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Abstract

We study the impact of pre and post processing for reducing discrimination in data-driven decision
makers. We first analyze the fundamental trade-off between fairness and accuracy in a pre-processing
approach, and propose a design for a pre-processing module based on a convex optimization program,
which can be added before the original classifier. This leads to a fundamental lower bound on attainable
discrimination, given any acceptable distortion in the outcome. Furthermore, we reformulate an existing
post-processing method in terms of our accuracy and fairness measures, which allows comparing post-
processing and pre-processing approaches. We show that under some mild conditions, pre-processing
outperforms post-processing. Finally, we show that by appropriate choice of the discrimination measure,
the optimization problem for both pre and post processing approaches will reduce to a linear program
and hence can be solved efficiently.

1 Introduction
Despite the success of machine learning algorithms in prediction tasks, a number of recent reports have
documented the fact that these algorithms may be biased and discriminate against some demographics.
These biases affect a wide range of applications such as healthcare [1], facial recognition [2], and loan default
risk prediction [3].

The issue of discrimination can be formalized as follows. Consider a classification task (e.g., predicting
whether or not a prisoner will commit a crime after being released from prison), in which the goal is to assign
a label to each individual based on a set of features (e.g., age, charge degree). To prevent discrimination,
it is desired to exclude sensitive attributes, such as race, gender, religion, etc., from influencing the decision
maker1. Discrimination can be caused either directly by feeding the sensitive attribute as an input to the
classifier (also known as disparate treatment [4]), or indirectly, where a sensitive attribute is omitted from the
input, but it still affects the prediction through proxy variables, such as education level, geographic location,
etc. Indirect discrimination is referred to as disparate impact in the literature [5].

The issue of disparate impact has motivated a large body of research on (a) how to identify disparate
impact [6, 7], (b) how to measure disparate impact [8, 9], (c) how to reduce disparate impact [10, 11, 12]. The
approaches for reducing disparate impact, can be categorized as pre-processing [13, 14], in-processing [15, 16],
and post-processing[17, 8, 18], which correspond to controlled distortion of the training set, modification of
the learning algorithm, and processing the output of the classifier after it has been trained, respectively[19].

In this paper, we study the impact of data processing on the fairness and distortaion of classifiers. We
formulate the design of the pre-processor as a convex optimization problem, which for a given possibly

1Discrimination with respect to such attributes is prohibited by law. Specifically, the Title VII of the Civil Rights Act of
1964 prohibits employers from discriminating against employees on the basis of such features.
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discriminating classifier and an acceptable distortion upper bound, aims to minimize a certain measure of
discrimination, while satisfying the distortion constraint. We further reformulate a previously proposed
post-processing method, which enables us to compare pre and post processing techniques. We show that
under some mild assumptions, pre-processing outperforms post-processing.

Existing literature on pre-processing techniques for mitigating disparate impact includes representation
learning [20], reweighing or resampling the data [21], and modifying individual records [22]. For example, in
[23], the authors focused on the trade-off between discrimination control, utility, and individual distortion. In
[6], the authors solved an optimal transport problem for designing data transformations. It is worth noting
that the design of transformations in both aforementioned approaches requires the use of the sensitive
attribute. Using the sensitive attribute in the input of the classifier is a case of disparate treatment, yet this
attribute can be used in the pre and post processors. We will consider the effect of feeding the sensitive
attribute to the pre-processing module, and will show that having this as input can significantly improve the
performance.

Our work is inspired by recent information-theoretic studies of fairness. For instance, [24] derived a
correction function to identify proxy variables, which may cause disparate impact. In [25], the authors
proposed an information-theoretic pre-processing method to map features to an intermediate variable that is
highly informative about the true outcome, while lacks information about the sensitive attribute. However,
the resulting optimization problem in [25] is not convex, and lacks convergence guarantees. In [18], the
authors propose an optimization formulation for transforming score functions (the predicted probability of
being in the positive class by a classifier) to satisfy fairness constraints while minimizing the loss in utility.
In [26], the authors introduce a descent algorithm to perturb the distribution of the input variables of a given
classifier to reduce discrimination. Our approach is also related to work on information-theoretic privacy
(see e.g., [27, 28, 29]), which seeks to characterize the privacy-utility trade-offs using information-theoretic
metrics and design privacy-assuring mappings that approach this fundamental trade-off.

The contributions of this paper are as follows:

• We analyze the fundamental trade-off between fairness and accuracy for data pre-processing technique
from an information-theoretic approach. We propose a convex program to design a pre-processor,
which reduce discrimination, while satisfy a certain accuracy guarantee.

• We characterize the properties of achievable lower bound of discrimination as a function of accuracy
for a system with pre-processor.

• We reformulate the post-processor proposed in [8] in terms of our fairness and accuracy measures and
compare the resulting post-processor with our proposed pre-processor. Under some mild assumptions,
we show that any post-processor can be substituted with a pre-processor, while there exist a pre-
processor which achieves a better accuracy-fairness combination than any post-processor.

• Finally, we show that when the total variation is used to measure discrimination, our optimization
problems for designing pre and post-processor will be linear and hence can be solved efficiently. We
characterize the achievable fairness-accuracy region using sensitivity analysis of the linear program.

The rest of the paper is organized as follows. In Section 2 measures of fairness and accuracy are formally
described. In Section 3 we formulate an optimization problem in order to design pre and post-processor.
We further characterize the properties of this optimization in this section. In Section 4 we compare pre-
processing and post-processing. In section 5 we show that the optimization problem can be reduced to a
linear program. Our concluding remarks are presented in Section 6.

