΛlkA

...

ΛlkA(kB−1)


[
Q∗
]
 ,

DRAFT

15

where the first equality uses the eigen-decomposition of Rθ. Applying the properties of Kronecker products, this

can be simplified as

((IkA ⊗Q)⊗ (IkB ⊗Q))︸ ︷︷ ︸
Q̃1

×




I

Λl

...

Λl(kA−1)

⊗


I

ΛlkA

...

ΛlkA(kB−1)




︸ ︷︷ ︸

Xl

([
Q∗
]⊗2
)

︸ ︷︷ ︸
Q̃2

.

Therefore, we can express

G̃ = [GA
i0 ⊗GB

i0 |G
A
i1 ⊗GB

i1 | . . . |G
A
iτ−1
⊗GB

iτ−1
]

= Q̃1[Xi0 |Xi1 | . . . |Xiτ−1
]


Q̃2 0 . . . 0

0 Q̃2 . . . 0
...

...
. . .

...

0 0 . . . Q̃2

 .

Once again, we can conclude that the invertibility and the condition number of G̃ only depends on [Xi0 |Xi1 | . . . |Xiτ−1
]

as the matrices pre- and post- multiplying it are both unitary. The invertibility of [Xi0 |Xi1 | . . . |Xiτ−1] follows from

an application of Claim 3 in the Appendix E. The proof of Claim 3 also shows that upon appropriate row-column

permutations, the matrix [Xi0 |Xi1 | . . . |Xiτ−1
] can be expressed as a block-diagonal matrix with four blocks each

of size τ × τ . Each of these blocks is a Vandermonde matrix with parameters from the set {1, ωq, ω2
q , . . . , ω

q−1
q }.

Therefore, [Xi0 |Xi1 | . . . |Xiτ−1] is non-singular and it follows that the threshold of our scheme is kAkB . An

application of Theorem 1 implies that the worst-case condition number is at most O(qq−τ+c1).

Remark 4. The proofs of Theorem 2 and 4 involve a diagonalization argument with pre- and post-multiplying

matrices that are unitary. We emphasize that this is only for the analysis of the scheme and the encoding and

decoding schemes do not require multiplication by these matrices.

Complexity Analysis: Creating the Â〈i,l〉 matrix requires a total of ∆A scalar multiplications and ∆A−1 additions

of block-columns of size t × r/∆A; a similar argument applies for creating the B̂〈i,l〉 matrix (note that ∆A =

2kA,∆B = 2kB). Thus, the total encoding complexity is given by O((r + w)tn). Each worker node computes

four submatrix products. Thus, the worker node computational cost is O(4 × rtw/∆A∆B) = O(rtw/kAkB).

The decoding process involves inverting a matrix of dimension ∆A∆B ×∆A∆B followed by solving rw/∆A∆B

systems of equations. Thus, the overall decoding complexity is given by O((∆A∆B)3 + rw∆A∆B). It can be seen

that the decoding complexity is independent of t. Thus, when the input matrices are large, i.e., r, w and t are large,

then the overall cost is dominated by the worker node computation time.

V. GENERALIZED DISTRIBUTED MATRIX MULTIPLICATION

In the previous section, we consider the case that A and B are partitioned into block-columns. In this section,

we consider a more general scenario where A and B are partitioned into block-columns and block-rows. This

DRAFT

16

Algorithm 4 Encoding scheme for generalized distributed matrix-matrix multiplication
Input: Matrices A and B. Storage fractions γA = 1/pkA, γB = 1/pkB . Integer ζ = t

2p .

Output: Worker task assignment.

Partition A and B into 2p×∆A and 2p×∆B blocks as in (9).

for k = 0 to n− 1 do

Worker k is assigned Â〈k,0〉

Â〈k,1〉

 =

p−1∑
i=0

kA−1∑
j=0

(R
k((j−1)p+i+1)
−θ ⊗ Iζ)

A(〈i,0〉,j)

A(〈i,1〉,j)

 , and

B̂〈k,0〉

B̂〈k,1〉

 =

p−1∑
i=0

kB−1∑
j=0

(R
k(p−1−i+jpkA)
θ ⊗ Iζ)

B(〈i,0〉,j)

B(〈i,1〉,j)

 .
end for

Worker k computes Â〈k,0〉

Â〈k,1〉

T B̂〈k,0〉

B̂〈k,1〉

 .

construction resembles the entangled polynomial codes of [3].

A. Matrix Splitting Scheme

We partition the matrices A and B into 2p block-rows and ∆A = kA block-columns, and 2p block-rows and

∆B = kB block-columns respectively. We use two indices for the block-rows to simplify our presentation. In

particular, we denote

A = [A(〈i,l〉,j)], i ∈ [p], l ∈ {0, 1}, j ∈ [kA], and

B = [B(〈i,l〉,j)], i ∈ [p], l ∈ {0, 1}, j ∈ [kB], (9)

where A(〈i,l〉,j) denotes the submatrix indexed by the 〈i, l〉-th block row and j-th block-column of A. A similar

interpretation holds for B(〈i,l〉,j). We let θ = 2π/q, where q ≥ n > 2kAkBp − 1 (recall that n is the number of

worker nodes) is an odd integer.

The encoding in this scenario is more complicated to express. We simplify this by leveraging the following simple

result which can be easily verified.

Lemma 1. Suppose that matrices M1 and M2 both have ζ rows and the same column dimension. Consider a 2×2

matrix Ψ = [Ψi,j], i = 0, 1, j = 0, 1. ThenΨ0,0M1 + Ψ0,1M2

Ψ1,0M1 + Ψ1,1M2

 = (Ψ⊗ Iζ)

M1

M2

 .
The complete encoding algorithm appears in Algorithm 4.

DRAFT

17

The k-th worker node stores Â〈k,l〉, B̂〈k,l〉, l = 0, 1. Thus, each worker node stores γA = 2
2pkA

= 1
pkA

and

γB = 2
2pkB

= 1
pkB

fraction of A and B respectively. Worker node k computesÂ〈k,0〉

Â〈k,1〉

T B̂〈k,0〉

B̂〈k,1〉

 . (10)

Before presenting our decoding algorithm and the main result of this section, we discuss the following example

that helps clarify the underlying ideas.

Example 4. Suppose kA = 1, kB = 1, p = 2. Let n = 4. The matrix A and B can be partitioned as follows.

A =


A(〈0,0〉,0)

A(〈0,1〉,0)

A(〈1,0〉,0)

A(〈1,1〉,0)

 , and B =


B(〈0,0〉,0)

B(〈0,1〉,0)

B(〈1,0〉,0)

B(〈1,1〉,0)

 .

In this example, since kA = kB = 1, there is only one block column in A and B. Therefore, the index j in

A(〈i,l〉,j) and B(〈i,l〉,j) is always 0. Accordingly, to simplify our presentation, we only use indices i and l to refer

to the respective constituent block rows of A and B. That is, we simplify A(〈i,l〉,j) and B(〈i,l〉,j) to A〈i,l〉 and

B〈i,l〉, respectively. Our scheme aims to allow the master node to recover ATB = AT
〈0,0〉B〈0,0〉 + AT

〈0,1〉B(〈0,1〉 +

AT
〈1,0〉B〈1,0〉 + AT

〈1,1〉B〈1,1〉. Suppose that A〈i,l〉 and B〈i,l〉 have ζ rows. The encoding process (cf. Algorithm 4)

can be defined as Â〈k,0〉

Â〈k,1〉

 =

1∑
i=0

(R
k(i−1)
−θ ⊗ Iζ)

A〈i,0〉

A〈i,1〉

 , and

B̂〈k,0〉

B̂〈k,1〉

 =

1∑
i=0

(R
k(1−i)
θ ⊗ Iζ)

B〈i,0〉

B〈i,1〉

 .
The computation in worker node k (cf. (10)) can be analyzed as follows. Let

AF〈i,0〉

AF〈i,1〉

 = (Q∗ ⊗ Iζ)

A〈i,0〉

A〈i,1〉

 andBF〈i,0〉

BF〈i,1〉

 = (Q∗ ⊗ Iζ)

B〈i,0〉

B〈i,1〉

. Then

DRAFT

18

Â〈k,0〉

Â〈k,1〉

T B̂〈k,0〉

B̂〈k,1〉

 (a)
=

(
(Q∗ ⊗ Iζ)

Â〈k,0〉

Â〈k,1〉

)∗(Q∗ ⊗ Iζ)

B̂〈k,0〉

B̂〈k,1〉


=

(
(Q∗ ⊗ Iζ)(R

−k
−θ ⊗ Iζ)

A〈0,0〉

A〈0,1〉

+ (Q∗ ⊗ Iζ)(I2 ⊗ Iζ)

