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Abstract

The increasing amount of data generated at the edge/client nodes and the privacy concerns have resulted in learning at the
edge, in which the computations are performed at edge devices and are communicated to a central node for updating the model.
The edge nodes have low bandwidth and may be available only intermittently. There are helper nodes present in the network that
aid the edge nodes in the communication to the server. The edge nodes communicate the local gradient to helper nodes which
relay these messages to the central node after possible aggregation. Recently, schemes using repetition codes and maximum-
distance-separable (MDS) codes, respectively known as Aligned MDS Coding (AMC) scheme and Aligend Repetition Coding
(ARC) scheme, were proposed. It was observed that in AMC scheme the communication between edge nodes and helper nodes
is optimal but with an increased cost of communication between helper and master. An upper bound on the communication cost
between helpers and master was obtained. In this paper, a tradeoff between communication costs at edge nodes and helper nodes
is established with the help of pyramid codes, a well-known class of locally repairable codes. The communication costs at both
the helper nodes and edge nodes are exactly characterized. Using the developed technique, the exact communication cost at helper
nodes can be computed for the scheme using MDS codes. In the end, we provide two improved aggregation strategies for the
existing AMC and ARC schemes, yielding significant reduction in communication cost at helpers, without changing any of the
code parameters.

Index Terms

gradient aggregation, locality, coded computing, tradeoff.

I. INTRODUCTION

A large amount of data is getting generated at the edge nodes of the network such as mobile devices and sensors. The

generated data is required to train various deep learning models to improve the performance of intelligent applications. The

edge nodes are often constrained by communication resources to share the collected data with a central server. In addition to

that, the data generated may be sensitive, and sharing with a central server raises privacy concerns. Recently new techniques

like federated learning and collaborative learning are considered, which enable the users to train the model at the edge node

itself [1–6]. This alleviates the privacy concern since the raw data is decentralized and is not shared with the central server.

In this paper, synchronous gradient descent over a decentralized data set distributed over a fixed number of edge nodes is

considered. Gradient descent with centralized data is well studied and many techniques to improve the completion time of the

algorithm have been proposed [7–17]. When the data set is decentralized, the edge nodes are required to compute the local

gradients which are passed to the central server to perform the global update as in federated learning. The edge nodes often

have high latency, low bandwidth and may only be available intermittently. This results in straggling communication links that

slow down the learning process. A technique to mitigate this problem is to consider a hierarchical setup in which reliable helper

nodes are located close to the edge nodes [18]. These helper nodes can be used by the edge nodes for efficient communication

with the server node. The communication between the edge nodes and the helper nodes is unreliable due to the presence of

straggling links. The helper nodes transmit the received local gradients to the central node after possible aggregation over a

reliable error-free link.

In [18], two schemes are considered one using repetition codes and the other using maximum-distance-separable (MDS)

codes. The use of repetition code enables the reduction in communication costs at the helper nodes, however at the cost of an

increased communication cost at the edge nodes. The MDS-code-approach reduces the communication cost at the edges at the

expense of a larger communication cost at helpers. Inspired by this, we propose a scheme based on pyramid codes [19] which

gives a tradeoff between the communication costs at edge nodes and helper nodes. In practice, the helper nodes can be shared

by multiple types of edge nodes. The edge computing techniques discussed in [20] considers the use of cloudlets which are

similar to the helper nodes in our architecture. Since these nodes are shared by multiple applications, there is a possibility that

the helper nodes cannot offer entire resources for transmitting gradients associated to every application. In such scenarios, the

proposed scheme enables us to adjust the communication costs at helper nodes. In the next section, we formalize the problem

and present the system model.

http://arxiv.org/abs/2105.02919v1
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Fig. 1: Hierarchical distributed learning set up with ne edge nodes and nh helper nodes.

II. CODED GRADIENT AGGREGATION: PRELIMINARIES

A. System Model

Gradient descent is an algorithm used in many machine learning applications to find an optimal parameter θ∗ ∈ R
p×1

iteratively that minimizes a function
∑

x∈D ℓ(θ, x) + λR(θ), where ℓ(·) is the underlying loss function, R(·) denotes the

regularization function, λ is the regularization parameter, and D is the data set. The gradient g =
∑

x∈D∇ℓ(θ
(t), x) is

calculated at each iteration t to update the parameter by the rule θ(t+1) = θ(t) − µ(g + λ∇R(θ(t))), where µ is the learning

rate. For large data sets, most of the computational effort is spent on calculating the gradient over entire dataset.