2 Model Description
We consider a statistical setting where each individual posseses a set of features, denoted by vector X ∈ X ,
and a binary sensitive attribute, denoted by A. The majority group is represented by A = 0, and the minority
group is represented by A = 1. Each individual also attains a true outcome, which we denote by Y ∈ Y.
Without loss of generality, we assume Y = {0, 1, . . . , |Y|}. We assume a classifier (e.g., logistic regression),
represented by a transformation WY |X , is given, which takes the feature vector X as the input and outputs
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a prediction ŶO. Although WY |X does not take A as an input, it might be discriminatory due to dependence
between A and X. Further we denote our sanitized fair prediction resulting from a system containing a
pre-processor and post-processor module by ŶF and ŶP , respectively. We assume we are given an auditing
dataset, which is drawn i.i.d. from the joint distribution PA,X,Y . Throughout the paper, we make the
common information-theoretic assumption that the joint distribution is given, as it can be estimated from
data. We first define our measures for accuracy and fairness.

2.1 Accuracy Measure
Let ŶO be the original outcome of WY |X , and Ŷ be our sanitized (by either pre or post processing) fair
prediction. To measure accuracy, we assume a distortion function d(·, ·) : Y × Y → R, which satisfies
d(y, y) = 0 ∀y, is given. E

[
d(Y, Ŷ )

]
represents the expected value of the output distortion after data

processing. We require distortion of the prediction after data processing to be bounded by a threshold D.
Formally,

E
[
d(Y, Ŷ )

]
≤ D. (1)

One can choose a more restrictive distortion constraint by considering

E
[
d(Y, Ŷ )|X = x

]
≤ D ∀x. (2)

In supplementary material, Section F we demonstrate that our results can be derived for the conditional
distortion constraint as well.

2.2 Discrimination Measures
In our work, we use equalized odds [8] as our discrimination criterion, which is defined as follows.

Definition 1. Prediction outcome Ŷ satisfies equalized odds criterion if for any ŷ, y

Pr(Ŷ = ŷ|A = 0, Y = y) = Pr(Ŷ = ŷ|A = 1, Y = y). (3)

Remark 1. demographic parity [30] is another widely used fairness criterion. Prediction outcome Ŷ satisfies
demographic parity criterion if for any ŷ

Pr(Ŷ = ŷ|A = 0) = Pr(Ŷ = ŷ|A = 1).

Although in the rest of the paper we will use equalized odds as our fairness criterion, in supplementary
material, Section G we will prove that all the properties can be derived similarly for demographic parity as
well.

In order to measure discrimination, we use f -divergence to calculate the amount to which the equality
in Definition 1 is violated. Hence, we measure the discrimination in the equalized odds sense as,

Df
(
PŶ |Y,A=0‖PŶ |Y,A=1

)
,

where Df (·‖·) denotes f -divergence [31].

Remark 2. Conditional mutual information between the sensitive attribute and the prediction conditioned
on the true outcome I(A; Ŷ |Y ) measures the dependency between these two variables. Hence, it might be
tempting to use this quantity for quantifying the discrimination2. We argue that mutual information is not
a suitable measure for quantifying discrimination when the number of samples from majority group is much
larger than the minority group. To illustrate this, consider the following factorization.

I(A; Ŷ |Y ) =
∑
y

PY (y)

[
PA|Y (0|y)DKL(PŶ |Y=y,A=0‖PŶ |Y=y) + PA|Y (1|y)DKL(PŶ |Y=y,A=1‖PŶ |Y=y)

]
,
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Figure 1: Feasible region in the graph of
(
DTV (PŶ |Y,A=0||PŶ |Y,A=1) , I(Ŷ ;A|Y )

)
. The graph is numerically

generated by initializing the joint distribution PŶ ,A,Y uniformly at random, and calculating the corresponding
point in the graph.

where DKL(·‖·) is the KL-divergence. Observe that if almost the entire dataset is from the majority
demographic A = 0, i.e., Pr(A = 0) ≈ 1, then since PŶ |Y=y,A=0 ≈ PŶ |Y=y, regardless of the predictor,
I(A, Ŷ |Y ) ≈ 0. Hence, mutual information cannot measure the fairness of the classifier. Figure 1 shows the
relation between the mutual information definition of equalized odds, I(A; Ŷ |Y ), and the Total Variation
(TV)-distance DTV(PŶ |Y,A=0||PŶ |Y,A=1). It can be seen that for small values of I(Ŷ ;A|Y ), TV-distance
can attain large values. As a result, upper bounding I(Ŷ ;A|Y ), does not result in an upper bound for
DTV(PŶ |Y,A=0||PŶ |Y,A=1).

3 Designing Data Processor
In this section, our goal is to design a pre-processor PX̃|X (PX̃|X,A) and a post-processor PŶP |ŶO,A in order
to reduce discrimination.

3.1 Pre-processor
Figure 2 represents the graphical model of the pre-processing setup, in which ŶF is the sanitized fair prediction
resulting from applying WY |X to the output of the pre-processed features X̃ (and A). We require ŶF to be
“as accurate as possible”, and “as fair as possible”. For a given classifier W and a distortion threshold D, the
pre-processing fairness-accuracy trade-off function Discpref (W,D) is defined as follows.

Discpref (WY |X , D) = min
P
X̃|X

Df (PŶF |Y,A=0‖PŶF |Y,A=1) (4)

s.t. E
[
d(Y, ŶF )

]
≤ D. (5)

Discpref (WY |X , D) provides a fundamental lower bound on discrimination for any pre-processing method.
In the formulation of equation (4) and (5), only the feature vectorX is taken as input to the pre-processing

module. One can further input the protected attribute to the pre-processing module, and instead of PX̃|X ,

optimize over PX̃|X,A. We denote the output of such optimization as Discpre|Af (WY |X , D). Since Discpre is a

special case of Discpre|A, it is expected that we have Discpref (WY |X , D) ≥ Disc
pre|A
f (WY |X , D), for all D.

