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Abstract—Robust machine learning formulations have emerged
to address the prevalent vulnerability of deep neural networks to
adversarial examples. Our work draws the connection between
optimal robust learning and the privacy-utility tradeoff problem,
which is a generalization of the rate-distortion problem. The
saddle point of the game between a robust classifier and an
adversarial perturbation can be found via the solution of a max-
imum conditional entropy problem. This information-theoretic
perspective sheds light on the fundamental tradeoff between
robustness and clean data performance, which ultimately arises
from the geometric structure of the underlying data distribution
and perturbation constraints.

Index Terms—robust learning, adversarial examples, privacy

I. INTRODUCTION

The widespread susceptibility of neural networks to adver-
sarial examples [1], [2] has been demonstrated through a wide
variety of practical attacks [3]–[9]. This has motivated much
research towards mitigating these vulnerabilities, although
many earlier defenses have been shown to be ineffective [10]–
[12]. We focus our attention on robust learning formulations
that aim for guaranteed resiliency against the worst-case input
perturbations or in a distributional sense. Our work draws
the information-theoretic connections between optimal robust
learning and the privacy-utility tradeoff problem. We utilize
this perspective to shed light on the fundamental tradeoff
between robustness and clean data performance, and to inspire
novel algorithms for optimizing robust models.

The influential approach of [13] proposes the robust opti-
mization formulation given by

min
θ

EPX,Y
[

max
δ∈S

`(fθ(X + δ), Y )
]
,

where δ represents the worst-case over some set S of small
perturbations applied to the original input X of the model
fθ, with the aim of maximizing the loss ` with respect to
the true label Y . This formulation has inspired a plethora of
defenses: some that tackle the problem directly (albeit with
limitations to scalability) [14]–[18] and others that employ
approximate bounding [19]–[23] or noise injection [24]–[26]
to certify robustness guarantees.

We generalize this formulation to allow stronger adversaries
that may employ mixed strategies, where the perturbation can
be viewed as a channel PZ|X,Y , while focusing our study
on the fundamental optimum of the ideal robust classification
game. With the minimization over all decision rules q(Y |Z)

for the cross-entropy loss objective, we show the following
minimax result that reduces the problem to a maximum
conditional entropy problem,

min
q(Y |Z)

max
PZ|X,Y ∈D

E[− log q(Y |Z)]

= max
PZ|X,Y ∈D

min
q(Y |Z)

E[− log q(Y |Z)] = max
PZ|X,Y ∈D

H(Y |Z).

This minimax result is established in Theorems 1 and 2 in
terms of the more general notion of distributional robustness,
which considers the worst-case data distribution over some
convex set D. This subsumes expected distortion constraints
as a special case when D is a Wasserstein-ball with a suitably
chosen ground metric. For the maximum conditional entropy
problem over a Wasserstein-ball constraint, we present a fixed
point characterization, which exposes the interplay between
the geometry of the ground cost in the Wasserstein-ball con-
straint, the worst-case adversarial distribution, and the given
reference data distribution.

The minimax equality establishes the connection to the
privacy-utility tradeoff problem [27]–[32], where the aim is to
design a distortion-constrained data perturbation mechanism
PZ|X,Y that maximizes the uncertainty about sensitive infor-
mation Y as measured by H(Y |Z). The equivalence between
the maximin problem and maximum conditional entropy is
used by [28] to argue that conditional entropy measures
privacy against an inference attacker represented by q. Figure 1
illustrates these connections.

A similar minimax result is given in [33], however with
technical limitations preventing it from addressing adversarial
input perturbation (see Appendix, Section VIII), and much
of their development focuses on the case where the marginal
distribution for X remains fixed. The similarities between
the robust learning and privacy problems are noted by [34],
however, they only state the minimax inequality relating the
two.

We examine the fundamental tradeoff between model ro-
bustness and clean data performance from our information-
theoretic perspective. This tradeoff ultimately arises from the
geometric structure of the underlying data distribution and
the adversarial perturbation constraints. We illustrate these
tradeoffs with the numerical analysis of a toy example. The
fundamental tradeoff between clean data and adversarial loss
is also theoretically addressed by [35]. This theory was further
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(X,Y )
perturbation

PZ|X,Y ∈ D Z
classifier
q(y|Z) E[− log q(Y |Z)]

cross-entropy loss

Robust Learning
minq maxP

Privacy-Utility
maxP minq

Fig. 1. Robust Learning and Privacy-Utility Tradeoff problems both involve
a game between a classifier and a constrained input perturbation. The goal
of robust learning is a classifier robust to the perturbation, and posed as a
minimax problem. The alternative maximin optimization captures the privacy-
utility tradeoff problem, where the goal is a perturbation mechanism that hides
sensitive information from an adversarial classifier aiming to recover it. Our
minimax result shows that these two problems are equivalent.

expanded upon by [36] and leveraged to develop an improved
adversarial training defense.

Notation: We use P(Z|X ,Y) to denote the set of condi-
tional probability distributions over Z given variables over the
sets X and Y , and P(Y|X ) is similarly defined.

