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Minimizing the alphabet size in codes with

restricted error sets
Mira Gonen, Michael Langberg, Alex Sprintson

Abstract—This paper focuses on error-correcting codes that
can handle a predefined set of specific error patterns. The need
for such codes arises in many settings of practical interest, includ-
ing wireless communication and flash memory systems. In many
such settings, a smaller field size is achievable than that offered
by MDS and other standard codes. We establish a connection
between the minimum alphabet size for this generalized setting
and the combinatorial properties of a hypergraph that represents
the prespecified collection of error patterns. We also show a
connection between error and erasure correcting codes in this
specialized setting. This allows us to establish bounds on the
minimum alphabet size and show an advantage of non-linear
codes over linear codes in a generalized setting. We also consider
a variation of the problem which allows a small probability
of decoding error and relate it to an approximate version of
hypergraph coloring.

I. INTRODUCTION

In many practical settings, there is a need to design error-

correcting codes that can handle specific error patterns. For ex-

ample, in wireless communications, magnetic recording, flash

memory systems, and Dynamic Random-Access Memories

(DRAMs) the errors can appear in correlated locations such as

bursts, single-row errors, or crisscrosss errors, e.g., [1]–[6].

These settings benefit from customized error correcting codes,

that may improve on the best known parameters of standard er-

ror correcting codes. For example, the optimal error-correcting

capabilities of the classical (n, k) Maximum Distance Sepa-

rable (MDS) code, such as the Reed-Solomon code, come at

the price of a significant alphabet size of q ≥ n − k + 1, [7].1

As we show in this paper, in many settings with specific error

patters, a much smaller alphabet size is needed.

In this work, we present a general framework for code

design that can handle any possible collection of predefined

error patterns. Our framework applies to both linear and non-

linear codes. For an error-correcting code of length n, we use

an n-vertex hypergraph G to represent the given collection of

error sets. Specifically, nodes of G represent the coordinates

(symbols) of the codewords, while the hyperedges of G
represent possible locations for errors, i.e., each hyperedge

e represents the set of coordinates that can be corrupted in

the specific scenario represented by e. For each collection of
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1The minimum alphabet size of an (n, k) MDS code is unknown, see
Conjectures 1 and 2 in the paper.

error sets represented by G, we are interested in finding the

minimum alphabet size over which there exists a code that can

correct all error sets specified by edges in G. In our setting,

(n, k)-MDS codes can correct error patterns corresponding to

the complete (n − k)/2-uniform n-vertex hypergraph.

In this work, we relate the minimum alphabet size of

error-correcting codes with predefined error patterns to certain

variants of hypergraph coloring. Through reductive arguments

to erasure codes, and in particular to our prior work [8] in

the context of erasure codes with generalized decoding sets,

we propose code design for the error setting at hand, and

show that non-linear error-correcting codes outperform linear

ones. We then turn to study a variation of the problem which

allows a small probability of decoding error and relate it to

an approximate version of hypergraph coloring.

Our work is structured as follows. In Section II, we give

some preliminaries and, in particular, we introduce our model

for generalized erasure and error patterns. We also review our

previous study on erasure codes in the generalized setting of

a predefined collection of decoding sets [8]. In Section III,

we present bounds on the minimum alphabet size of the

corresponding codes through hypergraph coloring. In Sec-

tion IV, we reduce the error-correcting setting to the erasure

setting. In Section V, we extend our studies to the problem

of error detection. Finally, in Section VI, we relax the zero-

error requirement for decoding a correct message and analyze

settings which allow small ε > 0 probability of decoding error.

II. MODEL AND PRELIMINARIES

Since our paper makes a connection between erasure and

error correction in a generalized setting, we present definitions

for both scenarios. We begin by presenting a definition and our

prior results for erasure correction scenarios.

A. Erasure Correction with predefined decoding sets.

We start by studying the design of erasure-codes in a

generalized setting in which decoding is required from a

collection of predefined decoding sets. In this setting, the

decoding sets include the set of coordinates that can be

used to decode the message. The setting is represented by

a hypergraph G = ([n], E), with the set [n] = {1, . . . , n}
of nodes representing coordinates and set of hyperedges E
representing decoding sets.