3.2 Post-processor
Given a possibly biased classifier WY |X , the authors in [8] proposed a post-processing method for finding
a post hoc correction, ŶP to the output ŶO of the classifier W . Given the joint distribution PŶO,A,Y , the

2Similarly one may suggest I(A; Ŷ ) as the measure of discrimination in the demographic parity case.
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Figure 2: Graphical model of the pre-processing method.
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Figure 3: Graphical model of the post-processing method.

authors propose the following optimization problem.

min
PŶP |ŶO,A

E[d(Y, ŶP )]

s.t. Pr(ŶP = ŷP |A = 0, Y = y) = Pr(ŶP = ŷP |A = 1, Y = y),∀y, ŷP .
(6)

However, as stated in [32], satisfying exact equalized odds when dealing with finite data set may re-
sult in trivial predictor ŶP = 1 or ŶP = 0. We propose the following optimization formulation, where
Discpostf (WY |X , D) gives the lowest attainable discrimination (in the equalized odds sense) via post-processing
the output of the classifier W , when distortion is upper bounded with D. Figure 3 represents the graphical
model of the post-processing method.

Discpostf (WY |X , D) = min
PŶP |ŶO,A

Df (PŶP |Y,A=0||PŶP |Y,A=1), (7)

s.t. E
[
d(Y, ŶP )

]
≤ D. (8)

In this formulation, instead of requiring the equality constraint in equation (3), we minimize discrimina-
tion conditioned on an upper bound on the distortion. Since we are not constraining the output to satisfy
exact fairness, in the case of finite data, the post-processing module will not be forced to generate a low
accuracy output just to satisfy equation (3) with equality. In addition, in this formulation we have a tunable
hyperparameter D that can be used to trade fairness for accuracy and vice versa.

3.3 Properties of Fair Data Processing
In this section, we show that the optimization programs presented in (4) and (7) are convex, and we char-
acterize the properties of Discpref and Discpostf . We first observe some properties regarding the constraints in
the optimization problems.

Lemma 1. (a) Distortion constraint in (5) can be written as

E
[
d̄(X̃,X)

]
≤ D,

where d̄(x̃, x) =
∑
y,ŷF

WY |X(ŷF |x̃)PY |X(y|x)d(y, ŷF ).
(b) The constraints in (5) and (8) are linear with respect to PX̃|X and PŶP |ŶO,A, respectively.

See supplementary material, Section A for a proof.
As stated earlier, since the optimization problem of the proposed pre-processing method in [25] is not

convex, the authors could not provide any convergence guarantees for their method. In the following theorem,
we observe that our formulation has the convexity property.
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Proposition 1. Both of the optimization problems in (4)-(5) and (7)-(8) are convex programs.

See supplementary material, Section B for a proof.
Since the problem is convex, standard convex optimization techniques can be used to find the global

minimum.
The following theorem describes the characteristics of Discpre|Af (W,D) and Discpostf (W,D) functions.

Proposition 2. For a given W and the joint distribution PA,X,Y , the mappings D 7→ Disc
pre|A
f (WY |X , D)

and D 7→ Discpostf (WY |X , D) satisfy the following properties:

1. There exist D′, such that Discpre|Af (WY |X , D) = 0 for D ≥ D′. We denote smallest such D′ by Dpre|A
max .

We have the following bound:

Dpre|A
max ≤

1

|X |
∑
x̃,y,ŷF

WY |X(ŷF |x̃)PY (y)d(y, ŷF )

Similarly, there exist Dpost
max, such that Discpostf (WY |X , D) = 0 for D ≥ Dpost

max.

2. There exist Dpre|A
min , such that the constraint in (5) is infeasible for D < D

pre|A
min , and feasible for all

D ≥ Dpre|A
min . Dpre|A

min is given by:

D
pre|A
min =

∑
x,y,ŷF ,a

WY |X(ŷF |x̃(x,a))PX,Y,A(x, y, a)d(y, ŷF ),

where
x̃(x,a) = argmin

x̃

∑
y,ŷF

WY |X(ŷF |x̃)PX,Y,A(x, y, a)d(y, ŷF ).

The pre-processor PX̃|X,A corresponding to Disc
pre|A
f (W,Dmin) is given by

PX̃|X,A(x̃|x, a) =

{
1, ∀x, x̃ = x̃(x,a),

0, otherwise.

Similarly, there exist Dpost
min, such that the constraint is (8) is infeasible for all D < Dpost

min.

3. Disc
pre|A
f (WY |X , D) and Discpostf (WY |X , D) are both convex with respect to D.

4. Suppose (4) has a positive minimum for some D < D
pre|A
max . For any D ≤ Dpre|A

max , Disc
pre|A
f (WY |X , D) is

strictly decreasing in D. The same property holds for Discpostf (WY |X , D) for D ≤ Dpost
max.

5. We have Disc
pre|A
f (WY |X , D

pre|A
min ) ≤ Df (PŶO|Y,A=0||PŶO|Y,A=1).

See supplementary material, Section C for the proof.

Remark 3. As mentioned earlier, the constraint in (5) controls the extra distortion due to the pre-processing
module. At first glance, one may anticipate that the problem should be infeasible for D < E

[
d(Y, ŶO)

]
(i.e.,

due to data processing inequality insights, it is impossible to reduce the distortion by adding the pre-
processing module). However, WY |X could be the result of any classification algorithm, such as Logistic
Regression, Decision Trees, etc. Since in all such algorithms the set of achievable classifiers WY |X is limited,
a transformation on the input may lead to better performance of the designed classifier, and hence, the
problem can be feasible for D < E

[
d(Y, ŶO)

]
.
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4 Comparison of Pre and Post Processing Methods
In this section, we provide a theoretical comparison of the proposed pre-processing and post-processing
methods. Specifically, we show that in general, pre-processing is more powerful in the sense that under
some mild conditions a post-processor can always be substituted by a pre-processor, while there exist pre-
processors, which cannot be outperformed by any post-processor. In all the results, we consider a binary
label, i.e., |Y| = 2. The following theorem provides a necessary and sufficient condition for replacing a
post-processor with a pre-processor.