II. ROBUST MACHINE LEARNING

The influential robust learning formulation of [13] addresses
the worst-case attack, as given by

min
θ

E

[
max
Z∈X :

d(X,Z)≤ε

`(fθ(Z), Y )

]
, (1)

where d : X ×X → [0,∞] is some suitably chosen distortion
metric (e.g., often `0, `p, or `∞ distance), and ε ≥ 0 represents
the allowable perturbation. The robust learning formulation
in (1) can be viewed as a two-player, zero-sum game, where
the adversary (corresponding to the inner maximization) plays
second using a pure strategy by picking a fixed Z subject to
the distortion constraint. We will instead consider an adversary
that utilizes a mixed strategy, where Z ∈ X =: Z can be a
randomized function of (X,Y ) as specified by a conditional
distribution PZ|X,Y . This revised formulation is given by

min
θ

max
PZ|X,Y ∈D∗d,ε

E[`(fθ(Z), Y )], (2)

where the expectation is over (X,Y, Z) ∼ PX,Y PZ|X,Y , and
the distortion limit is given by

D∗d,ε := {PZ|X,Y ∈ P(Z|X ,Y) : Pr[d(X,Z) ≤ ε] = 1}.
(3)

Note that under this maximum distortion constraint, allowing
mixed strategies does not actually strengthen the adversary,
i.e., the games in (1) and (2) have the same value. However,
if we replace the distortion limit constraint of (3) with an
average distortion constraint, given by

Dd,ε := {PZ|X,Y ∈ P(Z|X ,Y) : E[d(X,Z)] ≤ ε}, (4)

then the adversary is potentially strengthened, i.e.,

max
PZ|X,Y ∈Dd,ε

E[`(fθ(Z), Y )] ≥ max
PZ|X,Y ∈D∗d,ε

E[`(fθ(Z), Y )].

A. Distributional Robustness

Since the objective E[`(fθ(Z), Y )] only depends on the
joint distribution of the variables (Z, Y ) ∈ X × Y , the
robust learning formulation is straightforward to generalize by
instead considering the maximization over an arbitrary set of
joint distributions D ⊂ P(X ,Y). With a change of variable
(replacing Z with X to simplify presentation), this becomes

min
θ

max
p∈D

E(X,Y )∼p[`(fθ(X), Y )], (5)

which includes the scenarios considered in (1) through (4) as
special cases. However, unlike these earlier formulations, (5)
allows for the label Y to also be potentially changed.

Another particular case for D is the Wasserstein-ball around
a distribution µ ∈ P(X ,Y), as given by

DW
ε (µ) := {ν ∈ P(X ,Y) : Wd(µ, ν) ≤ ε}, (6)

where Wd is the 1-Wasserstein distance [37]–[39] for some
ground metric (or in general a cost) d on the space X × Y .
Recall that the 1-Wasserstein distance is given by

Wd(µ, ν) := inf
γ∈Γ(µ,ν)

Eγ
[
d
(
(X,Y ), (X ′, Y ′)

)]
,

where the set of couplings Γ(µ, ν) is defined as all joint
distributions with the marginals (X,Y ) ∼ µ and (X ′, Y ′) ∼ ν.
Note that maximizing over p ∈ DW

ε (PX,Y ) is equivalent to
maximizing over channels PX′,Y ′|X,Y subject to the distor-
tion expected constraint E

[
d
(
(X,Y ), (X ′, Y ′)

)
] ≤ ε, where

(X,Y,X ′, Y ′) ∼ PX,Y PX′,Y ′|X,Y . Unlike the formulation
considered in (2), this channel may also change the label Y .
However, if modifying Y is prohibited by a cost of the form

d
(
(x, y), (x′, y′)

)
=

{
d(x, x′), if y = y′,

∞, otherwise,
(7)

then the 1-Wasserstein distributionally robust formulation spe-
cializes to the earlier formulation in (2) with the average dis-
tortion constraint given by (4). Robust-ML with Wasserstein-
ball constraints is also referred to as Distributional Robust
Optimization (DRO) [40]–[42] and shown to be equivalent
to imposing Lipschitz constraints on the classifier [42], [43].
There is however no characterization, that is considered in
these papers, of the optimal value of the min-max problem in
this setting.

B. Optimal Robust Learning

The specifics of the loss function ` and model fθ are
crucial to our analysis. Hence, we will focus specifically on
learning classification models, where X ∈ X represents the
data features, Y ∈ Y := {1, . . . ,m} represent class labels,
and the model fθ : X → [0, 1]m can be viewed as producing
qθ ∈ P(Y|X ) that aims to approximate the underlying
posterior PY |X . When cross-entropy is the loss function, i.e.,



`(fθ(X), Y ) = − log qθ(Y |X), the expected loss, with respect
to some distribution (X,Y ) ∼ p = PXPY |X , is given by

Ep[− log qθ(Y |X)]

=

∫
X

∑
y∈Y

PY |X(y|x) log
PY |X(y|x)

qθ(y|x)PY |X(y|x)
dPX(x)

= KL(PY |X(y|X)‖qθ(y|X)|PX) +H(Y |X). (8)

Thus, the principle of learning via minimizing the expected
cross-entropy loss optimizes the approximate posterior qθ(y|x)
toward the underlying posterior PY |X , and the loss is lower
bounded by the conditional entropy H(Y |X), which is ar-
guably nonzero for nontrivial classification problems.