A〈1,0〉

A〈1,1〉

)∗
(

(Q∗ ⊗ Iζ)(R
k
θ ⊗ Iζ)

B〈0,0〉

B〈0,1〉

+ (Q∗ ⊗ Iζ)(I2 ⊗ Iζ)

B〈1,0〉

B〈1,1〉

)

(b)
=

(
(Q∗R−k−θQ⊗ Iζ)(Q

∗ ⊗ Iζ)

A〈0,0〉

A〈0,1〉

+ (Q∗I2Q⊗ Iζ)(Q
∗ ⊗ Iζ)

A〈1,0〉

A〈1,1〉

)∗
(

(Q∗Rk
θQ⊗ Iζ)(Q

∗ ⊗ Iζ)

B〈0,0〉

B〈0,1〉

+ (Q∗I2Q⊗ Iζ)(Q
∗ ⊗ Iζ)

B〈1,0〉

B〈1,1〉

)

(c)
=

(ω∗q−k 0

0 ω∗q
k

⊗ Iζ

 (Q∗ ⊗ Iζ)

A〈0,0〉

A〈0,1〉

+

1 0

0 1

⊗ Iζ

 (Q∗ ⊗ Iζ)

A〈1,0〉

A〈1,1〉

)∗
(ωqk 0

0 ωq
−k

⊗ Iζ

 (Q∗ ⊗ Iζ)

B〈0,0〉

B〈0,1〉

+

1 0

0 1

⊗ Iζ

 (Q∗ ⊗ Iζ)

B〈1,0〉

B〈1,1〉

)

(d)
=

(ω∗q−kAF〈0,0〉
ω∗q

kAF〈0,1〉

+

AF〈1,0〉

AF〈1,1〉

)∗( ωqkBF〈0,0〉
ωq
−kBF〈0,1〉

+

BF〈1,0〉

BF〈1,1〉

)

=(AF∗〈0,0〉B
F
〈1,0〉 + AF∗〈1,1〉B

F
〈0,1〉)ω

−k
q +

(AF∗〈0,0〉B
F
〈0,0〉 + AF∗〈1,0〉B

F
〈1,0〉 + AF∗〈0,1〉B

F
〈0,1〉 + AF∗〈1,1〉B

F
〈1,1〉)+

(AF∗〈1,0〉B
F
〈0,0〉 + AF∗〈0,1〉B

F
〈1,1〉)ω

k
q

where

• (a) holds because Q∗ ⊗ Iζ is unitary,

• (b) holds by the mixed-product property of Kronecker product. For example,

(Q∗ ⊗ Iζ)(R
−k
−θ ⊗ Iζ) = (Q∗R−k−θ)⊗ Iζ

= (Q∗R−k−θQQ∗)⊗ Iζ

= (Q∗R−k−θQ⊗ Iζ)(Q
∗ ⊗ Iζ).

• (c) holds because Q∗RθQ =

ωq 0

0 ω−1
q

, and

• (d) holds by Lemma 1.

Thus, it is clear that whenever the master node collects the results of any three distinct worker nodes, it can

DRAFT

19

recover AF∗〈0,0〉B
F
〈0,0〉 + AF∗〈1,0〉B

F
〈1,0〉 + AF∗〈0,1〉B

F
〈0,1〉 + AF∗〈1,1〉B

F
〈1,1〉. However, we observe that for i = 0, 1AF〈i,0〉

AF〈i,1〉

∗ BF〈i,0〉

BF〈i,1〉

 =

A〈i,0〉

A〈i,1〉

T B〈i,0〉

B〈i,1〉

 .
Thus, we can equivalently recover ATB.

The analysis in the example above can be generalized to show the following result. The proof appears in the

Appendix D.

Theorem 5. The threshold for scheme in this section is 2pkAkB − 1. The worst-case condition number of the

recovery matrices is upper bounded by O(qq−2pkAkB+1+c1).

Remark 5. When kA = kB = 1, the threshold of this scheme matches the Entangled Polynomial code [3] and the

MatDot codes [4], with the added advantage of excellent numerical stability.

The decoding algorithm in this case requires more steps. It is specified in Algorithm 5. In particular, it requires us

to work with the inverse of a complex matrix (see (11)) which is essentially (upto a unitary scaling) a Vandermonde

matrix with parameters on the unit circle. The underlying reason can be found by examining the proof of Theorem

5. Thus, the decoding in this case is more expensive than prior methods that work exclusively with real valued

decoding. Nevertheless, we emphasize that the worker node computation is still real-valued.

Suppose that the k-th worker node computes ÂT
k B̂k and that the master node receives the computation results

from any τ = 2pkAkB − 1 worker nodes, which are denoted by i0, · · · , iτ−1. By (17), the useful and interference

terms can be decoded by computing the inverse of

Gvand
I =



ω
−i0(pkAkB−1)
q ω

−i1(pkAkB−1)
q · · · ω

−iτ−1(pkAkB−1)
q

ω
−i0(pkAkB−2)
q ω

−i1(pkAkB−2)
q · · · ω

−iτ−1(pkAkB−2)
q

...
...

. . .
...

1 1 · · · 1
...

...
. . .

...

ω
i0(pkAkB−1)
q ω

i1(pkAkB−1)
q · · · ω

iτ−1(pkAkB−1)
q


. (11)

and using it to solve r
kA
× w

kB
systems of equations. We point out that by multiplying Gvand

I from the right by the

unitary matrix [diag(ωi0q , . . . , ω
iτ−1
q)]pkAkB−1, it can be seen that κ(Gvand

I) is the same as the condition number

of a Vandermonde matrix of size (2pkAkB − 1)× (2pkAkB − 1) with parameters ωi0q , . . . , ω
iτ−1
q .

Finally, the result C = [Ci,j], i ∈ [kA], j ∈ [kB] can be recovered since Ci,j =
∑p−1
u=0(AT

(〈u,0〉,i)B(〈u,0〉,j) +

AT
(〈u,1〉,i)B(〈u,1〉,j)) =

(∑p−1
u=0(AF∗(〈u,0〉,i)B

F
(〈u,0〉,j)

)
+
(∑p−1

u=0 AF∗(〈u,1〉,i)B
F
(〈u,1〉,j))

)
. The precise decoding algo-

rithm is summarized in Algorithm 5.

Complexity Analysis: We note here that the decoding algorithm involving inverting a (2pkAkB−1)×(2pkAkB−1)

complex Vandermonde matrix once and using the inverse to solve r
kA
× w

kB
systems of equations in Steps 1 and

2. Step 3 involves the sum of matrices of size r
kA
× w

kB
so its complexity is O(rw). Thus, the overall decoding

DRAFT

20

Algorithm 5 Decoding scheme for generalized distributed matrix-matrix multiplication
Input: Gvand

I (cf. (11)) where |I| = 2pkAkB−1 (columns of Gvand corresponding to columns in I). Row vectors

c corresponding to the observed values in each of the r
kA
× w

kB
system of equations.

Output: Decoded estimate C̃ of ATB.

1. procedure: Decode m̂ from c

m̂ = [m̂−pkAkB , · · · , m̂0, · · · , m̂pkAkB] by m̂ = c(Gvand
I)−1.

end procedure

2. procedure: Repeat above procedure for each of the r
kA
× w
kB

systems of equations. Upon appropriate indexing,

we can form a matrix M̂i,j ,−(kA − 1) ≤ i ≤ kA − 1,−(kB − 1) ≤ j ≤ kB − 1 using the decoded components

m̂ip+jpkA .

end procedure

3. procedure: Recover C̃i1,j1 for i1 ∈ [kA], j1 ∈ [kB].

if i1 = 0, j1 = 0 then

C̃0,0 = M̂0,0.

else

C̃i1,j1 = M̂i1,j1 + M̂−i1,−j1 .

end if

end procedure

complexity is O((2pkAkB − 1)3 + rw + rw
kAkB

(2pkAkB − 1)2) ≈ O(p3k3
Ak

3
B + rwp2kAkB), where typically,

rw � pk2
Ak

2
B .

VI. COMPARISONS AND NUMERICAL EXPERIMENTS

We now present a comparison of our techniques with other approaches in the literature. Towards this end we

will compare the worst-case and the average condition numbers of the recovery matrices of the different schemes.

Furthermore, we will also present corresponding normalized mean-squared-error (MSE) vs. SNR curves. For matrix-

vector multiplication, let ATx denote the true value of the computation and ÂTx denote the result of using one of

the discussed methods. The normalized MSE is defined as ||A
Tx−ÂTx||F
||ATx||F (the notation || · ||F denotes the Frobenius

norm of the matrix). Similarly, for the matrix-matrix multiplication, the normalized MSE is given by ||A
TB−ÂTB||F
||ATB||F

where ATB is the true product and ÂTB is the decoded product using one of the methods. We will also report

the computation threshold, worker computation times and decoding times for all the methods under consideration.