We consider the hierarchical distributed learning setup with ne edge nodes E1, E2, . . . , Ene
and nh helper nodes

H1, H2, . . . , Hnh
as illustrated in Fig. 1. For any positive integer n, let [n] denote the set {1, 2, . . . , n}. Each edge node

Ei, i ∈ [ne] possesses an exclusive data set Di and can compute the gradient g
i
∈ R

p over the available data set Di. The edge

nodes make use of the helper nodes to communicate the partial gradients to the central master node M . The edge node Ei splits

the computed gradient g
i

into k vectors g
i,j
∈ R

(p/k), j ∈ [k]. These gradient vectors are encoded using a linear block code

(termed as client code) of length nh and dimension k with generator matrix G to obtain ci = [g
i,1

g
i,2
· · · g

i,k
] ·G, ∀i ∈ [ne],

where ci = [ci,1 ci,2 · · · ci,nh
] ∈ R

(p/k)×nh . Each edge node Ei, i ∈ [ne] transmits the coded message ci,j to the helper node

Hj for all j ∈ [nh].
The communication between edge nodes and helper nodes are unreliable which is modelled by considering at most s ∈

[nh − 1] straggling links between each edge node and helper nodes. Each of the helper nodes communicate to the master

the observed erasure (straggling) pattern, represented by a binary vector of length ne. The master constructs an ne × nh

binary matrix referred to as the observed erasure matrix (straggling matrix), where the value 1 in i, j position indicates the

straggling of the communication link between edge node i and helper j. Let Ω(s) denote the set of all erasure matrices

with s straggling links per edge node. Depending on the erasure matrix ǫ ∈ Ω(s), the master node instructs the helper

node to encode the messages received from edge nodes to form a coded message vǫj ∈ R
(p/k)×mj,ǫ . These coded messages

are communicated to the master over reliable error-free links. The master makes use of the encoded messages from all the

helper nodes to compute g
D

=
[

∑ne

i=1 gi,1
∑ne

i=1 gi,2 · · ·
∑ne

i=1 gi,k

]

. The communication cost at edge nodes is quantified

by the normalized communication load CEH where the normalization is over the local gradient vector size. Hence, we have

CEH = (p/k)×nh

p = nh

k . The communication cost at the helper nodes depends on the straggling pattern. Hence it is quantified

by considering the average helper to master communication load CHM . The average helper to master communication load

CHM is the total size of messages from all the helpers to master averaged over all erasure patterns Ω(s), normalized by the

gradient vector size p. We have, CHM = 1
|Ω(s)|

∑

ǫ∈Ω(s)

∑nh

j=1
mj,ǫ

k .

For s straggling links between each edge node and helper nodes, a tuple (CEH , CHM ) is achievable if there exists a

communication scheme between client nodes, helper nodes and the master node satisfying CEH and CHM as defined, that

enables the master node to compute the gradient g
D

. The set of all achievable tuples (CEH , CHM ) is denoted by A. The

objective is to characterize the minimum values of the communication loads defined as follows:

C∗
EH = min

(CEH ,CHM )∈A
CEH , C∗

HM = min
(CEH ,CHM)∈A

CHM .

In [18], it was shown that C∗
EH = nh

nh−s , and 1 ≤ C∗
HM ≤ s + 1. The results on the optimum values of C∗

EH and C∗
HM

are obtained from two different schemes. The bounds on the C∗
HM are obtained by using Aligned Repetition Coding (ARC)

scheme. The communication cost at edge nodes however is high for the ARC scheme. The optimum value C∗
EH is obtained

by using Aligned MDS Coding (AMC) scheme. The optimality is obtained however at an increased communication cost at

the helper nodes. The results in [18] indicates the existence of a tradeoff between the communication costs which is explored

in this paper.
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B. Aligned MDS Coding Scheme