The robust learning problem, given by

min
θ

max
p∈D

E(X,Y )∼p[− log qθ(Y |X)], (9)

still critically depends on the specific parametric family (e.g.,
neural network architecture) chosen for the model {fθ}θ∈Θ,
which determines the corresponding parametric family of ap-
proximate posteriors, i.e., {qθ ∈ P(Y|X )}θ∈Θ. Motivated by
the ultimate meta-objective of learning the best possible robust
models, we consider the idealized optimal robust learning
formulation where the minimization is performed over all
conditional distributions q ∈ P(Y|Z), as given by

min
q∈P(Y|Z)

max
p∈D

E(X,Y )∼p[− log q(Y |X)], (10)

which clearly lower-bounds (9), which is specific to the
particular parametric family.

III. THE PRIVACY-UTILITY TRADEOFF PROBLEM

In the information-theoretic treatment of the privacy-utility
tradeoff problem [27]–[32], the random variables (X,Y ) ∼
PX,Y respectively denote useful and sensitive data, and the
goal is to release data Z produced from a randomized al-
gorithm viewed as a channel PZ|X,Y , while simultaneously
preserving the privacy of the sensitive Y and maintaining
utility by conveying X . Privacy is measured by I(Y ;Z), where
smaller is better to preserve privacy. Utility is quantified with
a distortion function, d : X × Z → [0,∞), given by the
particular application. Minimizing (or limiting) the distortion
d(X,Z) captures the objective of maintaining the utility of
the data release. Since the useful and sensitive data (X,Y )
are correlated (and indeed the problem is uninteresting if they
are independent), a tradeoff naturally emerges between the two
objectives of preserving privacy and utility.

A. Optimal Privacy-Utility Tradeoff

The optimal privacy-utility tradeoff problem is formulated
as an information-theoretic optimization problem in [27], [28],
and is given by

arg min
PZ|X,Y ∈Dd,ε

I(Y ;Z) = arg max
PZ|X,Y ∈Dd,ε

H(Y |Z), (11)

where (X,Y, Z) ∼ PX,Y PZ|X,Y , the constraint Dd,ε, as
given in (4), captures the expected distortion budget, and the

equivalence follows from I(Y ;Z) = H(Y ) −H(Y |Z) since
H(Y ) is constant. Similarly, one could consider the alternative
maximum distortion constraint D∗d,ε, given in (3).

B. Adversarial Formulation of Privacy

In [28], the privacy-utility problem in (11), is derived from
a broader perspective that poses privacy as maximizing the
loss of an adversary that mounts a statistical inference attack
attempting to recover the sensitive Y from the release Z.
Their framework considers an adversary that can observe the
release Z and choose a conditional distribution q ∈ P(Y|Z) to
minimize its expected loss. As observed in [28], when cross-
entropy (or “self-information”) is the loss, we have that

min
q∈P(Y|Z)

E[− log q(Y |Z)] = H(Y |Z), (12)

with the optimum q∗ = pY |Z , which follows from a derivation
similar to (8). Thus, the optimal privacy-utility tradeoff given
in (11) is equivalent to a maximin problem, as stated in
Lemma 1.

Lemma 1 (equivalence of privacy formulations [28]). For any
joint distribution PX,Y and closed, convex constraint set D ⊂
P(Z|X ,Y), e.g., D∗d,ε or Dd,ε, as given by (3) or (4), we have

max
PZ|X,Y ∈D

min
q∈P(Y|Z)

E[− log q(Y |Z)]

= max
PZ|X,Y ∈D

H(Y |Z) = H(Y )− min
PZ|X,Y ∈D

I(Y ;Z),

where (X,Y, Z) ∼ PX,Y PZ|X,Y .

The privacy-utility tradeoff problem is also highly related to
rate-distortion theory, which considers the efficiency of lossy
data compression. When X = Y , the optimization problem
in (11) immediately reduces to the single-letter characteri-
zation of the optimal rate-distortion tradeoff. However, the
privacy problem considers an inherently single-letter scenario,
where we deal with just a single instance of the variables
(X,Y, Z), which could be high-dimensional, but have no
restrictions placed on their statistical structure across these
dimensions.

IV. MAIN RESULTS – DUALITY BETWEEN OPTIMAL
ROBUST LEARNING AND PRIVACY-UTILITY TRADEOFFS

The solution to the optimal minimax robust learning prob-
lem can be found via a maximum conditional entropy problem
related to the privacy-utility tradeoff problem.