Suppose that the number of workers n is odd, so that we can pick q = n for the rotation matrix embedding. From

a theoretical perspective our schemes have a worst-case condition number (over the different recovery submatrices)

that is upper bounded by O(qq−τ+c1) where τ is the recovery threshold. Equivalently, the worst-case condition

number is upper bounded by O(ns+c1) (recall that c1 = 5.5). We note here that this upper bound is definitely loose

and our numerical experiments which will be presented shortly indicate that the actual condition number values

are much smaller. The work of [15] shows a condition number upper bound which is O(n2s). While this is larger

DRAFT

21

than our upper bound for values of s ≥ 6 we emphasize that our actual condition number values are much lower

than [15] even for s ≤ 6.

As discussed previously, the scheme of [6] has condition numbers that are exponential in the recovery threshold

τ . This is corroborated by our numerical experiments as well. In Section VII of [3], the authors propose a finite

field embedding approach as a potential solution to the numerical issues encountered when operating over the reals.

For this purpose the real entries will need to multiplied by large enough integers and then quantized so that each

entry lies with 0 and p− 1 for a large enough prime p. All computations will be performed within the finite field

of order p, i.e., by reducing the computations modulo-p. This technique requires that each AT
i Bj needs to have

all its entries within 0 to p− 1, otherwise there will be errors in the computation. Let α be an upper bound on the

absolute value of matrix entries in A and B. Then, this means that the following dynamic range constraint (DRC),

α2t ≤ p− 1

needs to be satisfied. Otherwise, the modulo-p operation will cause arbitrarily large errors.

We note here that the publicly available code for [6] uses p = 65537. Now consider a system with kA = 3,

kB = 2. Even for small matrices with A of size 400 × 200, B of size 400 × 300 and entries chosen as random

integers between 0 to 30, the DRC is violated for p = 65537 since 302 × 400 > 65537. In this scenario, the

normalized MSE of the [6] approach is 0.7746. In contrast, our method has a normalized MSE ≈ 2 × 10−28 for

the same system with kA = 3, kB = 2.

When working over 64-bit integers, the largest integer is ≈ 1019. Thus, even if t ≈ 105, the finite-field embedding

method can only support α ≤ 107. Thus, the range is rather limited. Furthermore, considering matrices of limited

dynamic range is not a valid assumption. In machine learning scenarios such as deep neural networks, matrix

multiplications are applied repeatedly, and the output of one stage serves as the input for the other. Thus, over

several iterations the dynamic range of the matrix entries will grow. Consequently, applying this technique will

necessarily incur quantization error.

The most serious limitation of the method comes from the fact the error in the computation (owing to quantization)

is strongly dependent on the actual entries of the A and B matrices. In fact, we can generate structured integer

matrices A and B such that the normalized MSE of their approach is exactly 1.0. Towards this end we first pick the

prime p = 2147483647 (which is much larger than their publicly available code) so that their method can support

higher dynamic range. Next let r = w = t = 2000. This implies that α has to be ≤ 1000 by the dynamic range

constraint. For kA = kB = 2, the matrices have the following block decomposition.

A =

A0,0 A0,1

A1,0 A1,1

 , and

B =

B0,0 B0,1

B1,0 B1,1

 .
Each Ai,j and Bi,j is a matrix of size 1000 × 1000, with entries chosen from the following distributions. A0,0,

A0,1 are distributed Unif(0, . . . , 9999) and A1,0, A1,1 distributed Unif(0, . . . , 9). Next, B0,0, B0,1 are distributed

Unif(0, . . . , 9) and B1,0,B1,1 distributed Unif(0, . . . , 9999). In this scenario, the DRC requires us to multiply each

DRAFT

22

TABLE II: Performance of matrix inversion over a large prime order field in Python 3.7. The table shows the

computation time for inverting a `× ` matrix G over a finite field of order p. Let Ĝ−1 denote the inverse obtained

by applying the sympy function Matrix(G) .inverse_mod(p). The MSE is defined as 1
` ||GĜ−1 − I||F .

` p Computation Time (s) MSE

9 65537 1.39 0

12 65537 4.38 0

15 65537 12.64 0

9 2147483647 1.39 0

12 2147483647 4.68 1.8× 109

15 2147483647 14.45 4.2× 109

matrix by 0.1 and quantize each entry between 0 and 999. Note that this implies that A1,0,A1,1,B0,0,B0,1 are all

quantized into zero submatrices since the entry in these four submatrices is less than 10. We label the quantized

matrices by the superscript ·̃. We emphasize that the finite field embedding technique only recovers the product of

these quantized matrices. However, this product is

ÃT B̃ =

Ã0,0 Ã0,1

0 0

T  0 0

B̃1,0 Ã1,1

 = 0.

Thus, the final estimate of the original product ATB, denoted as ÂTB is the all-zeros matrix. This implies that

the normalized MSE of their scheme is exactly 1.0. Thus, the performance of the finite field embedding technique

has a strong dependence on the matrix entries. We note here that even if we consider other quantization schemes

or larger 64-bit primes, one can arrive at adversarial examples such as the ones shown above. Once again for these

examples, our methods have a normalized MSE of at most 10−27.

In our experience, the finite field embedding technique also suffers from significant computational issues in

implementation. Note that the technique requires the computation of the inverse matrix at the master node that

is required for decoding the final result. We implemented this within the Python 3.7, sympy library (see [20] Git

hub repository). We performed experiments with p = 65537 and p = 2147483647. As shown in Table II, for the

smaller prime p = 65537, the inverse computation is accurate up to 15 × 15 matrices; however, the computation

time of the inverse is rather high and can dominate the overall execution time. On the other hand for the larger

prime p = 2147483647, the error in in the computed inverse is very high for 12 × 12 and 15 × 15 matrices; the

corresponding time taken is even higher. It is possible that very careful implementations can perhaps avoid these

issues. However, we are unaware of any such publicly available code. To summarize, the finite field embedding

technique suffers from major dynamic range limitations and associated computational issues and cannot be used to

support real computations.

The work most closely related to ours is by [15], which demonstrates an upper bound of O(q2(q−τ)) on the worst-

case condition number. It can be noted that this grows much faster than our upper bound in the parameter q− τ . In

numerical experiments, our worst-case condition numbers are much smaller than the work of [15]; we discuss this

in the upcoming Section VI-A. We note that the results in [15] are given in terms of the condition number calculated

DRAFT

23

TABLE III: Comparison for matrix-vector case with n = 31, A has size 28000× 19720 and x has length 28000

for the first four methods. For the All Ones Conv. and Random Conv. (from [14]), A has 21924 columns.

Scheme γA τ Avg. Cond. Num. Max. Cond. Num. Avg. Worker Comp. Time (s) Dec. Time (s)

Real Vand. 1/29 29 1.1× 1013 2.9× 1013 1.2× 10−3 9× 10−5

Complex Vand. 1/29 29 12 55 2.9× 10−3 2.8× 10−4

Circ. Perm. Embed. 1/28 29 12 55 1.2× 10−3 3.7× 10−4

Rot. Mat. Embed. 1/29 29 12 55 1.3× 10−3 10−4

All Ones Conv. [14] 1/27 29 1386 5093 1.4× 10−3 9× 10−4

Random Conv. [14] 1/27 29 259 4903 1.4× 10−3 5× 10−4

using the Frobenius norm 1, i.e., for matrix M, they define κ(M) = ||M||F ||M−1||F . However, there are well-known

relations between different matrix norms. In particular when M is of size `× `, then ||M||2 ≤ ||M||F ≤
√
`||M||2.

This allows us to compare the corresponding Frobenius-norm induced condition number as well.

Both our scheme and [15] have the optimal threshold when A and B are only divided into block-columns (cf.

Section IV)). However, when the matrices are split across both rows and columns (cf. Section V) the polynomial

code approach of [3] has a lower threshold of pkAkB + p− 1, while our threshold is 2pkAkB − 1; the thresholds

match when kA = kB = 1. The work of [15] in this scenario, i.e., when p > 1 has a threshold denoted τF−C given

by

τF−C = 4kAkBp− 2(kAkB + pkA + pkB) + kA + kB + 2p− 1.

It can be seen that if kA = 1 or kB = 1, then τF−C ≤ 2pkAkB − 1. However, when kA > 1 and kB > 1, simple

analysis shows that our threshold ≤ τF−C (see Claim 4 in the Appendix).