An [n, k, d] code denotes a linear block code of length n, dimension k and minimum distance d. In the AMC scheme, the

client code is an [nh, nh − s, s+ 1] MDS code. Since the dimension of the code is nh − s, CEH = nh

nh−s . For any straggling

pattern, it is guaranteed that nh− s coded messages are delivered from every edge node. Consider the naive scheme in which

each helper node forwards the received messages to the master. From the MDS property, the master node is able to recover the

partial gradients and compute the total gradient. This naive scheme has CHM = ne. In the AMC scheme, the master identifies

the largest set of rows in the straggling table that match exactly. The helpers corresponding to the columns of matching rows

aggregates the gradient vectors and transmit the aggregated vector to the master. For the remaining rows, the helper nodes

transmit the received messages to the master. From the aggregated messages the master is able to recover an aggregated partial

gradient. Using the remaining received messages the master node is able to calculate the full gradient g
D

. The following bound

on CHM is obtained in [18] by modelling the largest set of rows as the maximum occupancy of a balls and bins problem:

CHM ≤ ne −
ne

nh−s + 1.

C. Aligned Repetition Coding Scheme

Each edge node Ei, i ∈ [ne] partitions the computed gradient g
i

into k components g
i,1
, g

i,2
, . . . , g

i,k
, where g

i,r
∈ R

p
k for

r ∈ [k]. The number of components k satisfies the condition that k = nh

s+1 . Each component of the gradient vector is transmitted

to s+1 helper nodes. Since, the number of erasures is at most s, each partial gradient will be received by at least one helper

node thus ensuring resiliency. The communication cost at the edge nodes, CEH for the ARC scheme is CEH = nh

k = s+ 1.

The client code used in the ARC scheme has a generator matrix GARC = [Ik . . . (s+ 1) times . . . Ik]. In the ARC scheme,

after obtaining the straggling pattern from helper nodes, the master takes each component and assigns the first helper node

which received that particular component for transmission to the master node. Each helper node aggregates all the assigned

partitions by the master and transmits an aggregated gradient vector to the master node. Note that the communication cost at

each transmitting helper node is p
k . The maximum communication cost at the helper nodes arise when all the helper nodes

have to transmit and hence CHM ≤
nh

k = s+ 1.

D. Our Contributions

We propose a new scheme, termed as pyramid scheme, of coded gradient aggregation based on pyramid codes, that enables

to achieve a tradeoff between the communication costs at the edge nodes and at the helper nodes. In contrast to the traditional

application in efficient node-repair in distributed storage, our work expands the realm of codes with locality to the new area

of data communication in collaborative learning. We derive an exact expression for CHM and CEH of the proposed scheme.

We also derive an exact expression for CHM for the existing AMC scheme. For an example parameter set (ne = 2048, nh =
16, s = 5), we can reduce CHM to 1925.5 from 2044.5 by increasing CEH from 1.45 to 2 as illustrated in Fig. 2. Finally,

1.4 1.5 1.6 1.7 1.8 1.9 2
1920

1940

1960

1980

2000

2020

2040

2060

CEH

C
H
M

Fig. 2: Tradeoff between CEH and CHM for (ne, nh, s) = (2048, 16, 5)

we present two improved aggregation strategies for existing AMC and ARC schemes, both achieving significant reduction

in CHM as shown by simulations. An improvement in AMC is achieved by picking second, third, and upto m-th maximum

when matching rows in the observed erasure matrix are identified by the master. This is in contrast to the present aggregation

strategy that only considers the first maximum. An improvement in ARC is achieved by choosing helpers in a greedy manner

for availing every partial gradient.
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H1 H2 H3 H4 H5 H6 H7 H8