We define the qk parameter of a given hypergraph G =
([n], E) as the minimum alphabet size of a (n, k) erasure code

that enables the receiver to decode the original message from

every subset e ∈ E.

http://arxiv.org/abs/2102.02608v1


Definition 1 (The qk parameter [8]) Let G = ([n], E) be

a hypergraph on the vertex set [n] = {1, . . . , n}. Let k be

integer. Let qk(G) denote the smallest size q of an alphabet F
for which there exist an encoding function

C : Fk → Fn

and a decoding function

D : (F ∪ {⊥})n → Fk

such that for every edge e ∈ E and every message m ∈ Fk it

holds that
D(Ce(m)) = m.

Here, Ce(m) stands for the word obtained from the codeword

C(m) by replacing the symbols in the locations of [n] \ e by

the erasure symbol ⊥.

Similarly, let qk,lin(G) denote the smallest prime power q
for which there exist linear encoding and decoding functions

defined above when F is a field of size q.

In Definition 1, notice that for G that includes edges of

size less than k no such (C, D) pair exists (no matter what

the size of F is). In this case we define qk(G) and qk,lin(G)
to be ∞. Moreover, for every G with edges of size at least

k, MDS codes satisfy the requirements on (C, D) and thus

qk(G) < ∞. Specifically, observe that for the complete n-

vertex k-uniform hypergraph, denoted by κn,k, the values of

qk(κn,k) and qk,lin(κn,k) are equal to the minimum alphabet

sizes of general and linear (n, k) MDS codes, respectively. We

state below the MDS conjectures for general and for linear

codes (see, e.g., [7], [9]–[11]).

Conjecture 1 (MDS Conjecture for general codes) For

given integers k < q 6= 6, let n(q, k) be the largest integer n
such that qk(κn,k) ≤ q. Then,

n(q, k) ≤

{
q + 2 if 4|q and k ∈ {3, q − 1}
q + 1 otherwise.

(1)

Conjecture 2 (MDS Conjecture for linear codes) For

given integers k < q where q is a prime power, let n(q, k) be

the largest integer n such that qk,lin(κn,k) ≤ q. Then,

n(q, k) ≤

{
q + 2 if q is even and k ∈ {3, q − 1}
q + 1 otherwise.

(2)

There are strong relations between the q parameter of

hypergraphs and certain colorings.

Definition 2 (Hypergraph strong-coloring) A valid strong-

coloring of a hypergraph G is an assignment of colors to

its vertices so that the vertices of each edge are assigned

to distinct colors. The chromatic number χ(G) of G is the

minimum number of colors that allows a valid strong-coloring

of G. At times, we refer to χ simply as the chromatic number

of G.

Definition 3 (Hypergraph k-coloring) A valid k-coloring of

a hypergraph G is an assignment of colors to its vertices so

that the vertices of each edge are assigned to at least k distinct

colors. The k-chromatic number χk(G) of G is the minimum

number of colors that allows a valid k-coloring of G. If G has

edges of size less than k, we define χk(G) = ∞.

Note that a k-coloring of a k-uniform hypergraph is exactly a

strong-coloring. Also, note that every hypergraph G for which

qk(G) < ∞ (i.e., all edges are of size at least k) satisfies

χk(G) ≤ χ(G). In particular, for k-uniform hypergraphs G,

χk(G) = χ(G).

Theorem 1 (Connecting qk(G) with χk(G), [8]) For every

hypergraph G for which qk(G) < ∞,

qk(G) ≤ qk(κχk(G),k) and qk,lin(G) ≤ qk,lin(κχk(G),k).

In particular,

qk(G) ≤ qk,lin(G) ≤ [χk(G)− 1]pp.

Here, for an integer x, [x]pp represents the smallest prime

power that is greater or equal to x.