Certain approaches [11]–[13], [21] only apply for matrix-vector multiplication and furthermore do not provide

any explicit guarantees on the worst-case condition number. Other approaches include the work of [16] which uses

random linear encoding of the A and B matrices and the work of [14] that uses a convolutional coding approach

to this problem. Both these approaches require random sampling and do not have a theoretical upper bound on the

worst-case condition number. However, for a given set of random choices, it is possible to numerically compute an

upper bound on the worst-case condition number of [14].

A. Numerical Experiments

The central point of our paper is that we can leverage the well-conditioned behavior of Vandermonde matrices

with parameters on the unit circle while continuing to work with computation over the reals. We compare our results

with the work of [6] (called “Real Vandermonde”), a “Complex Vandermonde” scheme where the evaluation points

are chosen from the complex unit circle, the work of [14], [15] and [16]. For the normalized MSE simulations below,

we always pick the set of worker nodes that correspond to the worst-case condition number of the corresponding

1For measuring the error in decoding a system of equations corresponding to M it is more natural to consider an induced norm, like the one

we use.

DRAFT

24

80 85 90 95 100 105 110 115 120

SNR (dB)

10 -15

10 -14

10 -13

10 -12

10 -11

10 -10

10 -9

10 -8

10 -7

N
or

m
al

iz
ed

 M
S

E
 (

w
or

st
 c

as
e)

Complex Vand.
Circ. Perm. Embed.
Rot. Mat. Embed.
all-one case (Das et al., 2019).
random case (Das et al., 2019).

Fig. 1: Consider matrix-vector ATx multiplication system with n = 31, τ = 29. A has size 28000× 19720 and x has length

28000.

method. Additive Gaussian noise is added to the encoded matrix and vector in the matrix-vector case and both

encoded matrices in the matrix-matrix case (details in [22]).

All experiments were run on the AWS EC2 system with a t2.2xlarge instance (for master node) and t2.micro

instances (for slave nodes). The source code can be found in [22].

1) Matrix-vector case: In Table III, we compare the average and worst-case condition number of the different

schemes for matrix-vector multiplication. The system under consideration has n = 31 worker nodes and a threshold

specified by the third column (labeled as τ). The evaluation points for [6] were uniformly sampled from the interval

[−1, 1] [23]. The Complex Vandermonde scheme has evaluation points which are the 31-st root of unity. The [15]

and [16] schemes are not applicable for the matrix-vector case. It can be observed from Table III that both the

worst-case and the average condition numbers of our scheme are over eleven orders of magnitude better than the

Real Vandermonde scheme. Furthermore, there is an exact match of the condition number values for all the other

schemes. This can be understood by following the discussion in Section IV-B. Specifically, our schemes have the

property that the condition number only depends on the eigenvalues of corresponding circulation permutation matrix

and rotation matrix respectively. These eigenvalues lie precisely within 31-th roots of unity. The methods of [14]

have some divisibility constraints on the number of columns in A. Accordingly, we considered a matrix with 21924

columns for it. We performed 200 random trials for picking the best Random Conv. code [14]. The worst-case

condition number of these methods are still around one to two orders of magnitude higher than ours.

It can be observed that the decoding flop count for both matrix-vector and matrix-matrix multiplication is

independent of t, i.e., in the regime where t is very large the decoding time may be neglected with respect to the

worker node computation time. Nevertheless, from a practical perspective it is useful to understand the decoding

DRAFT

25

TABLE IV: Comparison for ATB matrix-matrix multiplication case with n = 31, kA = 4, kB = 7. A has size

8000× 14000, B has size 8400× 14000.

Scheme γA γB τ Avg. Cond. Num. Max. Cond. Num. Avg. Worker Comp. Time (s) Dec. Time (s)

Real Vand. 1/4 1/7 28 4.9× 1012 2.3× 1013 2.132 0.407

Complex Vand. 1/4 1/7 28 27 404 8.421 1.321

Rot. Mat. Embed. 1/4 1/7 28 27 404 2.121 0.408

Ortho-Poly [15] 1/4 1/7 28 1449 8.3× 104 2.263 0.412

RKRP [16] 1/4 1/7 28 255 5.6× 104 2.198 0.406

Random Conv. [14] 1/3 1/6 28 - ≤ 3.4× 104 - -

80 85 90 95 100 105 110 115 120

SNR (dB)

10-12

10-10

10-8

10-6

10-4

10-2

N
or

m
al

iz
ed

 M
S

E
 (

w
or

st
 c

as
e)

Complex Vand.
Rot. Mat. Embed.
(Fahim & Cadambe, 2019)
(Subramaniam et al., 2019)

Fig. 2: Consider matrix-matrix ATB multiplication system with n = 31, kA = 4, kB = 7, A is of size 8000 × 14000, B is

of 8400 × 14000.

times as well.

When the matrix A is of dimension 28000× 19720 and x is of length 28000, the last two columns in Table III

indicate the average worker node computation time and the master node decoding time for the different schemes.

These numbers were obtained by averaging over several runs of the algorithm. It can be observed that the Complex

Vandermonde scheme requires about twice the worker computation time as our schemes. Thus, it is wasteful of

worker node computation resources. On the other hand, our schemes leverage the same condition number with

computation over the reals. The decoding times of almost all the schemes are quite small. However, the Circulant

Permutation Matrix scheme requires decoding time which is somewhat higher than the rotation matrix embedding

even though we can use FFT based approaches for it. We expect that for much larger scale problems, the FFT

based approach may be faster.

Our next set of results compare the mean-squared error (MSE) in the decoded result for the different schemes. To

simulate numerical precision problems, we added i.i.d Gaussian noise (of different SNRs) to the encoded submatrices

of A and the vector x (the encoded submatrices of B) in each worker node. The master node then performs decoding

on the noisy vectors. The plots in Figure 1 correspond to the worst-case choice of worker nodes for each of the

schemes. It can be observed that the Circulant Permutation Matrix Embedding has the best performance. This is

because many of the matrices on the block-diagonal in (13) (see Appendix B) have well-behaved condition numbers

DRAFT

26

TABLE V: Comparison for matrix-matrix ATB multiplication case with n = 17, uA = 2, uB = 2, p = 2, A is of

size 4000× 16000, B is of 4000× 16000.

Scheme γA γB τ Avg. Cond. Num. Max. Cond. Num. Avg. Worker Comp. Time (s) Dec. Time (s)

Rot. Mat. Embed. 1/4 1/4 15 7 22 2.23 0.69

Ortho-Poly [15] 1/4 1/4 15 104 2.7× 105 2.23 0.18

80 85 90 95 100 105 110 115 120

SNR (dB)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

N
or

m
al

iz
ed

 M
S

E
 (

w
or

st
 c

as
e) (Fahim & Cadambe, 2019).

Rot. Mat. Embed.

Fig. 3: Consider matrix-matrix ATB multiplication system with n = 18, uA = 2, uB = 2, p = 2, A is of size

4000 × 16000, B is of 4000 × 16000.

and only a few correspond to the worst-case. We have not shown the results for the Real Vandermonde case here

because the normalized MSE was very large.

2) Matrix-Matrix case: In the matrix-matrix scenario we again consider a system with n = 31 worker nodes

and kA = 4 and kB = 7 so that the threshold τ = kAkB = 28. Once again we observe (cf. Table IV) that the

worst-case condition number of the Rotation Matrix Embedding is about eleven orders of magnitude lower than the

Real Vandermonde case. Furthermore, the schemes of [15] and [16] have a worst-case condition numbers that are

two orders of magnitude higher than our scheme. For both [16] and [14] schemes we performed 200 random trials

and picked the scheme with the lowest worst-case condition number. For [14], we only report the upper bound on

the worst-case condition number. Finding the actual worst-case recovery set takes a long time.

When the matrix A is of dimension 8000 × 14000 and B is of dimension 8000 × 14000, the worker node

computation times and decoding times are listed in Table IV. As expected the Complex Vandermonde scheme takes

much longer for the worker node computations, whereas the Rotation Matrix Embedding, [15] and [16] take about

the same time. The decoding times are also very similar. As shown in Figure 2, the normalized MSE of our Rotation

Matrix Embedding scheme is much about five orders of magnitude lower than the scheme of [15]. The normalized

MSE of the Real Vandermonde case is very large so we do not plot it. Since we did not determine the worst-case

recovery set for [14], we have not included the data and corresponding curves for it.

In the matrix-matrix multiplication scenario with p ≥ 2, we consider a system with n = 17 worker nodes and

uA = 2, uB = 2, p = 2. Note that in this case the threshold of [3] is lower than our threshold and [15]. Accordingly,

DRAFT

27

we picked a setting where the our and [15]’s threshold match and only compare these results.