E1 c11 ✟✟❍❍c12 c13 ✟✟❍❍c14 c15 c16 ✟✟❍❍c17 c18
E2 c21 ✟✟❍❍c22 c23 ✟✟❍❍c24 c25 c26 c27 ✟✟❍❍c28
E3 c31 ✟✟❍❍c32 c33 ✟✟❍❍c34 c35 c36 c37 ✟✟❍❍c38
E4 ✟✟❍❍c41 c42 ✟✟❍❍c43 ✟✟❍❍c44 c45 c46 c47 c48
E5 c51 ✟✟❍❍c52 ✟✟❍❍c53 ✟✟❍❍c54 c55 c56 c57 c58
E6 c61 c62 ✟✟❍❍c63 ✟✟❍❍c64 ✟✟❍❍c65 c66 c67 c68
E7 c71 c72 ✟✟❍❍c73 ✟✟❍❍c74 ✟✟❍❍c75 c76 c77 c78
E8 c81 c82 c83 ✟✟❍❍c84 c85 c86 ✟✟❍❍c87 ✟✟❍❍c88
E9 c91 c92 ✟✟❍❍c93 c94 c95 c96 ✟✟❍❍c97 ✟✟❍❍c98
E10 c10,1 c10,2 ✘✘✘❳❳❳c10,3 ✘✘✘❳❳❳c10,4 c10,5 c10,6 c10,7 ✘✘✘❳❳❳c10,8

Fig. 3: Aggregation strategy for (ne = 10, nh = 8, s = 3) using [8, 4, 4] pyramid code with 2 local codes.

III. AN EXAMPLE SCHEME BASED ON PYRAMID CODES

Consider a system with ne = 10 client nodes, nh = 8 helper nodes with at most s = 3 straggling links between client and

helper nodes. We first construct an [8, 4, 4] pyramid code C over F3
2 and use it as the client code. Starting from the systematic

generator matrix G̃0 of [7, 4, 4] Reed-Solomon code over F3
2

G̃0 =









1 0 0 0 a11 a12 a13
0 1 0 0 a21 a22 a23
0 0 1 0 a31 a32 a33
0 0 0 1 a41 a42 a43









we can construct the generator matrix G0 of [8, 4, 4] pyramid code C0 as

G0 =









1 0 0 0 a11 0 a12 a13
0 1 0 0 a21 0 a22 a23
0 0 1 0 0 a31 a32 a33
0 0 0 1 0 a41 a42 a43









.

Every real gradient vector can be quantized so that it is represented using a finite number of bits. In that case, it is possible

to encode it using a client-code over finite-field. There is a parallel line of work [21–23] that attempts to establish that such

quantizations do not affect the performance of algorithms making use of the gradients. Every client node splits the local

gradient vector into 4 sub-vectors each of length (p/4) and use the same code C0 to encode the gradient vector to produce a

vector of length (p/4) ·8 = 2p. Thus we obtain a (10×8) codeword array with every entry being a (p/4)-long vector. It is easy

to find that CEH = 8
4 = 2. The code C0 has two local single parity check codes of dimension 2 with supports L1 = {1, 2, 5}

and L2 = {3, 4, 6}. The global parities are over the support P = {7, 8}. Suppose the observed erasure matrix is as depicted

by cross-marks in Fig. 3. Thus the observed erasure matrix is given by

ME =

































0 1 0 1 0 0 1 0
0 1 0 1 0 0 0 1
0 1 0 1 0 0 0 1
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 0 0 1 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 0 1

































.

Given an erasure pattern, a local code is said to be unaffected by the erasure pattern, if every symbol in the local code can

be decoded. Otherwise, the local code is said to be overwhelmed by the erasure pattern. The coded symbols are aggregated

(summed up) at helper nodes before transmitting to the master. A set of columns T is picked such that

• they do not associate to global parities if no local code is overwhelmed, or else,

• they associate to overwhelmed local codes and global parities,

and hold unerased information symbols. Restricted to these columns, set of rows Ψ with a matching erasure pattern is picked.

Symbols in every column of T are summed up over Ψ. Let us look at how it works as applied to the given example.