Theorem 1 formalizes the natural intuition that for simple

collections of erasure patterns G, i.e., the setting in which

χk(G) is small, a small alphabet size q suffices for a suitable

erasure code. In particular, the theorem states that qk(G)
is upper bounded by qk(κχk(G),k), which is the minimum

alphabet size of a (χk(G), k) MDS code.

The graph family Gq,k, defined next, is helpful in analyzing

the tightness of the upper bound provided by Theorem 1.

Definition 4 (The graph family Gq,k) For integers q and k,

let Gq,k be the k-uniform hypergraph whose vertex set con-

sists of all the balanced vectors of length qk over F =

{0, 1, . . . , q − 1}, that is, the vectors u ∈ Fqk
such that

|{i ∈ [qk] | ui = j}| = qk−1 for every j ∈ F, where k vertices

u1 = (u1
1
, . . . , u1

qk), ..., uk = (uk
1
, . . . , uk

qk) form an edge if the

collection of k-tuples {(u1
i , u2

i , . . . , uk
i )}i∈[qk] is equal to [q]k.

The following lemma identified hypergraphs G for which

the gap between qk(G) and χk(G) is maximal.

Lemma 1 (The extremal nature of Gq,k, [8]) For integers

q and k,

1) qk(Gq,k) ≤ q, and

2) χk(G) ≤ χk(Gq,k) for every graph G with qk(G) = q.

Extending results in [8], below we present (rater loose)

bounds on χ(Gq,k).

Proposition 1 (Bounds of χk(Gk,q)) For every prime power

q and k ≥ 2,

qk − 1

q − 1
≤ χk(Gq,k) ≤

(
qk−1 + 1

qk−2 + 1

)
.

Proof: We first study the collection of vertices in Gq,k

corresponding to normalized linear functions Fk → F for field

F of size q. A normalized linear function is one in which the

leading nonzero coefficient equals 1. Such functions, when

considered in vector form (u1, . . . uqk) ∈ Fqk
are balanced and

thus correspond to vertices of Gq,k. Moreover, it is not hard to

verify that any two vertices of Gq,k corresponding to distinct

normalized linear functions are included in an edge of Gq,k

(i.e., there exist k − 2 additional vertices of Gq,k correspond-

ing to normalized linear functions that complete a linearly



independent collection of functions). Thus, any k-coloring

of Gq,k must color all vertices corresponding to normalized

linear functions with distinct colors. The number of normalized

linear functions over F corresponding to vertices of Gq,k is

∑
k
i=1 qk−i = (qk − 1)/(q − 1). Therefore χ(Gq,k) ≥

qk−1

q−1
.

On the other hand, we now show that χ(Gq,k) ≤ (
qk−1+1

qk−2+1
).

For any vector u in Gq,k, consider the first qk−1 + 1 entries

of u. By the pigeonhole principal, ui1 = ui2 = . . . = ui
qk−2+1

for some collection of entries indexed by i1 < i2 < . . . <

iqk−2+1 ∈ [qk−1 + 1]. Now, for any qk−2 + 1 distinct indices

i1 < i2 < . . . < iqk−2+1 ∈ [qk−1 + 1] let Ai1,i2,...,i
qk−2+1

be

the set of all vertices u ∈ Fqk
of Gq,k that satisfy ui1 = ui2 =

. . . = ui
qk−2+1

. Every set Ai1,i2,...,i
qk−2+1

forms an independent

set in Gq,k, i.e., a set that does not include any two vertices

from an edge of Gq,k. This follows, since for every two distinct

vertices u, v ∈ Ai1,i2,...,i
qk−2+1

we have ui1 = ui2 = . . . =

ui
qk−2+1

and vi1 = vi2 = . . . = vi
qk−2+1

, which is too large of

an overlap to allow the balanced nature of vertices included

in edges of Gq,k. Specifically, for vertices u and v that appear

in an edge of Gq,k, it must be for any j1 and j2 in F that |{i ∈

[qk]|ui = j1, vi = j2]}| = qk−2. Such independent sets were

referred to as canonical in [8]. As the (
qk−1+1

qk−2+1
) independent

sets Ai1,i2,...,i
qk−2+1

of Gq,k with i1, i2, . . . , iqk−2+1 ∈ [qk−1 + 1]

cover the entire vertex set of Gq,k, coloring each one with a

distinct color implies the required upper bound on χk.