We observe that the condition number of the Rotation Matrix Embedding scheme is about four orders of magnitude

lower than [15]. Figure 3 shows that the normalized MSE of our Rotation Matrix Embedding scheme is much lower

than [15]. The Rotation Matrix Embedding scheme has higher decoding time since its decoding algorithm operates

over the complex field.

VII. CONCLUSIONS AND FUTURE WORK

In this work we demonstrated that polynomial based schemes for coded computation suffer from serious numerical

stability issues in practice. This stems from the provably bad conditioning of real Vandermonde matrices. We

demonstrated a technique that exploits the properties of circulant and rotation matrices for coded computation.

In essence, our method allows us to leverage the superior conditioning of complex Vandermonde matrices with

parameters on the unit circle while still working with real computations at the worker nodes. The worst-case

condition number of our recovery matrices is upper bounded by O(ns+5.5) (where n- number of workers, s-

number of stragglers) and our schemes have excellent performance in numerical experiments.

It is to be noted that our upper bound grows with the number of stragglers. In fact, it can be shown that if s is

a large fraction of n, then the condition number of the corresponding recovery matrices can be quite large even in

the complex Vandermonde on unit circle case. It would be interesting to investigate coded computation schemes

that continue to be numerically stable in the large s regime.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE

Trans. on Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[2] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed matrix computation via coding theory: Removing a bottleneck

in large-scale data processing,” IEEE Sig. Pro. Mag., vol. 37, no. 3, pp. 136–145, 2020.

[3] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal

coding,” IEEE Trans. on Inf. Theory, vol. 66, no. 3, pp. 1920–1933, 2020.

[4] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix

multiplication,” IEEE Trans. on Inf. Theory, vol. 66, no. 1, pp. 278–301, 2019.

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms. SIAM: Society for Industrial and Applied Mathematics, 2002.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix multiplication,”

in Proc. of Adv. in Neural Inf. Proc. Sys. (NIPS), 2017, pp. 4403–4413.

[7] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot products,” in Proc.

of Adv. in Neural Inf. Proc. Sys. (NIPS), 2016, pp. 2100–2108.

[8] A. E. Yagle, “Fast algorithms for matrix multiplication using pseudo-number-theoretic transforms,” IEEE Trans. on Sig. Proc., vol. 43,

no. 1, pp. 71–76, 1995.

[9] V. Pan, “How Bad Are Vandermonde Matrices?” SIAM Journal on Matrix Analysis and Applications, vol. 37, no. 2, pp. 676–694, 2016.

[10] L. Tang, K. Konstantinidis, and A. Ramamoorthy, “Erasure coding for distributed matrix multiplication for matrices with bounded entries,”

IEEE Comm. Lett., vol. 23, no. 1, pp. 8–11, 2019.

[11] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable matrices for distributed matrix-vector multiplication,” in IEEE Int.

Symp. on Inf. Theory, July 2019, pp. 1777–1781.

[12] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES : Codes for coded computation that leverage stragglers,” in IEEE Inf. Th. Workshop,

2018.

DRAFT

28

[13] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplication: A convolutional coding approach,” in IEEE Int. Symp. on Inf.

Theory, July 2019, pp. 3022–3026.

[14] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and Robust Distributed Matrix Computations via Convolutional Coding,” [Online]

Available at: https://arxiv.org/abs/1907.08064, 2019.

[15] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded computing,” [Online] Available at: https://arxiv.org/abs/1903.08326,

2019.

[16] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random Khatri-Rao-Product Codes for Numerically-Stable Distributed Matrix

Multiplication,” in 57th Annual Allerton Conference on Communication, Control, and Computing, 2019, pp. 253–259.

[17] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation schemes that leverage partial stragglers,” [Online] Available at:

https://arxiv.org/abs/2012.06065, 2020.

[18] R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations and Trends® in Communications and Information Theory, vol. 2,

no. 3, pp. 155–239, 2006.

[19] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge University Press, 1991.

[20] “Github repository for computing matrix inverse over prime order finite field,” [Online] Available: https://github.com/litangsky/

inverseoverfield.

[21] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi, “Rateless codes for near-perfect load balancing in distributed matrix-

vector multiplication,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 3, no. 3, pp. 1–40, 2019.

[22] “Repository of numerically stable coded matrix computations via circulant and rotation matrix embeddings,” [Online] Available: https:

//github.com/litangsky/stableCodedComputing.

[23] J.-P. Berrut and L. N. Trefethen, “Barycentric Lagrange Interpolation,” SIAM Review, vol. 46, no. 3, pp. 501–517, 2004.

[24] V. Y. Pan, “Polynomial evaluation and interpolation: Fast and stable approximate solution,” 2013.

DRAFT

 https://github.com/litangsky/inverseoverfield
 https://github.com/litangsky/inverseoverfield
 https://github.com/litangsky/stableCodedComputing
 https://github.com/litangsky/stableCodedComputing

29

APPENDIX

A. Proof of Claim 1

Proof. Note that Algorithm 2 is applied for recovering the corresponding entries of AT
i,jx for i ∈ [kA], j ∈ [q̃]

separately. There are r/(kA(q − 1)) such entries. The complexity of computing a N -point FFT is O(N logN) in

terms of the required floating point operations (flops). Computing the permutation does not cost any flops and its

complexity is negligible as compared to the other steps. Step 1 of Algorithm 2 therefore has complexity O(kAq̃ log q̃).

In Step 2, we solve the degree kA − 1 polynomial interpolation, (q̃ − 1) times. This takes O((q̃ − 1)kA log2 kA)

time [24]. Finally, Step 3, requires applying the inverse permutation and the inverse FFT; this requires O(kAq̃ log q̃)

operations. Therefore, the overall complexity is given by

r

kA(q̃ − 1)

(
O(kAq̃ log q̃) +O((q̃ − 1)kA log k2

A)
)

≈ O(r(log q̃ + log2 kA)).

B. Proof of Theorem 3

Proof. The arguments are conceptually similar to the proof of Theorem 2. Suppose that the workers indexed by

i0, . . . , ikA−1 complete their tasks. The corresponding block-columns of Gcirc can be extracted to form

G̃ =


I I · · · I

Pi0 Pi1 · · · PikA−1

...
...

. . .
...

Pi0(kA−1) Pi1(kA−1) · · · PikA−1(kA−1)

 .

As in the proof of Theorem 2 we can equivalently analyze the decoding by considering the system of equations

mG̃ = c,

where m, c ∈ R1×kAq̃ are row-vectors such that

m = [m0, · · · ,mkA−1]

= [m〈0,0〉, · · · ,m〈0,q̃−1〉, · · · , · · ·m〈kA−1,0〉, · · · ,m〈kA−1,q̃−1〉], and

c = [ci0 , · · · , cikA−1
]

= [c〈i0,0〉, · · · , c〈i0,q̃−1〉, · · · , · · · , c〈ikA−1,0〉, · · · , c〈ikA−1,q̃−1〉].

DRAFT

30

Note that not all variables in m are independent owing to (7). Let mF and cF denote the q̃-point “block-Fourier”

transforms of these vectors, i.e,

mF = m


W

. . .

W

 and

cF = c


W

. . .

W

 ,
where W is the q̃-point DFT matrix. Let G̃k,l = Pilk denote the (k, l)-th block of G̃. Using the fact that P can

be diagonalized by the DFT matrix W, we have

G̃k,l = Wdiag(1, ωilkq̃ , ω2ilk
q̃ , . . . , ω

(q̃−1)ilk
q̃)W∗.

Let G̃Fk,l = diag(1, ωilkq̃ , ω2ilk
q̃ , . . . , ω

(q̃−1)ilk
q̃), and G̃F represent the kA × kA block matrix with G̃Fk,l for k, l =

0, . . . , kA − 1 as its blocks. Therefore, the system of equations

mG̃ = c,

can be further expressed as

m


W

. . .

W




W∗

. . .

W∗

 G̃


W

. . .

W

 = c


W

. . .

W

 ,
=⇒ [mF0 , · · · ,mFkA−1]G̃F = [cFi0 , · · · , c

F
ikA−1

]

upon right multiplication by the matrix


W

. . .

W

. Next, we note that as each block within G̃F has a

diagonal structure, we can rewrite the system of equations as a block diagonal matrix upon applying an appropriate

permutation (cf. Claim 2 in Appendix E). Thus, we can rewrite it as

[mF,π0 , · · · ,mF,πq̃−1]G̃Fd = [cF,π0 , · · · , cF,πq̃−1], (12)

where the permutation π is such that mF,πj = [mF0,j mF1,j . . . mFkA−1,j] and likewise cF,πj = [cFi0,j cFi1,j . . . cFikA−1,j
].