Theorem 1. For any finite sets X and Y , and closed, convex
set of joint distributions D ⊂ P(X ,Y), we have

min
q∈P(Y|X )

max
p∈D

E[− log q(Y |X)] (13)

= max
p∈D

min
q∈P(Y|X )

E[− log q(Y |X)] (14)

= max
p∈D

H(Y |X) =: h∗ ≤ log |Y|, (15)



where the expectations and entropy are with respect to
(X,Y ) ∼ p. Further, the solutions for q ∈ P(Y|X ) that
minimize (13) are given by⋂
p∈D

{
q ∈ P(Y|X ) : E(X,Y )∼p[− log q(Y |X)] ≤ h∗

}
6= ∅.

(16)

Proof. See Appendix, Section VI.

Intuitively, the optimal minimax robust decision rule q
that solves (13) must be consistent with the posterior p(y|x)
corresponding to the solution of the maximum conditional
entropy problem in (15). However, a given posterior p(y|x) is
well-defined only over the support of the marginal distribution
of X , whereas the robust decision rule needs to be defined over
the entire space X . Hence, generally, determining the robust
decision rule over the entirety of X requires considering the
solution set in (16), which seems cumbersome, but can be
simplified in many cases via the following corollary.

Corollary 1. Under the paradigm of Theorem 1, let

D∗ :=
{
p ∈ D : H(Y |X) = h∗, (X,Y ) ∼ p

}
.

For all p∗ ∈ D∗, the corresponding terms of (16) are given
by

Q(p∗) :=
{
q ∈ P(Y|X ) : E(X,Y )∼p∗ [− log q(Y |X)] ≤ h∗

}
=
{
q ∈ P(Y|X ) : ∀(x, y), q(y|x)p∗(x) = p∗(x, y)}.

Further, if ⋃
p∗∈D∗

{
x ∈ X : p∗(x) > 0

}
= X ,

then the solution set given by (16), for the minimization
of (13), contains exactly one point and is given by⋂

p∗∈D∗
Q(p∗) =

⋂
p∈D

Q(p).

In the simplest case, if there exists a p∗ ∈ D∗ that has
full support over X (in the marginal distribution for X), then
the optimal robust decision rule that solves the minimization
of (13) is simply given by the posterior p∗(y|x), which is
defined for all x ∈ X .

A. Generalization to Arbitrary Alphabets

Extending the result in the previous section to continuous
X requires one to expand the set of allowable Markov kernels,
i.e., conditional probabilities, to what is referred to as the set of
generalized decision rules in statistical decision theory [44]–
[47]. This is because the set of Markov kernels is not compact,
while the set of generalized decision rules is. For any f ∈
Cb(Y), set of bounded continuous functions, and any bounded
signed measure ϕ on X , given a mapping q(Y |X) (interpret
this as a measurable function qx over Y for each fixed x),
define a bilinear functional via,

βq(Y |X)(f, ϕ) =

∫
X

∫
Y
f(y)q(dy|dx) dϕ(x). (17)

Definition 1. [44] A generalized decision function is a
bilinear function β : Cb(Y)× ϕ→ R that satisfies, (a) if f ≥
0, ϕ ≥ 0 =⇒ β(f, ϕ) ≥ 0, (b) |β(f, ϕ)| ≤ ‖f‖∞‖ϕ‖TV , (c)
β(1, ϕ) = ‖ϕ‖TV if ϕ ≥ 0.

Define the set of generalized decision rules as the set of bi-
linear functions defined via (17) and satisfying the properties
(a), (b), (c) above.

M = {q(Y |X) : q(Y |X) satisfies a. b. c. in Def. 1 via (17)}

Applying these results, we obtain the following theorem for the
case of general alphabets X . Note that in contrast to Theorem
1, here the results hold with inf, sup instead of min,max.

Theorem 2. Under the paradigm of Theorem 1, for continuous
alphabets X and discrete Y ,

inf
q∈M

sup
p∈D

Ep[− log q(Y |X)] = sup
p∈D

H(Y |X) (18)

Proof. Using the fact that the set M is convex and compact
for the weak topology (Theorem 42.3, [44]), that the function
Ep[− log q(Y |X)] is convex in q for all q ∈M, and applying
the minimax theorem [48], we have

inf
q∈M

sup
p∈D

Ep[− log q(Y |X)] = sup
p∈D

inf
q∈M

Ep[− log q(Y |X)],

(19)

and noting that infq∈M Ep[− log q(Y |X)] = H(Y |X), the
result follows. Hence, even in the case of continuous alphabets,
the worst case algorithm-independent adversarial perturbation
can be found by solving supp∈DH(Y |X).

V. IMPLICATIONS OF THE MAIN RESULTS

A. Necessity of Stochastic Perturbation

In the original robust learning formulation, as given in (1),
the attacker is restricted to a pure strategy, and this is not
suboptimal (i.e., this game has the same value as the mixed
strategy formulation given by (2)), since the attacker has the
advantage of “playing second” with the inner maximization.
However, we emphasize that the original formulation given
by (1), even in the basic case of optimal robust classification,
is not necessarily a saddle point problem, that is,

min
q∈P(Y|Z)

E

[
max
Z∈X :

d(X,Z)≤ε

− log q(Y |Z)

]
(20)

≥ max
g:X×Y→X

d(X,g(X,Y ))≤ε

min
q∈P(Y|Z)

E
[
− log q

(
Y |g(X,Y )

)]
(21)

will often be a strict inequality due to the determinism of
the attack mapping g. In contrast, our minimax result of
Theorem 1 establishes that with a stochastic attacker (or, more
generally, distributional robustness constrained to a convex
set), such as formulated in (2), swapping the min and max
does not disadvantage the attacker for “playing first”.