Proposition 3. Any post-processer can be substituted with a pre-processor if and only if there exist x0, x1 ∈ X
such that

WY |X(1|x0) = 0, WY |X(1|x1) = 1.

See supplementary materials, Section D for a proof.
Proposition 3 states that if there exist two individuals x0, x1 ∈ X that the classifier W classify determin-

istically as, say, unqualified and qualified, respectively, then any post-processing module designed for W can
be substituted with a pre-processing module which results in the same level of distortion and discrimination
as the post-processor. Since the cardinality of the feature space |X | is usually relatively large, it is expected
that the requirement of Proposition 3 is satisfied for most of the common classifiers.

Definition 2. A predictor WY |X is called proper if for a ∈ {0, 1}, we have

PŶO,Y,A(1, 1, a) > PŶO,Y,A(ŷO, y, a), ŷO 6= y,

and
PŶO,Y,A(0, 0, a) > PŶO,Y,A(ŷO, y, a), ŷO 6= y.

Let Y = 1 represent the label corresponding to the desired property (e.g., being qualified in the task of
hiring). As mentioned earlier, we represent the minority demographic by A = 1. Since the minority group
is the underprivileged demographic, we assume that PŶO|Y,A(1|1, 0) > PŶO|Y,A(1|1, 1) and PŶO|Y,A(1|0, 0) >

PŶO|Y,A(1|0, 1). Recall that the minimum feasible prediction distortion for pre and post processing is denoted
by Dpre

min and Dpost
min, respectively. Proposition 4 states the condition under which there exist a pre-processor

that has lower disortion than any post-processor, while has lower discrimination than Discpostf (W,Dpost
min). In

this proposition, we assume xmin = argminxWY |X(1|x), and similarly for xmax.

Proposition 4. Given a proper predictorW , if there exist xi 6= xmax, such that PY |X,A(0|xi, 1) < PY |X,A(1|xi, 1),
or there exist xj 6= xmin, such that PY |X,A(1|xj , 0) < PY |X,A(0|xj , 0), then we have Dpre|A

min < Dpost
min, and

Disc
pre|A
f (W,D

pre|A
min ) < Discpostf (W,Dpost

min).

See supplementary material, Section E for the proof.
The condition in this proposition is arguably mild. The condition regarding xi is satisfied simply if there

exist an individual xi in the minority group, which is qualified with probability larger than 1/2, and the
condition regarding xj is satisfied simply if there exist an individual xj in the majority group, which is
unqualified with probability larger than 1/2.

5 Linear Programming Formulation
In the previous section, we proved that the optimization problems presented in (4)-(5) and (7)-(8) are both
convex for any f -divergence. Hence, one can use any standard numerical convex optimization approach to
solve the problem. However, when the cardinality of features (i.e., |X |) is large, the numerical solution of
the proposed optimization in (4)-(5) can be computationally infeasible. Consequently, we propose a linear
programming solution to the problem when total variation is used as a special case of f -divergence. We note
that total variation is symmetric with respect to its input distributions, which is a desired property in our
setting; a property which is not satisfied by some other candidates such as KL-divergence.

In order to solve the optimization problem, we first extend the optimization argument to PX̃|X and PŶF |A
and add the constraint PŶF |Y,A(ŷF |y, a) =

∑
x,x̃WY |X(ŷF |x̃)PX̂|X(x̃|x)PX|Y,A(x|y, a), which is justified due
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to the graphical model in Figure 2. Note that total variation is of the form of a summation over absolute
values and it is well known that (see, e.g., [33]) the optimization problem

min
z1,...,zn

∑
i

|zi|,

s.t. f(z1, . . . , zn) = 0,

is equivalent to

min
z1,...,zn,t1,...,tn

∑
i

ti,

s.t. ti ≥ zi,
ti ≥ −zi,
f(z1, . . . , zn) = 0.

Therefore, introducing variables ty,ŷF , for y, ŷF ∈ Y, the optimization problem in (4)-(5) can be written as
follows.

Disc
pre|A
TV (W,D) = min

P
X̃|X ,PŶF |Y,A,t

|Y|∑
y=1

PY (y)

|Y|∑
ŷF=1

ty,ŷF ,

s.t. PŶF |Y,A(ŷF |y, 0)− PŶF |Y,A(ŷF |y, 1)− ty,ŷF ≤ 0, ∀y, ŷF ,

PŶF |Y,A(ŷF |y, 1)− PŶF |Y,A(ŷF |y, 0)− ty,ŷF ≤ 0, ∀y, ŷF ,∑
x,x̃,y,
ŷF ,a

WY |X(ŷF |x̃)PX̃|X,A(x̃|x, a)PX,Y,A(x, y, a)d(y, ŷF ) ≤ D

PŶF |Y,A(ŷF |y, a) =
∑
x,x̃

WY |X(ŷF |x̃)PX̃|X,A(x̃|x, a)PX|Y,A(x|y, a),∀ŷF , y, a∑
ŷF

PŶF |Y,A(ŷF |y, a) = 1, PŶF |Y,A(ŷF |y, a) ≥ 0, ∀ŷF , y, a,∑
x̃

PX̃|X,A(x̃|x, a) = 1, PX̃|X,A(x̃|x, a) ≥ 0,∀x̃, x, a,

(9)

which is a linear program and can be solved efficiently in polynomial time.
similarly, using TV-distance, the optimization in (7)-(8) reduces to a linear program. The Resulting form

is presented in supplementary material, Section I.
One can further analyze the properties of DiscpreTV (W,D) and DiscpostTV (W,D) as a function of D. We have

the following result in this regard.