Furthermore, G̃Fd is a block-diagonal matrix where each block is of size kA× kA. Now, according to (7), we have

mFi,0 =
∑q̃−1
j=0 mi,j = 0 for i = 0, . . . , kA− 1, which implies that mF,π0 is a 1× kA zero row-vector and thus cF,π0

is too.

In what follows, we show that each of the other diagonal blocks of G̃Fd is non-singular. This means that

[mF0 , · · · ,mFkA−1] and consequently m can be determined by solving the system of equations in (12). Towards this

end, we note that the k-th diagonal block (1 ≤ k ≤ q̃− 1) of G̃Fd , denoted by G̃Fd [k] can be expressed as follows.

DRAFT

31

G̃Fd [k] =


1 1 · · · 1

ωi0kq̃ ωi1kq̃ · · · ω
ikA−1k

q̃

...
...

. . .
...

ω
(kA−1)i0k
q̃ ω

(kA−1)i1k
q̃ · · · ω

(kA−1)ikA−1k

q̃

 . (13)

The above matrix is a complex Vandermonde matrix with parameters ωi0kq̃ , . . . , ω
ikA−1k

q̃ . Thus, as long these

parameters are distinct, G̃Fd [k] will be non-singular. Note that we need the property to hold for k = 1, . . . , q̃ − 1.

This condition can be expressed as

(iα − iβ)k 6≡ 0 (mod q̃),

for iα, iβ ∈ {0, . . . , n − 1} and 1 ≤ k ≤ q̃ − 1. A necessary and sufficient condition for this to hold is that q̃ is

prime. An application of Theorem 1 shows that κ(G̃Fd [k]) ≤ O(q̃q̃−kA+c1) for all k. As decoding m is equivalent

to solving systems of equations specified by G̃Fd [k] for 1 ≤ k ≤ q̃− 1, the worst-case condition number is at most

O(q̃q̃−kA+c1).

C. Vandermonde Matrix condition number analysis

Let V be a m×m Vandermonde matrix with parameters s0, s1, . . . sm−1. We are interested in upper bounding

κ(V). Let s+ = maxm−1
i=0 |si|. Then, it is known that ||V|| ≤ mmax(1, sm−1

+) [9]. Finding an upper bound on

||V−1|| is more complicated and we discuss this in detail below. Towards this end we need the definition of a

Cauchy matrix.

Definition 5. A m×m Cauchy matrix is specified by parameters s = [s0 s1 . . . sm−1] and t = [t0 t1 . . . tm−1],

such that its (i, j)-th entry

Cs,t(i, j) =

(
1

si − tj

)
for i ∈ [m], j ∈ [m].

In what follows, we establish an upper bound on the condition number of Vandermonde matrices with parameters

on the unit circle.

Proof of Theorem 1

Proof. Recall that ωq = ei 2πq and ωm = ei 2πm and define tj = fωjm, j = 0, . . . ,m−1 where f is a complex number

with |f | = 1. We let Cs,f denote the Cauchy matrix with parameters {s0, . . . , sm−1} and {t0, . . . , tm−1}. Let W

be the m-point DFT matrix. The work of [9] shows that

V−1 = diag(fm−1−j)m−1
j=0

√
mW∗diag(ω−jm)m−1

j=0 C−1
s,fdiag

(
1

smj − fm

)m−1

j=0

.

DRAFT

32

It can be seen that the matrix diag(fm−1−j)m−1
j=0 W∗diag(ω−jm)m−1

j=0 is unitary. Therefore,

||V−1|| =
√
m||C−1

s,fdiag

(
1

smj − fm

)m−1

j=0

||

≤
√
m||C−1

s,f || ×
(

1

minm−1
i=0 |smi − fm|

)
≤ m1.5 × (max

i′,j′
|C−1

s,f (i′, j′)|)×
(

1

minm−1
i=0 |smi − fm|

)
, (14)

where the first inequality holds as the norm of a product of matrices is upper bounded by the products of the

individual norms and second inequality holds since for any M, we have ||M|| ≤ ||M||F .

In what follows, we upper bound the RHS of (14). Let s(x) denote a function of x so that s(x) = Πm−1
i=0 (x−si).

The (i′, j′)-the entry of C−1
s,f can be expressed as [9]

C−1
s,f (i′, j′) = (−1)ms(tj′)(s

m
i′ − fm)/(si′ − tj′), so that

|C−1
s,f (i′, j′)| = |s(tj′)||smi′ − fm|/|si′ − tj′ |

≤ |s(tj′)|(|smi′ |+ |fm|)/|si′ − tj′ |

= 2|s(tj′)|/|si′ − tj′ | (since |si′ | = |f | = 1).

Let M = {1, ωq, ω2
q , . . . , ω

q−1
q } \ {s0, s1, . . . , sm−1} denote the q-th roots of unity that are not parameters of V.

Note that

s(tj′) = Πm−1
i=0 (tj′ − si)

=
xq − 1

Παj∈M(x− αj)

∣∣∣∣
x=tj′

, so that

|s(tj′)| =
|tqj′ − 1|

Παj∈M|tj′ − αj |

≤ 2

Παj∈M|tj′ − αj |
(since |tj′ | = 1 and by the triangle inequality).

Thus, we can conclude that

max
i′,j′
|C−1

s,f (i′, j′)| ≤ 4 max
i′,j′

1

Παj∈M|(tj′ − αj)|
1

|si′ − tj′ |
(15)

= 4

(
1

mini′,j′ Παj∈M|(tj′ − αj)|
1

|si′ − tj′ |

)
. (16)

Note that in the expression above the αj’s and si′ are all points within Ωq = {1, ωq, ω2
q , . . . , ω

q−1
q }. We choose

f = ei πm so that tj′ = fωj
′

m = ei πmωj
′

m. Now for any i′ and j′ we need to lower bound Παj∈M|(tj′ −αj)||si′ − tj′ |.

Towards this end, we note that the distance between two points on the unit circle can be expressed as 2 sin(θ/2)

if θ is the induced angle between them. Furthermore, we have 2 sin(θ/2) ≥ 2θ/π as long as θ ≤ π.

Let d = q−m. Then, for any choice of tj′ we can consider lower bounds on the distances of d+ 1 points that lie

on Ωq . It can be seen that the closest point to tj′ that lies within Ωq has an induced angle∣∣∣∣2π`q − 2π(j′ + 1
2)

m

∣∣∣∣ ≥ 2π

qm

1

2
≥ π

q2
(since q is odd and q > m).

DRAFT

33

Therefore, the corresponding distance is lower bounded by 2/q2. Similarly, the next closest distance is lower

bounded by 2/q, followed by 2(2/q), 3(2/q), . . . , d(2/q). Then,

min
i′,j′

(
Παj∈M|(tj′ − αj)|

)
|si′ − tj′ |

≥ 2/q2 × 2/q × 4/q × · · · × 2d/q

= 2d+1d!
1

qd+2
.

Therefore,

max
i′,j′
|C−1

s,f (i′, j′)| ≤ qd+2

Cd

where Cd = 2d−1d! is a constant. Let the i-th parameter si = ei2π`/q. Then,

|smi − fm| = |ei2π`m/q + 1|

= 2| cos(π`m/q)|.

The term `m can be expressed as `m = βq+η for integers β and η such that 0 ≤ η ≤ q−1. Now note that η 6= q/2

since by assumption q is odd. Thus, | cos(π`m/q)| takes its smallest value when η = (q + 1)/2 or (q − 1)/2. In

this case

| cos(π`m/q)| =
∣∣∣∣ cos

(
βπ + π

q + 1

2q

) ∣∣∣∣
≥
∣∣∣∣ sin(π

2q

) ∣∣∣∣
≥ 1

q
.

Thus, we can upper bound the RHS of (14) and obtain

||V−1|| ≤ m1.5 q
d+2

Cd
q

≤ qd+4.5

Cd
(since m < q).

Finally, using the fact that ||V || ≤ m < q. we obtain

κ(V) ≤ qd+5.5

Cd
.