1) Over the rows E1 − E3, we aggregate symbols over the columns {1, 2, . . . , 6}. This is because neither L1 nor L2 are

overwhelmed. Thus we choose columns in L1 ∪ L2 as candidate columns for aggregation. The information set within

these columns is {1, 3, 5, 6}. Therefore the helpers Hj , j = 1, 3, 5, 6 send c1j + c2j + c3j to the master.
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2) Over the rows E4 − E7, the local code L2 is overwhelmed. So we choose L2 ∪ P = {3, 4, 6, 7, 8} as columns for

aggregation. Symbols belonging to unaffected local code L1 are sent without aggregation. Once L1 is completely decoded

in every row, then symbols in columns {1, 2} are available at every row E4−E7. Since {1, 2, 7, 8} is a information set,

symbols are aggregated and sent for columns {7, 8}. Thus helpers Hj , j = 7, 8 send aggregated symbols c4j+c5j+c6j+c7j .

3) For E8, both the local codes are unaffected. Hence aggregation will be done over L1 ∪ L2. However there are no other

row with a matching erasure pattern. So the symbols from this row will be sent without aggregation.

4) The case of E9 is exactly similar to the case of E8.

5) For E10, L2 is an overwhelmed code. Thus aggregation will be attempted over columns L2 ∪ P . However, there are no

rows left out. For this reason, symbols from E10 will be sent without aggregation.

The above described aggregation is illustrated in Figure 3.

IV. THE PYRAMID SCHEME

The example described in Sec. III can be generalized to arrive at a new scheme for coded aggregation of gradient. In this

section, we present the new scheme, referred to as pyramid scheme, for a fixed parameter set (ne, nh, s). Let t ≥ 2 be an

integer parameter. A pyramid scheme is a pair (Ct,At) indexed by t, where Ct is a pyramid code and At is the associated

aggregation strategy. For the degenerate case of t = 1, the scheme reduces to the AMC scheme. In the following, we describe

the scheme and characterize its communication cost-pair (CEH,Pyr(t), CHM,Pyr(t)) for every possible value of t.

A. Construction of a Set of Pyramid Codes

Let the parameters be (ne, nh, s). We set k1 = nh − s and define kt = k1 − t + 1, 2 ≤ t ≤ ⌊k1+1
3 ⌋. Construct a

[kt + s, kt, s+ 1]-MDS code over Fq with generator matrix

Gt,MDS = [Ikt
P ]

=
[

Ikt
p
1

p
2
· · · p

s

]

where Ikt
is an identity matrix of size kt and p

i
, 1 ≤ i ≤ s are columns of the (kt × s) Cauchy matrix. The field size q may

be suitably chosen. We transform Gt,MDS to derive the generator matrix Gt of a pyramid code Ct with blocklength nh and

dimenstion kt. First, we write

kt = ta+ b, 0 ≤ b < t

= b(a+ 1) + (t− b)a

and split the parity vector p
1

into t vectors p
11
, p

12
, . . . , p

1t
such that the first b vectors p

11
, p

12
, . . . p

1b
belong to F

a+1
q and

the remaining (t−b) vectors p
1,b+1

, p
1,b+2

, . . . , p
1t

belong to F
a
q . Then we construct Gt = [Ikt

P ] where P is a kt× (nh−kt)

matrix

P =



























p
11

p
12

. . .

p
1b

p
2
· · · p

s
p
1,b+1

. . .

p
1t



























We put in place the required definitions and subsequently characterize the parameters of Ct.
Definition 1:

1) An symbol ci, 1 ≤ i ≤ n an [n, k] code C is said to have locality r if there is a punctured code Ci of dimension r
containing ci.

2) An [n, k] code C is said to be a code with locality r if every symbol has locality r. If every symbol ci has locality ri,
and ri is not necessarily equal to rj for i 6= j, then the code is said to be a code with unequal locality.

3) The vector (κ1, κ2, . . . , κr) is said to be the locality profile of an [n, k] code C with unequal locality if

• κ1 + κ2 + · · ·+ κr = k
• there are κj information symbols in C with locality j, 1 ≤ j ≤ r.

The code Ct generated by Gt is a pyramid code [19] with t local codes. It is a code with unequl locality [24] [25] with every

local code a single-parity-check code.

Lemma 4.1: The code Ct, 2 ≤ t ≤ ⌊k1+1
3 ⌋ is an [nh, kt, s+ 1] code. It can thus correct any s erasures.
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Proof: The block length of Ct can easily be computed as kt + t+ (s− 1) = k1 + s = nh. By construction, the locality profile

of the code

κ = (κ1, κ2, · · · , κa, κa+1) = (0, 0, · · · , 0, (t− b)a, b(a+ 1)).