We illustrate the necessity of a stochastic attacker with the
following example. Consider X = Y = {0, 1, 2, 3, 4}, where
PX,Y (x, y) = 1/3 for (x, y) ∈ {(0, 0), (2, 2), (4, 4)}, and let



ε = 1 be the distortion limit under the metric d(x, z) = |x−z|.
For this setup, the optimal stochastic attack will clearly lie
within the family parameterized by α ∈ [0, 1] and given by

pαZ|X(z|x) :=


1, if (x, z) ∈ {(0, 1), (4, 3)},
α, if (x, z) = (2, 1),

1− α, if (x, z) = (2, 3),

however, the optimal deterministic attack is limited to only
α equal to zero or one. The optimal stochastic attack that
solves (15), and hence also (13) and (14) due to Theorem 1
and Corollary 1, is found at α = 0.5 yielding the optimal value
of h∗ = h2(1/3), where h2(p) := −p log(p)−(1−p) log(1−p)
is the binary entropy function. For deterministic attacks, the
optimal value of (20) is also h2(1/3), however, the optimal
value of (21) is equal to (2/3) log(2) < h2(1/3).

B. Tradeoffs between Robustness vs Clean Data Loss

A natural question to ask is whether robustness comes at a
price. It has been observed empirically that robust models will
underperform on clean data in comparison to conventional,
non-robust models. To understand why this is fundamentally
unavoidable, we examine the loss for robust and non-robust
models in combination with clean data or adversarial attack.

Let µ ∈ D denote the unperturbed (clean data) distribution
within the set of potential adversarial attacks D. For a given
decision rule q ∈ P(Y|X ) and distribution ν = νXνY |X ∈
P(X ,Y), recall that the cross-entropy loss is given by (8) as

L(ν, q) := Ep[− log q(Y |X)]

= Hν(Y |X) + KL(νY |X‖q(y|X)|νX).

The baseline loss of the ideal non-robust model for clean
data is given by minq L(µ, q) = Hµ(Y |X). Under adversarial
attack, the ideal loss of the robust model is given by Theorem 1
as

min
q

max
ν∈D
L(ν, q) = max

ν∈D
Hν(Y |X).

The loss of a robust model q∗ that solves (13), as characterized
by (16), under the clean data distribution µ is given by

L(µ, q∗) = Hµ(Y |X) + KL(µY |X‖q∗(y|X)|µX).

The KL-divergence term must be finite, since we have

Hµ(Y |X) = min
q
L(µ, q) ≤ L(µ, q∗)

≤ min
q

max
ν∈D
L(ν, q) = max

ν∈D
Hν(Y |X),

where the second inequality follows from q∗ being the mini-
max solution.

We numerically evaluate these tradeoffs by considering a
family of Wasserstein-ball constraint setsD(ε), as given by (6),
with varying radius ε ≥ 0 around a distribution µ over finite
alphabets X = Y = {1, . . . , 5}. The ground metric is of the
form given in (7), which effectively limits the perturbation
to only changing X within an expected squared-distance
distortion constraint of ε, as equivalent to (4). The distribution

Fig. 2. Left: Loss as a function of decision rule, varying εrule, and across
attacks varying εattack. Right: Loss as a function of attack distortion, varying
εattack, and across decision rules varying εrule.

µ was randomly chosen, and has entropies Hµ(Y ) ≈ 1.6 and
Hµ(Y |X) ≈ 0.34 (in nats).

Leveraging Theorem 1 and Corollary 1, we numerically
solve for the robust decision rules,

q∗εrule
= arg min
q∈P(Y|X )

max
ν∈D(εrule)

L(ν, q),

across a range distortion constraints εrule ∈ [0, 2]. In combina-
tion with each decision rule, we consider the loss under attacks
at varying distortion limits εattack ∈ [0, 2], as given by

L(εattack, εrule) := max
ν∈D(εattack)

L(ν, q∗εrule
).

Figure 2 plots the loss L(εattack, εrule) across the combination
of εattack and εrule. On the left of Figure 2, each curve is a
fixed attack distortion εattack, over which the decision rule q∗εrule

is varied, with the optimal loss obtained when εrule = εattack.
As εrule increases, the loss for all curves converge to Hµ(Y ).
In the right of Figure 2, the dotted black curve is the
maximum conditional entropy Hν(Y |X) over ν ∈ D(εattack)
at each εattack, which corresponds to the ideal robust loss when
εrule = εattack. The other curves are each a fixed decision rule
q∗εrule

, over which the attack distortion εattack is varied, which
exhibits suboptimal loss for mismatched εrule 6= εattack. The
beginning of each curve, at εattack = 0, is the clean data loss
for each rule, and we can see that clean data loss is degraded
as robustness for higher distortions εattack is improved. In the
extreme of a decision rule designed to be robust for very high
εrule = 1.95, the loss is uniformly equal to Hµ(Y ) across all
εattack, since this robust decision rule q∗1.95 only simply guesses
the prior µY .