Lemma 2. D 7→ Disc
pre|A
TV (WY |X , D) and D 7→ DiscpostTV (WY |X , D) are piecewise linear functions.

See supplementary material, Section H for the proof.

6 Conclusion
In this paper we analysed pre and post processing methods for reducing discrimination. We proposed an
optimizations problem which results in a pre-processing module that can be added before a classifier, and
reduce prediction discrimination, while ensures a distortion upper bound in the output. We proved that our
optimization is convex, hence the global minimum is achievable. We reformulated an already proposed post-
processing method as a convex optimization. Furthermore, we compared pre and post processing methods,
and we showed under some mild assumptions pre-processing outperforms post-processing. Finally, we showed
that for a special case of discrimination measure, the optimization problem reduces to a linear program and
can be solved efficiently in polynomial time.
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Appendices
A Distortion Constraint Reformation
We have:

E
[
d(Y, ŶF )

]
=
∑
y,ŷF

PY,ŶF (y, ŷF )d(y, ŷF )

=
∑

x,x̃,y,ŷF

PX̃|X(x̃|x)WY |X(ŷF |x̃)PX,Y (x, y)d(y, ŷF )

=
∑
x,x̃

PX̃,X(x̃, x)d̄(x̃, x)

=E
[
d̄(X̃,X)

]
,

where
d̄(x̃, x) =

∑
y,ŷF

WY |X(ŷF |x̃)PY |X(y|x)d(y, ŷF ),

which shows that E
[
d(Y, ŶF )

]
≤ D is a linear constraint with respect to the pre-processing channel PX̃|X,A.

Additionally,

E
[
d(Y, ŶP )

]
=

∑
ŷP ,ŷO,y,a

[
PŶP |ŶO,A(ŷP |ŷO, a)PŶO|Y,A(ŷO|y, a)× PY,A(y, a)d(y, ŷP )

]
which is linear with respect to the post-processing channel PŶP |ŶO,A.

B Proof of Convexity
Convexity of the pre-processing formulation: First we prove the convexity of the objective function.
Note that f -Divergence is convex with respect to the joint components [34]:

Df (P ||Q) ≤ λDf (P1||Q1) + (1− λ)Df (P2||Q2),

where P = λP1 + (1 − λ)P2 and Q = λQ1 + (1 − λ)Q2 and 0 ≤ λ ≤ 1. Furthermore, due to the graphical
model in Figure 2, PŶF |Y,A can be written as a linear function of PX̃|X :

PŶF |Y,A(ŷF |y, a) =
∑
x,x̃

WY |X(ŷF |x̃)PX̃|X(x̃|x)PX|Y,A(x|y, a).

As a result, Df (P (ŶF |Y,A = 0)||P (ŶF |Y,A = 1)) is a convex function with respect to P (X̃|X).
In addition, according to Lemma 1, one can write the distortion constraint (5) as a linear function of

P (X̃|X). Therefore, the optimization problem in (4) and (5) is convex.
Convexity of the post-processing formulation: Similarly, we have

PŶP |Y,A(ŷP |y, a) =
∑
ŷO,x

PŶP |ŶO,A(ŷP |ŷO, a)WY |X(ŷO|x)PX|Y,A(x|y, a),

which is linear with respect to the post-processing channel PŶP |ŶO,A. Again using the convexity of the f-
Divergence with respect to the distributions, we can prove that the objective function of the post-processing
is convex. In addition, the constraint is linear, which proves the convexity of the post-processing formulation.
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C Proof of Proposition 2
1. We consider a special channel

Pmax
X̃|X,A(x̃|x, a) =

1

|X |
∀x, x̃ ∈ X ,∀a.

We denote the corresponding output as ŶFmax
. In this case, X̃ and X are independent. Due to the

graphical model in Figure 2 and the data processing inequality, ŶF and A are also independent which
implies that

Df (P (ŶFmax
|Y,A = 0)||P (ŶFmax

|Y,A = 1)) = 0.

We choose D′ = E
[
d(Y, ŶFmax)

]
, which is equal to

D′ =
1

|X |
∑
x̃,y,ŷF

WY |X(ŷF |x̃)PY (y)d(y, ŷF )

By the definition, we have Disc
pre|A
f (W,D) = 0 for any D ≥ D′, and we have Dpre|A

max ≤ D′.
With the same argument, we can choose the channel

Pmax
ŶP |ŶO,A

(ŷP |ŷO, a) =
1

|Y|
,∀ŷP , ŷO, a.

This results to the zero discrimination in the output. Dpost
max is upper bounded by the output distortion

corresponding to this post-processing channel.

2. The smallest D such that the constraint in (8) is feasible can be achieved with a pre-processing channel
which results in the smallest possible value for E

[
d(Y, ŶF )

]
. We can make the assignment to the pre-

processing channel PX̃|X,A such that we achieve the smallest possible value for E
[
d(Y, ŶF )

]
. We have

E
[
d(Y, ŶF )

]
=

∑
x,x̃,y,ŷF ,a

PX̃|X,A(x̃|x, a)WY |X(ŷF |x̃)PX,Y,A(x, y, a)d(y, ŷF )

=
∑
x,x̃,a

PX̃|X,A(x̃|x, a)
∑
y,ŷF

WY |X(ŷF |x̃)PX,Y,A(x, y, a)d(y, ŷF )

In assignment of PX̃|X,A, for every x, if we choose x̃, such that
∑
y,ŷF

WY |X(ŷF |x̃)PX,Y,A(x, y, a)d(y, ŷF )

attain its smallest value, we can claim the resulting distortion from such channel is the smallest feasible
distortion. The PX̃|X,A which is given in Proposition 2 satisfies this property.