D. Proof of Theorem 5

Proof. We proceed in a similar manner as in Example 4. Following the encoding rules (cf. Algorithm 4) and worker

computation rules (cf. (10)), we can analyze the computation in worker k as follows. Let (Q∗⊗ Iζ)

A(〈i,0〉,j)

A(〈i,1〉,j)

 =

DRAFT

34

AF(〈i,0〉,j)

AF(〈i,1〉,j)

 and (Q∗ ⊗ Iζ)

B(〈i,0〉,j)

B(〈i,1〉,j)

 =

BF(〈i,0〉,j)

BF(〈i,1〉,j)

. Let Âk =

Â〈k,0〉

Â〈k,1〉

 and B̂k =

B̂〈k,0〉

B̂〈k,1〉

. Then, we have

ÂFk = (Q∗ ⊗ Iζ)Âk =

p−1∑
i=0

kA−1∑
j=0

(Q∗R
k((j−1)p+i+1)
−θ QQ∗ ⊗ Iζ)

A(〈i,0〉,j)

A(〈i,1〉,j)


=

p−1∑
i=0

kA−1∑
j=0

(Λ∗k((j−1)p+i+1) ⊗ Iζ)(Q
∗ ⊗ Iζ)

A(〈i,0〉,j)

A(〈i,1〉,j)


=

 ∑p−1
i=0

∑kA−1
j=0 ω∗q

k((j−1)p+i+1)AF(〈i,0〉,j)∑p−1
i=0

∑kA−1
j=0 ω∗q

−k((j−1)p+i+1)AF(〈i,1〉,j)

 , and

B̂Fk = (Q∗ ⊗ Iζ)B̂k =

p−1∑
i=0

kB−1∑
j=0

(Q∗R
k(p−1−i+jpkA)
θ QQ∗ ⊗ Iζ)

B(〈i,0〉,j)

B(〈i,1〉,j)


=

p−1∑
i=0

kB−1∑
j=0

(Λk(p−1−i+jpkA) ⊗ Iζ)(Q
∗ ⊗ Iζ)

BF(〈i,0〉,j)

BF(〈i,1〉,j)


=

 ∑p−1
i=0

∑kB−1
j=0 ω

k(p−1−i+jpkA)
q BF(〈i,0〉,j)∑p−1

i=0

∑kA−1
j=0 ω

−k(p−1−i+jpkA)
q BF(〈i,1〉,j)

 .
This implies that

ÂT
k B̂k =((Q∗ ⊗ Iζ)Âk)∗(Q∗ ⊗ Iζ)B̂k

=ÂF∗k B̂Fk

=

(p−1∑
i=0

kA−1∑
j=0

ωk((j−1)p+i+1)
q AF∗(〈i,0〉,j)

)(p−1∑
i=0

kB−1∑
j=0

ωk(p−1−i+jpkA)
q BF(〈i,0〉,j)

)
+

(p−1∑
i=0

kA−1∑
j=0

ω−k((j−1)p+i+1)
q AF∗(〈i,1〉,j)

)(p−1∑
i=0

kB−1∑
j=0

ω−k(p−1−i+jpkA)
q BF(〈i,1〉,j)

)
.

(17)

To better understand the behavior of the sum in (17), we divide it into the following two cases.

• Case 1: Useful terms. The master node wants to recover C = ATB = [Ci,j], i ∈ [kA], j ∈ [kB], where each

Ci,j is a block matrix of size r/kA×w/kB . Note that Ci,j =
∑p−1
u=0(AT

(〈u,0〉,i)B(〈u,0〉,j)+AT
(〈u,1〉,i)B(〈u,1〉,j)).

Moreover, note that

AF∗(〈u,0〉,i)B
F
(〈u,0〉,j) + AF∗(〈u,1〉,i)B

F
(〈u,1〉,j)

=

AF(〈u,0〉,i)

AF(〈u,1〉,i)

∗ BF(〈u,0〉,j)

BF(〈u,1〉,j)


=

(
(Q∗ ⊗ Iζ)

A(〈u,0〉,i)

A(〈u,1〉,i)

)∗((Q∗ ⊗ Iζ)

B(〈u,0〉,j)

B(〈u,1〉,j)

)

=

A(〈u,0〉,i)

A(〈u,1〉,i)

∗ B(〈u,0〉,j)

B(〈u,1〉,j)


=AT

(〈u,0〉,i)B(〈u,0〉,j) + AT
(〈u,1〉,i)B(〈u,1〉,j).

DRAFT

35

It is easy to check that
∑p−1
u=0 AF∗(〈u,0〉,i)B

F
(〈u,0〉,j) is the coefficient of ωk(ip+jpkA)

q and
∑p−1
u=0 AF∗(〈u,1〉,i)B

F
(〈u,1〉,j)

is the coefficient of ω−k(ip+jpkA)
q . Thus, decoding and summing the corresponding coefficients, allows us to

recover Ci,j . Note further that the exponent of ωq is a multiple of p.

• Case 2: Interference terms. The terms in (17) with coefficient AF∗(〈u,l〉,i)B
F
(〈v,l〉,j) with u 6= v are the interference

terms and they are the coefficients of ω±k(ip+u−v+jpkA)
q . We conclude that the useful terms have no intersection

with interference terms since 1 ≤ |u− v| < p.

Next we determine the threshold of the proposed scheme. Towards this end, we find the maximum and minimum

degree of ÂF∗k B̂Fk and then argue that (17) has powers of ωq that lie at consecutive multiples of k. The threshold

can then be obtained by adding 1 to the difference of the maximum and minimum degrees divided by k. The

maximum degree of ÂF∗k B̂Fk is the degree of the term

ωk(pkAkB−1)
q AF∗(〈p−1,0〉,kA−1)B

F
(〈0,0〉,kB−1),

and the minimum degree is the degree of the term

ω−k(pkAkB−1)
q AF∗(〈p−1,1〉,kA−1)B̂

F
(〈0,1〉,kB−1).

Next we argue that (17) has powers of ωq that are consecutive multiples of k between the maximum and

minimum degree. Towards this end, we show that there always exist some terms in (17) with degree dk, where

−pkAkB + 1 ≤ d ≤ pkAkB − 1. We observe that the positive powers of ωqk in (17) can be written as ±((j1 −

1)p + i1 + 1 + p − 1 − i2 + j2pkA) = ±(j2pkA + j1p + i1 − i2), where j1 ∈ [kA], j2 ∈ [kB], i1, i2 ∈ [p].

Consider a positive power d ≤ pkAkB − 1. We can always find a solution such that j2 = b d
pkA
c, j1 = bd mod pkA

p c,

i1 − i2 = (d mod pkA) mod p. A similar result holds when d is negative. We conclude that the threshold of the

scheme is 2pkAkB − 1.

Now suppose that 2pkAkB−1 workers return their results. Equation (17) shows that the condition number of the

corresponding decoding matrix is equivalent to (up to multiplication by an appropriately defined unitary matrix) a

Vandermonde matrix whose parameters are a (2pkAkB − 1)- sized subset of {1, ωq, ω2
q , . . . , ω

q−1
q }.Therefore, an

application of Theorem 1 implies that the worst-case condition number is upper bounded by O(qq−2pkAkB+1+c1).

E. Auxiliary Claims

Definition 6. Permutation Equivalence. We say that a matrix M is permutation equivalent to Mπ if Mπ can be

obtained by permuting the rows and columns of M. We denote this by M �Mπ .

Claim 2. Let M be a l1q × l2q matrix consisting of blocks of size q × q denoted by Mi,j for i ∈ [l1], j ∈ [l2]

where each Mi,j is a diagonal matrix. Then, the rows and columns of M can be permuted to obtain Mπ which is

a block diagonal matrix where each block matrix is of size l1 × l2 and there are q of them.

DRAFT

36

Proof. For an integer a, let (a)q denote a mod q. In what follows, we establish two permutations

πl1(i) = l1(i)q + bi/qc, 0 ≤ i < l1q, and

πl2(j) = l2(j)q + bj/qc, 0 ≤ j < l2q

and show that applying row-permutation πl1 and column-permutation πl2 to M will result in a block diagonal

matrix Mπ .

We observe that (i, j)-th entry in M is the ((i)q, (j)q)-th entry in the block Mbi/qc,bj/qc. Under the applied

permutations the (i, j)-th entry in M is mapped to (l1(i)q + bi/qc, l2(j)q + bj/qc)-entry in Mπ . Recall that

Mbi/qc,bj/qc is a diagonal matrix which implies that for (i)q 6= (j)q , the (l1(i)q + bi/qc, l2(j)q + bj/qc) entry in

Mπ is 0. Therefore Mπ is a block diagonal matrix with q blocks of size l1 × l2.

Example 5. Let l1 = 2, l2 = 3, q = 2. Consider a 4 × 6 matrix M which consists of diagonal matrices Mi,j of

size 2× 2. For 0 ≤ i ≤ 1, 0 ≤ j ≤ 2

M =

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2



=


1 0 1 0 1 0

0 1 0 1 0 1

1 0 ωq 0 ω2
q 0

0 1 0 ω−1
q 0 ω−2

q

 .

We use row permutation πrow = (0, 2, 1, 3), which means 0, 1, 2, 3-th row of M permutes to 0, 2, 1, 3-th row.