C. Fixed point characterization of the worst case perturbation

We consider the particular case when D is the Wasserstein-
ball around a distribution µ ∈ P(X ,Y):

DW
ε (µ) := {ν ∈ P(X ,Y) : Wd(µ, ν) ≤ ε},

and derive the necessary conditions for optimality for the
solution to supν∈DHν(Y |X), where by the subscript in the
conditional entropy we highlight the fact that the conditional
entropy is computed under the joint distribution ν. To this end



we adopt a Lagrangian viewpoint and we assume that X and
Y are continuous bounded and compact sets, but the result can
be seen to hold true when X is continuous and Y is discrete.
The result is summarized in the Theorem below.

Theorem 3. If the cost d is continuous with continuous
first derivative and the distribution µ(x, y) is supported on
the whole of the domain X × Y , the optimal solution to
arg minν Wd(ν, µ)− λHν(Y |X) for some λ > 0 satisfies,

ϕν→µ(x, y) = λ(log(ν(x, y))− u(y) log ν(x)) + C, (22)

where ϕν→µ(x, y) is the Kantorovich Potential 1corresponding
to the optimal solution to the transport problem from ν to µ
under the ground cost d, capital C is a constant, u(y) is a
uniform distribution over Y , and ν(x) =

∫
y
ν(x, y) is the

marginal distribution under the joint ν(x, y).

Proof. See Appendix, Section VII.

This characterization ties closely the geometry of the per-
turbations (as reflected via the Kantorovich Potential) with the
worst case distribution that maximizes the conditional entropy.
The algorithmic implications of this fixed point relation will
be undertaken in future work.
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[39] G. Peyré and M. Cuturi, “Computational optimal transport,” Foundations
and Trends in Machine Learning, vol. 11 (5-6), pp. 355–602, 2019.
[Online]. Available: https://arxiv.org/abs/1803.00567

[40] J. Blanchet and K. Murthy, “Quantifying Distributional Model Risk Via
Optimal Transport,” SSRN Electronic Journal, 2016.

[41] R. Gao and A. J. Kleywegt, “Distributionally Robust Stochastic Opti-
mization with Wasserstein Distance,” arXiv preprint arXiv:1604.02199,
2016.

[42] R. Gao, X. Chen, and A. J. Kleywegt, “Wasserstein distributional
robustness and regularization in statistical learning,” CoRR, vol.
abs/1712.06050, 2017. [Online]. Available: http://arxiv.org/abs/1712.
06050

[43] Z. Cranko, Z. Shi, X. Zhang, R. Nock, and S. Kornblith, “Gener-
alised Lipschitz Regularisation Equals Distributional Robustness,” arXiv
preprint arXiv:2002.04197, 2020.

[44] H. Strasser, Mathematical theory of statistics: statistical experiments and
asymptotic decision theory. Walter de Gruyter, 2011, vol. 7.

[45] L. LeCam, “An extension of Wald’s theory of statistical decision
functions,” Ann. Math. Statist., vol. 26, no. 1, pp. 69–81, 03 1955.
[Online]. Available: https://doi.org/10.1214/aoms/1177728594

[46] L. Cam, Asymptotic Methods in Statistical Decision Theory, ser.
Springer series in statistics. Springer My Copy UK, 1986. [Online].
Available: https://books.google.com/books?id=BcDxoAEACAAJ

[47] A. v. d. Vaart, “The statistical work of lucien le cam,” Ann.
Statist., vol. 30, no. 3, pp. 631–682, 06 2002. [Online]. Available:
https://doi.org/10.1214/aos/1028674836

[48] D. Pollard, Asymptopia. Unpublished manuscript, 2003.
[Online]. Available: http://www.stat.yale.edu/∼pollard/Courses/602.
spring07/MmaxThm.pdf

[49] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill, 1964.

VI. PROOF OF THEOREM 1

Proof. The relations in (15) and the existence of the maxi-
mums and minimum in (14) and (15) follow from a straight-
forward generalization of Lemma 1. The rest of the proof
follows the same general steps as the proof of a generalized
minimax theorem given by [48], except adapted for minimums
and maximums rather than infimums and supremums.

For convenience, we define

f(p, q) := E(X,Y )∼p[− log q(Y |X)]− h∗, (23)

Q(p) :=
{
q ∈ P(Y|X ) : f(p, q) ≤ 0

}
. (24)

Note that f(p, q) is linear in p for fixed q, and convex in q
for fixed p. Further, for all p ∈ D, minq∈P(Y|X ) f(p, q) ≤ 0
and Q(p) is compact, convex, and nonempty.