The same argument can be done for Dpost
min.

3. Consider any D1, D2 ≥ 0 and 0 ≤ λ ≤ 1. Let P i
X̃|X,A

result in ŶFi and achieve Discpre|Af (W,Di), i = 1, 2.
In other words,

Disc
pre|A
f (W,Di) = Df (P (ŶFi |Y,A = 0)||P (ŶFi |Y,A = 1)),

where
E
[
d(Y ; ŶFi)

]
≤ Di.

Consider the channel Pλ
X̃|X,A

= λP 1
X̃|X,A

+ λ̄P 2
X̃|X,A

, where λ̄ = 1 − λ. Let the corresponding output

be ŶFλ . Then we have

E
[
d(Y ; ŶFλ)

]
= λE

[
d(Y ; ŶF1

)
]

+ λ̄E
[
d(Y ; ŶF2

)
]
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= λD1 + λ̄D2

= Dλ.

Additionally, we have:

λDisc
pre|A
f (W,D1) + λ̄Disc

pre|A
f (W,D2)

=λDf (P (ŶF1 |Y,A = 0)||P (ŶF1 |Y,A = 1))

+ λ̄Df (P (ŶF2
|Y,A = 0)||P (ŶF2

|Y,A = 1))

≥Df (P (ŶFλ |Y,A = 0)||P (ŶFλ |Y,A = 1))

≥Discpre|Af (W,Dλ)

Since PŶP |Y,A can written as a linear function of the post-processing channel PŶP |ŶO,A, we can use the
exact same argument to prove the convexity of Discpostf (W,D) with respect to D.

4. Since bigger D corresponds to bigger feasible region for the optimization problem in (4) and (5),
the function Disc

pre|A
f (W,D) is a non-increasing function function with respect to D for a fixed W .

Furthermore, (4) has a positive minimum for some D < D
pre|A
max . In addition, Discpre|Af (W,D

pre|A
max ) = 0.

Also, Disc
pre|A
f (W,D) is convex with respect to D. Hence, Disc

pre|A
f (W,D) is strictly decreasing for

D ≤ Dpre|A
max .

The exact same argument holds for Discpostf (W,D).

5. PX̃|X,A(x̃|x, a) = δx̃,x results in the output ŶF being exactly the same as ŶO, which results in the
stated inequality.

D Proof of Proposition 3
If part: First we show that the value of the objective function and distortion of pre and post processing
can be found uniquely by PŶF |Y,A and PŶP |Y,A, respectively. We have

PŶP ,Y (ŷP , y) =
∑
a

PŶP |Y,A(ŷP |y, a)PY,A(y, a).

One can calculate E
[
d(Y, ŶP )

]
uniquely using this joint distribution. In addition, E

[
Df (PŶP |Y,A=0||PŶP |Y,A=1)

]
can be found uniquely using PŶP |Y,A. The exact same argument holds for PŶF |Y,A.

Given the assumption of the theorem, We need to prove that, if there exist PŶP |ŶO,A which gives

PŶP |Y,A(1|y, a) =
∑
ŷO,x

PŶP |ŶO,A(1|ŷO, a)WY |X(ŷO|x)PX|Y,A(x|y, a),

then there exist PX̃|X,A, such that

PŶF |Y,A(1|y, a) =
∑
x,x̃

WY |X(1|x̃)PX̃|X,A(x̃|x, a)PX|Y,A(x|y, a)

=PŶP |Y,A(1|y, a),∀y, a.

We have∑
ŷO,x

PŶP |ŶO,A(1|ŷO, a)WY |X(ŷO|x)PX|Y,A(x|y, a) =
∑
x

PX|Y,A(x|y, a)
∑
ŷO

PŶP |ŶO,A(1|ŷO, a)WY |X(ŷO|x),
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and ∑
x,x̃

WY |X(1|x̃)PX̃|X,A(x̃|x, a)PX|Y,A(x|y, a) =
∑
x

PX|Y,A(x|y, a)
∑
x̃

WY |X(1|x̃)PX̃|X,A(x̃|x, a).

As a result, if we can find PX̃|X,A such that∑
ŷO

PŶP |ŶO,A(1|ŷO, a)WY |X(ŷO|x) =
∑
x̃

WY |X(1|x̃)PX̃|X,A(x̃|x, a),∀a, x, (10)

we can claim the proof.
For a given x and a, using the assumption of the theorem, first we can choose

P
(0)

X̃|X,A
(x̃|x, a) =

{
1 for x̃ = x0

0 o.w.

This assignment gives
∑
x̃WY |X(1|x̃)P

(0)

X̃|X,A
(x̃|x, a) = 0. Second, we can choose

P
(1)

X̃|X,A
(x̃|x, a) =

{
1 for x̃ = x1

0 o.w.,

and we get
∑
x̃WY |X(1|x̃)P

(1)

X̃|X,A
(x̃|x, a) = 1. Since the left hand side of Equation (10) is always between

zero and one, we can assign PX̃|X,A as a convex combination of P (0)

X̃|X,A
and P (1)

X̃|X,A
, such that the equality

in Equation (10) holds. This assignment can be done for all x and a, which proves the sufficiency part.
Only if part: Assume a trivial post-processor PŶP |ŶO,A(1|ŷO, a) = 1,∀ŷO, a. This post-processor gener-

ates 1 in the output, regardless of the output of W and the protected attribute. It is easy to observe that, in
order to substitute this post-processor with a pre-processor, we have to have x1 such that WY |X(1|x1) = 1,
so that the pre-processor can map all x to x1 and the resulting ŶF will be constant 1. If such x1 does not
exist, with every pre-processor we always get ŶF = 0 with a nonzero probability.