Lemma 1 and Proposition 1 imply a gap between qk(Gq,k)
and χk(Gq,k) which can be extended to one between qk,lin and

the k-chromatic number of the subgraph of Gq,k induced by

vertices that correspond to normalized linear functions.

Proposition 2 (Gap between qk,lin(G) and χk(G), [8])

For every k ≥ 3 and every prime power q, there exists

a k-uniform hypergraph G with qk,lin(G) ≤ q and yet

χk(G) ≥
qk−1

q−1
.

We finally state a modest known gap between qk,lin and qk.

Identifying graphs that exhibit a larger gap than that presented

below is a problem left open in this work.

Proposition 3 (Gap between qk,lin and qk, [12]) For q = 3

and k = 2 it holds that

qk,lin(Gq,k) = [χk(Gq,k)− 1]pp = 5 > 3 ≥ qk(Gq,k).

B. Error Correction with predefined error sets.

In what follows, we extend our discussion beyond erasures

to the context of errors. As we will see, several of our results

on the q-parameter corresponding to erasures extend naturally

to the p-parameter (defined below) corresponding to codes

with restricted error sets. Similarly, to the erasure setting,

we represent the collection of error sets by using a hyper-

graph G = ([n], E), in which the set of vertices [n] represents

coordinates of a codeword. Each edge e ∈ E of G represents

an error set, i.e., the set of the coordinates that can be altered.

Note that this is different from the notation used in Definition 1

for the erasure case in which edges e represented decoding sets

(i.e., sets of uncorrupted symbols).

Definition 5 (The pk parameter) Let G = ([n], E) be a

hypergraph on the vertex set [n] = {1, . . . , n}. Let k be an

integer. Let pk(G) denote the smallest size p of an alphabet

F for which there exist an encoding function

C : Fk → Fn

and a decoding function

D : Fn → Fk

such that for every edge e ∈ E, every message m ∈ Fk, and

every error vector v = (v1, . . . , vn) ∈ Fn,

D(C(m) ⋄e v) = m.

Here, for C(m) = c1, . . . , cn, the term C(m) ⋄e v refers to

the vector y = y1, . . . , yn for which for i ∈ [n], yi = vi if

i ∈ e, and otherwise yi = ci (i.e., we overwrite C(m) with

values of v in the coordinates i ∈ e).

Similarly, let pk,lin(G) denote the smallest prime power p
for which there exist linear encoding and decoding functions

as above when F is a field of size p.

In Definition 5, the pair (C, D) corresponds to a code that

is resilient to errors on locations corresponding to an edge

e ∈ E. That is, the edge set E represents the possible error

patterns (i.e., sets of potentially corrupted symbols).

Similar to Definition 1, in Definition 5, if G has edges of

size greater than
⌊

n−k
2

⌋
, no such codes (C, D) exist, and we

define pk(G) = pk,lin(G) = ∞.

As with erasures, for the complete hypergraph κ
n,⌊ n−k

2 ⌋, the

values of pk(κn,⌊ n−k
2 ⌋) and pk,lin(κn,⌊ n−k

2 ⌋) are equal to the

minimum alphabet sizes of general and linear (n, k) MDS

codes, respectively. That is, pk(κn,⌊ n−k
2 ⌋) = qk(κn,k) and

pk,lin(κn,⌊ n−k
2 ⌋) = qk,lin(κn,k).

Note that Definitions 1 and 5 assume zero-error decoding.

We relax this requirement in Section VI.

III. BOUNDS ON THE ALPHABET SIZE

Proposition 4 (Analog of Theorem 1) Let k be an integer.

For every hypergraph G = ([n], E) for which pk(G) < ∞ it

holds that
pk(G) ≤ pk(κ

χ,

⌊
χ−k

2

⌋),

where χ = χ(Ḡ) and Ḡ = (V, Ē) is the hypergraph with

vertex set V = [n] and edges Ē = {V \ e|e ∈ E}.