We only need to show that (13) is less than or equal to (14),
which would follow from ∩p∈DQ(p) 6= ∅, which is equivalent
to (16). Since, each Q(p) is compact, it is sufficient to show
that ∩p∈D0

Q(p) 6= ∅ for every finite subset D0 ⊂ D [49,
Thm. 2.36]. We will first show this for any two-point set D0 =
{p1, p2}, and later extend this to every finite set through an
inductive argument.

Suppose Q(p1) ∩ Q(p2) = ∅, then a contradiction would
occur if we can show that there exists α ∈ [0, 1] such that for
all q ∈ P(Y|X ),

(1− α)f(p1, q) + αf(p2, q) > 0, (25)

since then minq∈P(Y|X ) f(pα, q) > 0, where pα := (1 −
α)p1 + αp2.

For q /∈ Q(p1) ∪ Q(p2), we immediately have (25), since
both f(p1, q) > 0 and f(p2, q) > 0. For (25) to hold for all
q ∈ Q(p1), we must require

α > sup
q1∈Q(p1)

−f(p1, q1)

f(p2, q1)− f(p1, q1)
. (26)

The supremum is ≥ 0, since f(p1, q1) ≤ 0 and f(p2, q1) > 0,
from the assumption Q(p1)∩Q(p2) = ∅. For (25) to hold for
all q ∈ Q(p2), we must also require

α < inf
q2∈Q(p2)

f(p1, q2)

f(p1, q2)− f(p2, q2)
. (27)

The infimum is ≤ 1, since f(p2, q2) ≤ 0 and f(p1, q2) > 0,
from the assumption Q(p1)∩Q(p2) = ∅. Thus, an α satisfying
both (26) and (27) exists if and only if for all q1 ∈ Q(p1) and
q2 ∈ Q(p2),

−f(p1, q1)

f(p2, q1)− f(p1, q1)
<

f(p1, q2)

f(p1, q2)− f(p2, q2)
,

or equivalently,

f(p1, q1)f(p2, q2) < f(p1, q2)f(p2, q1). (28)

Since (28) is immediate if either f(p1, q1) = 0 or
f(p2, q2) = 0, we need only consider when both f(p1, q1) < 0
and f(p2, q2) < 0. Define θ ∈ (0, 1) such that

(1− θ)f(p1, q1) + θf(p1, q2) = 0, (29)

and let qθ := (1 − θ)q1 + θq2. Since f is convex in
q, f(p1, qθ) ≤ 0, which implies that qθ ∈ Q(p1) hence
qθ /∈ Q(p2) (since we assumed that they are disjoint), which
further implies that

(1− θ)f(p2, q1) + θf(p2, q2) ≥ f(p2, qθ) > 0. (30)

Thus, by combining (29) and (30),

−f(p1, q1)

f(p1, q2)
=

θ

1− θ
<

f(p2, q1)

−f(p2, q2)
,

which implies (28) and the existence of α, which contradicts
the assumption that Q(p1) ∩Q(p2) = ∅.

The pairwise result Q(p1) ∩ Q(p2) 6= ∅ implies that for
any finite set D0 = {p1, . . . , pm}, Q(p1)∩Q(pi) 6= ∅ for i =
2, . . . ,m. Then, we can repeat the argument starting from (23)
with q further restricted to Q(p1), i.e., replacing P(Y|X ) in
subsequent steps with Q(p1), which effectively redefines (24)
with Q′(p) := Q(p)∩Q(p1), and eventually leads to Q(p1)∩
Q(p2) ∩ Q(pi) 6= ∅ for i = 3, . . . ,m. Thus, repeating this
argument further yields that ∩p∈D0

Q(p) 6= ∅ for any finite
subset D0 ⊂ D, which, as argued earlier, implies (16).
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VII. PROOF OF THEOREM 3

All the proof steps assume continuous and compact X ,Y
but it is easy to see that the steps hold true for discrete
and finite Y and continuous X . We begin with the following
definition that is taken from Chapter 7 in [37].

Definition 2. Given a functional F (ρ) : P → R, if ρ is a
regular point2 of F , and for any perturbation χ = ρ− ρ̃, ρ̃ ∈
P ∩ L∞c (Ω), one calls δF

δρ (ρ) the first variation of F (ρ) if

d

dε
F (ρ+ εχ)|ε=0 =

∫
δF

δρ
(ρ)dχ

It can be seen that the first variations are unique up a
constant. The proof then follows from the following two
lemmas.

Lemma 2. [37] The first variation of a the optimal transport
cost Wd(ν, µ) with respect to ν is given by the Kontorovich
potential, ϕν→ν , provided it is unique. A sufficient condition
for uniqueness of ϕν→ν is that the cost c is continuous with
continuous first derivative and µ is supported on the whole of
the domain.

Lemma 3. The first variation of the conditional entropy
function defined by

Hν(Y |X) =

∫
ν(x, y) log

ν(x, y)∫
y
ν(x, y)

dxdy,

is given by log(ν(x, y)) − u(y) log ν(x), where u(y) is a
uniform distribution over Y and ν(x) is the marginal over
X under the joint ν(x, y).