The same argument holds for the case of having PŶP |ŶO,A(0|ŷO, a) = 1,∀ŷO, a, as the post-processor,
which requires us to have x0, such that WY |X(1|x0) = 0, or WY |X(0|x0) = 1.

E Proof of Proposition 4
For the purpose of the proof, we define (look at Figure 4)

θa = (PŶO|Y,A(1|0, a), PŶO|Y,A(1|1, a)),

θposta = (PŶP |Y,A(1|0, a), PŶP |Y,A(1|1, a)),

θprea = (PŶF |Y,A(1|0, a), PŶF |Y,A(1|1, a)).

Assume W is a proper classifier. First we will prove that the minimum possible distortion for the post-
processing method can be achieved by the trivial post-processing channel PŶP |ŶO,A(ŷP |ŷO, a) = 1ŷP=ŷO .

The distortion in Equation (8) can be written as

E
[
d(Y, ŶP )

]
=PŶP |Y,A(0|1, 0)PY,A(1, 0)

+ PŶP |Y,A(1|0, 0)PY,A(0, 0)

+ PŶP |Y,A(1|0, 1)PY,A(0, 1)

+ PŶP |Y,A(0|1, 1)PY,A(1, 1)

=− PŶP |Y,A(1|1, 0)PY,A(1, 0)
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Figure 4: Detection-False alarm graph of the prediction outcome.

+ PŶP |Y,A(1|0, 0)PY,A(0, 0)

+ PŶP |Y,A(1|0, 1)PY,A(0, 1)

− PŶP |Y,A(1|1, 1)PY,A(1, 1)

+ PY,A(1, 0) + PY,A(1, 1)

=
∑
a

[
PŶP |Y,A(1|0, a)PY,A(0, a)− PŶP |Y,A(1|1, a)PY,A(1, a)

]
+ PY,A(1, 0) + PY,A(1, 1)

=
∑
a

θposta .(PY,A(0, a),−PY,A(1, a))

+ PY,A(1, 0) + PY,A(1, 1)

which is a function of θposta , a ∈ {0, 1}. We have

∇θposta
E
[
d(Y, ŶP )

]
= (PY,A(0, a),−PY,A(1, a)) . (11)

We know that all the achievable points θposta in the Detection-False alarm graph is inside the triangle defined
by three points (0, 0), (1, 1), θa. (Look at figure 4). The slope of the line between (1, 1) and θa is equal

to
PŶO|Y,A(0|1,a)
PŶO|Y,A(0|0,a) , and the slope of the line between θa and (0, 0) is equal to

PŶO|Y,A(1|1,a)
PŶO|Y,A(1|0,a) . Furthermore, the

slope of the prependicular line to the ∇θposta
E
[
d(Y, ŶP )

]
is equal to PY,A(0,a)

PY,A(1,a) . Hence, if we have

PŶO|Y,A(1|1, a)

PŶO|Y,A(1|0, a)
>
PY,A(0, a)

PY,A(1, a)
>
PŶO|Y,A(0|1, a)

PŶO|Y,A(0|0, a)
,

any point in the triangle (0, 0), (1, 1), θa, will have higher distortion than the original point θa. These
conditions can be simplified as

PŶO,Y,A(0, 0, a) > PŶO,Y,A(0, 1, a),

and
PŶO,Y,A(1, 1, a) > PŶO,Y,A(1, 0, a),

which are the conditions of a proper classifier.
In addition, having PX̃|X,A(x̃|x, a) = 1x̃=x, results in θprea = θa, and for an arbitrary PX̃|X,A(x̃|x, a), we

have
PŶF |Y,A(1|y, a) =

∑
x,x̃

WY |X(1|x̃)PX̃|X,A(x̃|x, a)PX|Y,A(x|y, a).
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Consider the following pre-processor

PX̃|X,A(x̃|x, a) =



1 if x̃ = x,A = 0

1 if x̃ = x, x 6= xa, A = 1

(1− α) if x̃ = x = xi, A = 1

α if x̃ = xmax, x = xi, A = 1

0 o.w.

(12)

Such an assignment results in

PŶF |Y,A(1|y, 0) = PŶO|Y,A(1|y, 0),

and
PŶF |Y,A(1|y, 1) = PŶO|Y,A(1|y, 1) + αPX|Y,A(xa|y, 1)[WY |X(1|xmax)−WY |X(1|xi)], (13)

Since [WY |X(1|xmax)−WY |X(1|xi)] > 0, this pre-processor results in θpre0 = θ0, which has the same false
alarm and detection as the original classifier, and θpre1 , which has bigger false alarm and detection than the
original classifier. Since we made the natural assumption that the majority group has higher detection and
higher false alarm, this assignment for the pre-processor results in θpre0 and θpre1 which compared to θ0 and
θ1 are closer in terms of false alarm and detection, and results in a lower discrimination.