Proof: To ease our notation, we assume that n − k and

χ − k are even (minor modifications in notation are needed

otherwise). Let G be as above and let χ = χ(Ḡ). Denoting

p = pk(κχ,(χ−k)/2), it follows that there exist a (χ, k) MDS

code C over an alphabet F of size p. To prove that pk(G) ≤ p,

we define a coding scheme for G over the alphabet F that

includes the following two steps. First, fix a valid coloring

g : [n] → [χ] of Ḡ. Second, consider the encoding function

C̃ : Fk → Fn that given a message m ∈ Fk outputs the

vector in Fn whose i’th entry C̃i(m) is Cg(i)(m), i.e., C̃i(m)
is the coordinate in the codeword C(m) which corresponds



to the color of the i’th vertex. Here, and throughout, we use

the notation Ci(m) to denote the i’th entry in the codeword

C(m).
The decoder D̃ : Fn → Fk for G is now defined using the

following procedure. Consider an error vector v ∈ Fn, edge

e0 ∈ E, and the corresponding received word y = C̃(m) ⋄e0
v.

For each edge ē in Ē, the decoder D̃ considers yē consisting

of the entries of y restricted to the indices in ē, and detects

whether yē has been corrupted, i.e., whether C̃ē(m) = yē. As

for at least one such edge ē0 it holds that C̃ē0
(m) = yē0

(e.g.

for ē0 = [n] \ e0), the decoder D̃ can use yē0
to decode m.

We are left to show, given ē ∈ Ē, how D̃ can detect whether

C̃ē(m) = yē, and if so decode m.

To detect whether a given ē in Ē satisfies C̃ē(m) = yē we

note, by the definition of C̃ and the fact that all vertices in ē
have distinct colors under the coloring g, that the entries in

C̃ē(m) correspond to at least (n+ k)/2 distinct entries C(m).
The latter, in turn, implies that C̃ē(m) is itself a (|ē|, k) MDS

code. As such, C̃ē(m) can detect up to |ē| − k ≥ n−k
2

errors

and correct up to (|ē| − k) /2 ≥ n−k
4

errors. We conclude,

as all error sets e are of size at most (n − k)/2, that given

ē in Ē, the decoder D̃ can detect whether or not yē has been

corrupted, and if not, recover m as required.

Proposition 4 is not tight, meaning that pk(G) might be

smaller than pk(κχ,(χ−k)/2). For k = 2 take for example

G = ([6], E) to be the 6-cycle, i.e., the graph on 6 vertices in

which its edges E = {(i, i+ 1)|i = 0, 1, . . . , 5} (with addition

mod 6). Then p2(G) = 2, since the binary encoding

C : F2 → F6 in which for a message m = (x, y) ∈ F2 equals

C(x, y) = (x, y, x, y, x, y) allows majority decoding for any 2

errors along an edge in G. However, χ = χ(Ḡ) = 6, since

every pair of vertices in Ḡ is included in some edge in Ē, and

by [13] it holds that p2(κ
χ,

⌊
χ−k

2

⌋) = p2(κ6,2) = 5. In the next

section, we improve on Proposition 4 by connecting the pk

and qk parameters.

IV. CONNECTING ERROR AND ERASURE CORRECTING

CODES

For parameters n and k, we say that encoder C : Fk → Fn

is good for a given hypergraph G = ([n], E) with respect to

erasures (res., errors) if there exists a decoder D satisfying

Definition 1 (res., Definition 5). The following proposition is

proven from basic principles.

Proposition 5 (From errors to erasures) Let n and k be

parameters. Consider a hypergraph Gerr = ([n], Eerr) corre-

sponding to errors. Let Gera = ([n], Eera) be the hypergraph

(corresponding to erasures) for which

Eera = {[n] \ (eerr1 ∪ eerr2 ) | eerr1 , eerr2 ∈ Eerr}.

Let C : Fk → Fn be any encoder. Then, C is good for Gerr

if and only if C is good for Gera.