Similarly, the column permutation is πcol = (0, 3, 1, 4, 2, 5). Thus, Mπ becomes

Mπ =


1 1 1

1 ωq ω2
q

1 1 1

1 ω−1
q ω−2

q

 .

Claim 3. (i) Let a0(z) =
∑`a−1
j=0 aj0z

j , a1(z) =
∑`a−1
j=0 aj1z

−j and b0(z) =
∑`b−1
j=0 bj0z

j`a , b1(z) =
∑`b−1
j=0 bj1z

−j`a .

Then, ak1(z)bk2(z) for k1, k2 = 0, 1 are polynomials that can be recovered from `a`b distinct evaluation points

in C.

Let D(zj) = diag([zj z−j]) and let

X(z) =


I2

D(z)
...

D(z`a−1)

⊗


I2

D(z`a)
...

D(z`a(`b−1))

 .

Then, if zi’s are distinct points in C, the matrix

[X(z1)|X(z2)| . . . |X(z`a`b)],

DRAFT

37

is nonsingular.

(ii) The matrix [Xi0 |Xi1 | . . . |Xiτ−1
] (defined in the proof of Theorem 4) is permutation equivalent to a block-

diagonal matrix with four blocks each of size τ × τ . Each of these blocks is a Vandermonde matrix with

parameters from the set {1, ωq, ω2
q , . . . , ω

q−1
q }.

Proof. First we show that ak1(z)bk2(z) for k1, k2 = 0, 1 are polynomials that can be recovered from `a`b distinct

evaluation points in C. Towards this end, these four polynomials can be written as

a0(z)b0(z) =

`a−1∑
i=0

`b−1∑
j=0

ai0bj0z
i+j`a ,

a0(z)b1(z) =

`a−1∑
i=0

`b−1∑
j=0

ai0bj1z
i−j`a ,

a1(z)b0(z) =

`a−1∑
i=0

`b−1∑
j=0

ai1bj0z
−i+j`a , and

a1(z)b1(z) =

`a−1∑
i=0

`b−1∑
j=0

ai1bj1z
−i−j`a .

Upon inspection, it can be seen that each of the polynomials above has `a`b consecutive powers of z. Therefore,

each of these can be interpolated from `a`b non-zero distinct evaluation points in C.

The second part of the claim follows from the above discussion. To see this we note that

[a0(z) a1(z)] = [a00 a01 a10 a11 . . . a(`a−1)0 a(`a−1)1]


I2

D(z)
...

D(z`a−1)

 and

[b0(z) b1(z)] = [b00 b01 b10 b11 . . . b(`b−1)0 b(`b−1)1]


I2

D(z`a)
...

D(z`a(`b−1))

 .

Furthermore, the four product polynomials under consideration can be expressed as

[a0(z) a1(z)]⊗ [b0(z) b1(z)]

=
(
[a00 a01 a10 a11 . . . a(`a−1)0 a(`a−1)1]⊗ [b00 b01 b10 b11 . . . b(`b−1)0 b(`b−1)1]

)
X(z).

We have previously shown that all polynomials in [a0(z) a1(z)] ⊗ [b0(z) b1(z)] can be interpolated by obtaining

their values on `a`b non-zero distinct evaluation points. This implies that we can equivalently obtain(
[a00 a01 a10 a11 . . . a(`a−1)0 a(`a−1)1]⊗ [b00 b01 b10 b11 . . . b(`b−1)0 b(`b−1)1]

)
which means that [X(z1)|X(z2)| . . . |X(z`a`b)] is non-singular. This proves the statement in part (i).

DRAFT

38

The proof of the statement in (ii) is essentially an exercise in showing the permutation equivalence of several

matrices by using Claim 2 and the permutation equivalence properties of Kronecker products. For convenience, we

define

Xl,A =


I

Λl

...

Λl(kA−1)

 , and

Xl,B =


I

ΛlkA

...

ΛlkA(kB−1)


so that Xl = Xl,A ⊗Xl,B . Recall that we are analyzing the matrix X = [Xi0 |Xi1 | . . . |Xiτ−1

]. An application of

Claim 2 shows that (blank entries in the matrices below indicate zero blocks)

Xl,A � XP
l,A =

Vl,A,1

Vl,A,2

 , and Xl,B � XP
l,B =

Vl,B,1

Vl,B,2

 ,
where Vl,A,1 = [1, ωlq, · · · , ω

l(kA−1)
q]T , Vl,A,2 = [1, ω−lq , · · · , ω−l(kA−1)

q]T , Vl,B,1 = [1, ωlkAq , · · · , ωlkA(kB−1)
q]T ,

Vl,B,2 = [1, ω−lkAq , · · · , ω−lkA(kB−1)
q]T . Then we conclude that X � XP = [XP

i0
|XP

i1
| · · · |XP

iτ−1
], where XP

l =

XP
l,A ⊗XP

l,B . Next we show that

XP
l = XP

l,A ⊗XP
l,B � XP,π

l =


Vl,A,1 ⊗Vl,B,1

Vl,A,2 ⊗Vl,B,1

Vl,A,1 ⊗Vl,B,2

Vl,A,2 ⊗Vl,B,2

 .

By the definition of Kronecker product, we have

XP
l,A ⊗XP

l,B =

Vl,A,1 ⊗XP
l,B

Vl,A,2 ⊗XP
l,B

 .

DRAFT

39

Note that Vl,A,i ⊗Vl,B,j � Vl,B,j ⊗Vl,A,i, then

Vl,A,i ⊗XP
l,B

=Vl,A,i ⊗

Vl,B,1

Vl,B,2


�

Vl,B,1

Vl,B,2

⊗Vl,A,i

=

Vl,B,1 ⊗Vl,A,i

Vl,B,2 ⊗Vl,A,i


�

Vl,A,i ⊗Vl,B,1

Vl,A,i ⊗Vl,B,2

 .
Thus, we can conclude that XP

l � XP,π
l . In addition, we have

Vl,A,1 ⊗Vl,B,1 = [1, ωlq, · · · , ωl(kAkB−2)
q , ωl(kAkB−1)

q]T ,

Vl,A,2 ⊗Vl,B,1 = [ω−l(kA−1)
q , ω−l(kA−2)

q , · · · , ω−lq , 1, ωlq, · · · , ωl(kA(kB−1)−1)
q , ωlkA(kB−1)

q]T ,

Vl,A,1 ⊗Vl,B,2 = [ω−lkA(kB−1)
q , ω−l(kA(kB−1)−1)

q , · · · , ω−lq , 1, ωlq, · · · , ωl(kA−2)
q , ωl(kA−1)

q]T , and

Vl,A,2 ⊗Vl,B,2 = [ω−l(kAkB−1)
q , ω−l(kAkB−2)

q , · · · , ω−lq , 1]T .

Finally applying Claim 2 again we obtain the required result.

Claim 4. Let τdiff = 2kAkBp− 2(kAkB + pkA + pkB) + kA + kB + 2p where kA, kB and p are positive integers

with p > 1. Then, τdiff < 0 only if kA = 1 or kB = 1.

Proof. If kA = 1, then τdiff = 1− kB < 0 when kB > 1; a similar argument holds when kB = 1, kA > 1. On the

other hand when kA > 1 and kB > 1, suppose that

2kAkBp+ kA + kB + 2p < 2(kAkB + pkA + pkB),

=⇒ 2 +
1

kBp
+

1

kAp
+

2

kAkB
< 2

(
1

p
+

1

kB
+

1

kA

)
upon dividing by kAkBp). (18)

We note that if kA, kB and p are all ≥ 3, then we have a contradiction since the RHS is ≤ 2, whereas the LHS is

> 2. Thus, we only need to consider a limited number of cases where some of the values equal 2. These can be

verified on a case by case basis.

DRAFT

	I Introduction
	II Problem Formulation
	III Background, Related Work and Summary of Contributions
	III-A Summary of contributions

	IV Numerically Stable Distributed Matrix Computation Schemes
	IV-A Matrix Splitting Scheme
	IV-B Distributed Matrix-Vector Multiplication
	IV-B1 Rotation Matrix Embedding
	IV-B2 Circulant Permutation Embedding

	IV-C Distributed Matrix-Matrix Multiplication

	V Generalized Distributed Matrix Multiplication
	V-A Matrix Splitting Scheme

	VI Comparisons and Numerical Experiments
	VI-A Numerical Experiments
	VI-A1 Matrix-vector case
	VI-A2 Matrix-Matrix case

	VII Conclusions and Future Work
	References
	Appendix
	A Proof of Claim 1
	B Proof of Theorem 3
	C Vandermonde Matrix condition number analysis
	D Proof of Theorem 5
	E Auxiliary Claims