From Equation (13) we have

PX|Y,A(xi|0, 1)

PX|Y,A(xi|1, 1)
=
PŶF |Y,A(1|0, 1)− PŶO|Y,A(1|0, 1)

PŶF |Y,A(1|1, 1)− PŶO|Y,A(1|1, 1)
. (14)

Assuming PY |X,A(0|xi, 1) < PY |X,A(1|xi, 1), we have

PY,X,A(0, xi, 1) < PY,X,A(1, xi, 1)

=⇒
PX|Y,A(xa|0, 1)

PX|Y,A(xa|1, 1)
<
PY,A(1, 1)

PY,A(0, 1)
. (15)

Combining (14) and (15), we get

PŶF |Y,A(1|0, 1)− PŶO|Y,A(1|0, 1)

PŶF |Y,A(1|1, 1)− PŶO|Y,A(1|1, 1)
<
PY,A(1, 1)

PY,A(0, 1)
. (16)

By following the same argument as in post-processor in Equation (11), we get that PY,A(0,1)
PY,A(1,1) is the slope of the

perpendicular of the gradient of E
[
d(Y, ŶF )

]
with respect to θpre1 . Furthermore,

PŶF |Y,A(1|1,1)−PŶO|Y,A(1|1,1)
PŶF |Y,A(1|0,1)−PŶO|Y,A(1|0,1)

is the slope of the line θpre1 −θ1 (Look at figure 4). Inequality (16) implies that θpre1 −θ1 points to the opposite
direction of the gradient of the distortion, and hence the distribution assignment in (12) results in ŶF which
has a lower distortion, say D′, compared to Dpost

min.
If there exist xb, such that PY |X,A(1|xb, 0) < PY |X,A(0|xb, 0), one can make the same argument and choose

a pre-processor that has a lower distortion compared to the lowest achievable distortion via post-processing,
and at the same time has smaller discrimination compared to the discrimination of ŶO.

As a result, we can find a pre-processor that has distortionD′ < Dpost
min, and Disc

pre|A
f (W,D′) < Discpostf (W,Dmin).

Since Disc
pre|A
f (W,D) is a decreasing function of D, and D′ < Dpost

min, we have

Disc
pre|A
f (W,D

pre|A
min ) < Discpostf (W,Dpost

min).

F
We prove that the more restricted distortion constraint E

[
d(Y ; ŶF )|X = x

]
≤ D ∀x results in a linear

constraint with respect to PX̃|X . Using Figure 2, we have

E
[
d(Y, ŶF )|X = x

]
=
∑
y,ŷF

PY,ŶF |X(y, ŷF |x)d(y, ŷF )
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=
∑
x̃,y,ŷF

PX̃|X(x̃|x)WY |X(ŷF |x̃)PY |X(y|x)d(y, ŷF ),

As a result, the conditional distortion constraint is linear with respect to PX̃|X . All the other properties
simply follows from the linearity.

G Demographic Parity as the Fairness Criterion
In The demographic parity fairness criterion, the objective function to minimize is

E
[
Df
(
PŶF |A=0‖PŶF |A=1

)]
. (17)

According to the graphical model in figure 2 We have

PŶF |A(ŷF |a) =
∑
x,x̃

PŶF ,X,X̃|A(ŷF , x, x̃|a)

=
∑
x,x̃

WY |X̃(ŷF |x̃)PX̃|X(x̃|x)PX|A(x|a), ∀ŷF , a,

which is a linear function of PX̃|X . In Appendix B we have shown that this results to the convexity of

Df
(
P (ŶF |A = 0)‖P (ŶF |A = 1)

)
with respect to P (X̃|X). Having the convexity, the rest of the properties

can be derived similarly.

H Proof of lemma 2
Using sensitivity analysis in linear programming [33], we can write (9) as

Disc
pre|A
TV (WY |X , D) = min

z
cT z,

s.t : Az = b,

aT z = D,

z ≥0,

(18)

where z is vector obtained by concatenating t1, · · · , t|Y|, PX̃|X,A(x̃|x, a),∀x̃, x, a, and PŶF |Y,A(ŷF |y, a),∀ŷ, y, a,
and necessary slack variables. c contains required coefficient to make the objective function the same as the
one in (9). aT z = D corresponds to distortion constraint, which have been altered to equality by a slack
variable, and Az = b represents all the equities and all the inequalities, except for the aforementioned distor-
tion constraint. By changing D to D+ δD, as long as the basis of the linear solution remains the same, the
objective function changes linearly with respect to δD [33, p. 208]. Combining this result with Proposition
2, we conclude that the function D 7→ Disc

pre|A
f (D,WY |X) is a piecewise linear decreasing convex function.

The exact same argument holds for D 7→ Discpostf (D,WY |X).

I The linear program for designing the post-processor
Given a distortion upper bound D and the joint distribution PŶO,Y,A, the following linear program can be
used to find a post-processing channel PŶP |ŶO,A:

DiscpostTV (W,D) = min
PŶP |ŶO,A

,PŶP |Y,A,t

|Y|∑
y=1

PY (y)

|Y|∑
ŷP=1

ty,ŷP ,

s.t. PŶP |Y,A(ŷP |y, 0)− PŶP |Y,A(ŷP |y, 1)− ty,ŷP ≤ 0, ∀y, ŷP ,

17



PŶP |Y,A(ŷP |y, 1)− PŶP |Y,A(ŷP |y, 0)− ty,ŷP ≤ 0, ∀y, ŷP ,∑
ŷP ,ŷO,y,a

[
PŶP |ŶO,A(ŷP |ŷO, a)PŶO|Y,A(ŷO|y, a)PY,A(y, a)d(y, ŷP )

]
≤ D

PŶP |Y,A(ŷP |y, a)−
∑
ŷO

PŶP |ŶO,A(ŷP |ŷO, a)PŶO|Y,A(ŷO|y, a)=0,∀ŷP , y, a,∑
ŷP

PŶP |Y,A(ŷP |y, a) = 1, ∀y, a,

∑
ŷP

PŶP |ŶO,A(ŷP |ŷO, a) = 1, ∀ŷO, a,

PŶP |Y,A(ŷP |y, a) ≥ 0, ∀ŷP , ya,

PŶP |ŶO,A(ŷP |ŷO, a) ≥ 0, ∀ŷP , ŷO, a

18
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