Proof: First assume that C is good for Gerr. We show

that for every edge e = eera ∈ Eera, one can decode

m from Ce(m). Assume in contradiction that there are two

messages m1 6= m2 such that Ce(m1) = Ce(m2). Recall

that e = [n] \ (e1 ∪ e2) for e1 = eerr1 ∈ Eerr and

e2 = eerr2 ∈ Eerr. Consider the word y = (y1, . . . , yn) ∈ Fn

such that for i ∈ e = [n] \ (e1 ∪ e2): yi = Ci(m1) = Ci(m2),
for i ∈ e1 \ e2: yi = Ci(m2), and for i ∈ e2: yi = Ci(m1).
It is not hard to verify that there exist vectors v1 and v2

such that y = C(m1) ⋄e1
v1 = C(m2) ⋄e2

v2. Namely, y could

be obtained from the codeword C(m1) with error vector v1

corresponding to e1 or from the codeword C(m2) with error

vector v2 corresponding to e2, contradicting the existence of

a decoder D according to Definition 5.

For the other direction, if code C is not good for Gerr then

there exist two messages, m1 and m2, two error vectors v1

and v2, and two edges e1 and e2 in Eerr such that C(m1) ⋄e1

v1 = C(m2) ⋄e2
v2. Otherwise, it is not hard to verify the

existence of a natural decoder D according to Definition 5.

Let e = [n] \ (e1 ∪ e2) ∈ Eera. The equality C(m1) ⋄e1
v1 =

C(m2) ⋄e2
v2 now implies that Ce(m1) = Ce(m2), which in

turn implies that C is not good for Gera.

The proposition above has an operational perspective.

Namely, one can design an error-correcting code C and

decoder D for a given graph Gerr, by designing an erasure-

code for the graph Gera. The latter can be done, e.g., using

Theorem 1 to obtain the following corollary.

Corollary 2 Let k be an integer. For every hypergraph

Gerr = ([n], E) for which pk(Gerr) < ∞ it holds that

pk(Gerr) ≤ qk(Gera) ≤ qk(κχk(Gera),k) ≤ [χk(Gera)− 1]pp,

which, in turn, implies that

pk(Gerr) ≤ pk(κ
χ,

⌊
χ−k

2

⌋),

where χ = χk(Gera).

We now extend the connections implied by Proposition 5

to capture the pk and qk parameters.

Theorem 3 (Connecting pk with qk) Let n, k be parameters

such that n − k ≥ k. Let Gera

0 = ([n], Eera

0 ) be a hypergraph

corresponding to erasures such that qk(Gera

0 ) < ∞. Then,

for N = 2n − k there exists a hypergraph Gerr on N
vertices such that pk(Gerr) = qk(Gera

0 ) and pk,lin(Gerr) =
qk,lin(Gera

0 ).

Proof: Let Gera

0 = ([n], Eera

0 ) be as above. We define two

graphs according to Gera

0 . First consider the graph Gerr =
([n]∪U, Eerr) corresponding to errors for which U is a vertex

set of size n − k and

Eerr = {U} ∪ {[n] \ eera|eera ∈ Eera

0 }.

Here, we use the fact that edges in Eera

0 are subsets of [n].
Namely, the vertex set [n]∪U of Gerr is of size N = 2n− k
and each edge in Eerr is of size at most N−k

2
= n − k. We

refer to the edges in {[n] \ eera|eera ∈ Eera

0 } ⊂ Eerr as

ordinary edges, and to the edge U ∈ Eerr as the special

edge.

Let Gera be the graph corresponding to erasures defined by

Gerr as in Proposition 5. Namely, Gera = ([n] ∪ U, Eera)
where

Eera = {([n] ∪ U) \ (eerr1 ∪ eerr2 ) | eerr1 , eerr2 ∈ Eerr}.