Proof. Notation: In the following to be concise and avoid a
cumbersome notation we will often not explicitly write χ(x, y)
but just use χ. On the other hand we will keep explicit the
notation ν(x, y) so as to not lose sight of it.

By definition consider a perturbation εχ around ν and let
us look at

d

dε

∫
(ν(x, y) + εχ) log

(ν(x, y) + εχ)∫
y
(ν(x, y) + εχ)

dxdy

=
d

dε

∫
(ν(x, y) + εχ) log(ν(x, y) + εχ)dxdy

− d

dε

∫
(ν(x, y) + εχ) log(

∫
y

(ν(x, y) + εχ))dxdy

=
d

dε

∫
(ν(x, y) + εχ) log(ν(x, y) + εχ)dxdy

− d

dε

∫
(ν(x) + εf(χ)) log(ν(x) + εf(χ)))dxdy

2See Chapter 7, [37] for definition of a regular point.

where f(χ) =
∫
y
χ(x, y)dy. Let us focus on the first term.

d

dε

∫
(ν(x, y) + εχ) log(ν(x, y) + εχ)dxdy

=

∫
d

dε
ν(x, y) log(ν(x, y) + εχ)dxdy

+

∫
d

dε
εχ log(ν(x, y) + εχ)dxdy

=

∫
ν(x, y)

χ

(ν(x, y) + εχ)
dxdy

+

∫
log(ν(x, y) + εχ)χ+

∫
εχ2

(ν(x, y) + εχ)
dxdy

From this we conclude that,

d

dε

∫
(ν(x, y) + εχ) log(ν(x, y) + εχ)dxdy|ε=0

=

∫
(1 + log(ν(x, y))χdxdy

Now let us look at the second term. Following the same
arguments as for the first term we have,

d

dε

∫
(ν(x) + εf(χ)) log(ν(x) + εf(χ)))dxdy|ε=0

=

∫
(log(ν(x)) + 1)f(χ)dxdy

Now we note that,∫
(log ν(x) + 1)f(χ)dxdy =

∫
(u(y) log ν(x) + 1)χdxdy

where u(y) is the uniform distribution over Y . Therefore we
have,

d

dε
Hν+εχ(Y |X)|ε=0 =

∫
(log(ν)− u(y) log ν(x))χdxdy

VIII. DIFFERENCES VERSUS FARNIA AND TSE’S MINIMAX
RESULT

The strong version of the minimax result from [33,
Thm. 1.B] requires a continuity assumption on f(p, q), as
defined in (23), with respect to p ∈ D. This continuity assump-
tion is stated in the following Proposition 1 and is generally
false, except for particular choices of D that may limit the
applicability of their minimax result toward addressing general
adversarial examples. Our minimax results in Theorem 1 and
Theorem 2 avoid this assumption and its limitations.

Proposition 1. If a sequence (pn)∞n=1 ∈ D converges to p0 ∈
D, and qn := arg minq f(pn, q), then for any p ∈ D, f(p, qn)
converges to f(p, q0).

Remark 1. If the marginal distribution for X is fixed over all
joint distributions in D, then Proposition 1 is true. Much of the
developments in [33] are constructed within this assumption.

Remark 2. For general D where the marginal distribution for
X may vary, Proposition 1 may be false, as shown with the
following example.



Let X = Y = {0, 1}, and D be all joint distributions over
X × Y . Consider the sequence of distributions

pn(x, y) :=


1/2, if (x, y) = (0, 0),

(n− 1)/2n, if (x, y) = (0, 1),

0, if (x, y) = (1, 0),

1/2n, if (x, y) = (1, 1),

for which the associated optimal decision rules are equivalent
to the posteriors, as given by

qn := arg min
q∈P(Y|X )

f(pn, q) ≡ pn(y = 1|x) =

{
n−1
2n−1 , if x = 0,

1, if x = 1.

Also, consider the similar sequence

p′n(x, y) :=


(n− 1)/2n, if (x, y) = (0, 0),

1/2, if (x, y) = (0, 1),

1/2n, if (x, y) = (1, 0),

0, if (x, y) = (1, 1),

and its associated optimal decision rules and posteriors

q′n := arg min
q∈P(Y|X )

f(p′n, q) ≡ p′n(y = 1|x) =

{
n

2n−1 , if x = 0,

0, if x = 1.

Note that both sequences converge to the same distribution,

p0(x, y) =

{
1/2, if x = 0,

0, if x = 1.

However, the corresponding optimal decision rule q0 :=
arg minq f(p0, q) is not unique, and constrained only by
q0(y|x = 0) = 1/2, while q0(y|x = 1) may be arbitrary. For
Proposition 1 to be true, it would be required, for any p ∈ D,
that both f(p, qn) and f(p, q′n) converge to f(p, q0), however,
there does not exist a q0 such that both simultaneously
converge to f(p, q0). For f(p, qn) to converge to f(p, q0),
it would be required that q0(y = 1|x = 1) = 1, while for
f(p, q′n) to converge to f(p, q0), it would be required that
q0(y = 1|x = 1) = 0.
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