Taking a closer look at the edge set Eera, if an edge eera in

Eera is defined by two ordinary edges of Eerr, then it is not

hard to verify that U ⊆ eera. If an edge eera in Eera is defined

by the special edge U and an ordinary edge e ∈ Eerr, then

eera = [n] \ e. As the ordinary edge e ∈ Eerr, by definition,

equals [n] \ eera0 for an edge eera0 ∈ Eera

0 we conclude that

eera = eera0 . Finally, if an edge e in Eera is defined solely

by U (i.e., we set e1 = e2 = U), then e = [n]. All in all, we

conclude that the edge set Eera equals the edges Eera

0 ∪ {[n]}
and an additional set of edges eera for which U ⊆ eera.

We now show that pk(Gerr) = qk(Gera

0 ). We start by

studying codes for Gera

0 and Gera. For any code C0 : Fk →
Fn for Gera

0 , define the code C : Fk → Fn+(n−k) for Gera in

which for every message m it holds that C(m) = C0(m) on

the first [n] entries, that C(m) = m on entries n+ 1, . . . , n+ k
and that C(m) equals the symbol a ∈ F for the remaining

entries n + k + 1, . . . , 2n−k. Here, we use the fact that

n − k ≥ k. Similarly, for any code C : Fk → Fn+n−k for

Gera, let the code C0 : Fk → Fn for Gera

0 be the restriction

of C to the first n entries. It is now not hard to verify that

C0 is good for Gera

0 if and only if C is good for Gera. More

specifically, let C0 be a code that is good for Gera

0 , and let D0

be the corresponding decoder. For any message m and edge

e = eera0 it holds that D0((C0)e(m)) = m. To show that C is

good for Gera we define the decoder D, that for eera ∈ Eera

either runs D0 on the first n entries of C if eera ⊆ [n], or

decodes using the identity mapping from U if U ⊆ eera. For

the opposite direction, let C be good for Gera, and let D be

the corresponding decoder. To show that C0 is good for Gera

0

we define the decoder D0 as the restriction of D that takes

into account only the first n entries of C. Correctness follows

as Eera

0 ⊆ Eera and as C0 is a restriction of C to the first n
entries.

To show that pk(Gerr) = qk(Gera

0 ), let N = 2n − k and

let C : Fk → FN be any encoder. By Proposition 5, C is good

for Gerr if and only if C is good for Gera. By the discussion

above, C is good for Gera if and only if the corresponding C0

is good for Gera

0 . Thus, C0 is good for Gera

0 if and only if C is

good for Gerr. Optimizing over |F|, we conclude pk(Gerr) =
qk(Gera

0 ). As the reductions described above between C and

C0 preserves linearity, we also conclude that pk,lin(Gerr) =
qk,lin(Gera

0 ).
By Theorem 3 the gap between the qk parameter and the

qk,lin parameter for erasure codes stated in Proposition 3 im-

plies a gap between the pk parameter and the pk,lin parameter

for error correcting codes. We summarize this results in the

following corollary.

Corollary 4 (Non-linear codes outperform linear codes)

For k = 2, there exists a hypergraph G with pk,lin(G) = 5

and yet pk(G) = 3.

V. ERROR DETECTION

Similar to the case of errors and erasures, one can define

analogs of Definitions 1 and 5 for the case of error detection.

Namely, for a given hypergraph G = ([n], E) the rk parameter

defined below equals the minimum size alphabet of an (n, k)

error detection code that can detect error patters represented

by E.

Definition 6 (The rk parameter) Let G = ([n], E) be a

hypergraph on the vertex set [n] = {1, . . . , n}, and let k be

an integer. Let rk(G) denote the smallest size r of an alphabet

F for which there exist an encoding function

C : Fk → Fn

and a decoding function

D : Fn → {error, no-error}

such that for every edge e ∈ E, every message m ∈ Fk, and

every error vector v = (v1, . . . , vn) ∈ Fn,

D(C(m) ⋄e v) = “error′′ if and only if C(m) 6= C(m) ⋄e v,

(⋄e is defined in Definition 5).

Similar to Definition 1, in Definition 6, rk(G) is defined if

and only if all edges of G are of size at most n− k, otherwise

we define rk(G) = ∞. Also, similar to Proposition 5, the

following proposition is proven from basic principles (its proof

is sketched here for completeness).

Proposition 6 (Detecting errors vs. correcting erasures)

Let n and k be parameters such that n − k ≥ k. For a

hypergraph G = ([n], E), let Ḡ = ([n], Ē) be the hypergraph

for which Ē = {[n] \ e|e ∈ E}. Then, rk(G) = qk(Ḡ).

Proof: Assume that C̄ is a good erasure code for Ḡ. The

same code can be used for detection on G. Namely, given

a received word y, to check if y is corrupted in locations

corresponding to e ∈ E, decode to m using yē (via the erasure

decoding) and compare C̄(m) to y. For the other direction,

assume that C is a good detection code for G. Use the same

code C for erasures. To decode from Cē(m), construct the

collection Y of size |F|n−|ē| of words y ∈ Fn that equal Cē(m)
on the locations of ē and otherwise equal a (distinct) word

in Fn−|ē|. As C is a detection code for errors with support

e = [n] \ ē, we can detect the unique y ∈ Y that is a codeword,

and accordingly decode m.

VI. AVERAGE ERROR ε

In what follows, we generalize the qk, pk, and rk parameters

to include a decoding error. In our prior work [8], for k = 2

in the context of erasures, we considered decoding error when

averaged over the message set Fk. We here consider a looser

notion of error that is also averaged over edges in the edge set

E of the hypergraph at hand. As shown below, allowing a slight

error in decoding will in turn allow the construction of codes

with small alphabet sizes (independent of the blocklength n).

Definition 7 (The qε,k, pε,k, and rε,k parameters) Let k be

an integer. Let G = ([n], E) be a hypergraph on the vertex

set [n] and let ε > 0. Let qε,k(G) denote the smallest size q
of an alphabet F for which there exist an encoding function

C : Fk → Fn and a decoding function D : (F ∪ {⊥})n → Fk

such that
Pr
e,m

[D(Ce(m)) = m] ≥ 1 − ε,



where m is uniformly chosen from Fk, and e is uniformly

chosen from E. One may define pε,k(G) and rε,k(G) in an

analogous manner.

We will need the following approximate version of coloring.

Definition 8 (Hypergraph (1 − ε)-k-coloring) A valid (1 −
ε)-k-coloring of a hypergraph G = (V, E) is an assignment

of colors to its vertices V so that for at least (1− ε)|E| edges

e ∈ E, the vertices of e are assigned to at least k colors.

The (1− ε)-k-chromatic number χε,k(G) of G is the minimum

number of colors that allows a valid (1 − ε)-k-coloring of G.

Theorem 5 Let G = (V, E) be a hypergraph, and ε > 0 a

parameter. Then qε,k(G) ≤ [χε,k(G)− 1]pp. In particular, let

n and k be any integers, qε,k(κn,k) ≤ O(k2/ε).

Proof: The proof that qε,k(G) ≤ [χε,k(G)− 1]pp is almost

identical to the proof of Theorem 1 (presented in [8]) and is

obtained by replacing qk and χk by qε,k and χε,k respectively.

The second part of the theorem follows by showing that

κn,k can be (1 − ε)-k colored using k2/ε colors. Consider

partitioning [n] into k2/ε subsets, each of size εn/k2. Assign

the same color to all the vertices in the same subset, and

distinct colors to vertices in distinct subsets. We now show

that this is a (1− ε)-k coloring. The fraction of edges that are

assigned to at least k colors is

(k2/ε

k ) · (εn/k2)k

(n
k)

.

Now, for integers a and b, (a
b) =

∏
b−1
j=0

(a−j)

b!
, and ab ≥

∏
b−1
j=0

(a − j) ≥ (a − b)b ≥ (1 − b2/a)ab, thus

(1 − b2/a)ab

b!
≤

(
a

b

)
≤

ab

b!
.

Therefore
(k2/ε

k )·(εn/k2)k

(n
k)

≥ 1 − ε.

Notice that implications corresponding to those in The-

orem 5 on parameters pε,k and rε,k can be derived using

Theorem 3 and Proposition 6, respectively.
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