By Theorem 1 in [25], the minimum distance of the code

d ≤ n− k −
a+1
∑

j=1

⌈

κj

j

⌉

+ 2

= nh − kt −

⌈

(t− b)a

a

⌉

−

⌈

b(a+ 1)

a+ 1

⌉

+ 2

= nh − k1 + 1 = s+ 1.

It is shown in [25] that pyramid codes acheive the upper bound on minimum distance. This completes the proof. �

Furthermore, we can explicitly identify the supports of all t local codes as Li = {(i − 1)(a + 1) + 1, (i − 1)(a + 1) +
2, . . . , i(a+ 1), kt + i}, 1 ≤ i ≤ b and Li = {(i− 1)a+ b+ 1, (i− 1)a+ b+ 2, . . . , ia+ b, , kt + i}, b+ 1 ≤ i ≤ t. Then we

define Q = [n] \ ∪i∈[t]Li as the support of all global parities that do not participate in any local code. We shall also define

kt(i), 1 ≤ i ≤ t as the dimension of the local code with support Li. Clearly
∑t

i=1 kt(i) = kt. In the construction of Ct, we do

not wish to end up with a local code of trivial dimension 1. Thus we shall require ta+ b = k1 − t+ 1 with a ≥ 2, 0 ≤ b < t
and thereby it follows that

t =
k1 + 1− b

a+ 1
≤

⌊

k1 + 1

3

⌋

.

B. A Classification of Erasure Patterns

As discussed in Sec. II-A, an erasure (failure) pattern of links connecting edge clients to helpers can be represented as a

binary vector of length nh with Hamming weight s. Let E denote the set of all erasure patterns, and we have |E|=
(

nh

s

)

. Every

edge node will be subjected to an erasure pattern, and there are a total of ne erasure patterns witnessed by the system. The

aggregation strategy At adopted by the helpers (as prescribed by the master) depends on these erasure patterns. Here we shall

discuss a partition of E based on Ct that will become necessary in the subsequent section to describe At.

For any binary vector x = (x1, x2, . . . , xn), we define wH(x) as the Hamming weight of x, and Supp(x) as the support

of x i.e., {i | xi 6= 0}. For the code Ct, we say a local code or its support Li, 1 ≤ i ≤ t (by overloading of definition) is

overwhelmed by an erasure pattern e ∈ E if Supp(e)∩Li > 1. Otherwise, if Supp(e)∩Li ≤ 1, we say the local code or Li is

unaffected by e. For a given erasure pattern, let τ denote the number of unaffected local codes, and i1 < i2 < · · · < iτ denote

the ordered indices of unaffected local codes. Similarly, j1 < j2 · · · < jt−τ denote the ordered indices of overwhelmed local

codes. We define fi = |Supp(e)∩Li| as the number of erasures within a local code Li, 1 ≤ i ≤ t, and ft+1 = |Supp(e)∩Q|
as the number of erasures within global parities. The vector f = (f1, f2, . . . , ft+1) is referred to as the code-erasure pattern.

Let λi = |Li|, 1 ≤ i ≤ t denote the size of supports of local codes, and λt+1 = |Q|= (s − 1) denote the number of global

parities. Then there are

N(f) =
t+1
∏

i=1

(

λi

fi

)

erasure patterns associated with a particular code-erasure pattern.

Let u ∈ F
t
2 and v ∈ F

t−wH(u)
2 . We define a subset S(u,v) ⊂ E indexed by the tuple (u, v) as follows. An erasure pattern e

belongs to S(u,v) if the following two conditions hold:

(a) For every i ∈ Supp(u), Li is overwhelmed by e, thereby implying τ = t− wH(u),
(b) If i1, i2, . . . iτ are the ordered indices of unaffected local codes, then (fi1 , fi2 , . . . , fiτ ) = v.

This means that (a) u determines which all local codes are overwhelmed by e, and that (b) v determines the number of erasures

(either 0 or 1) within unaffected local codes. We say that two erasure patterns in E are of same type, if they belong to the

same subset S(u,v). And we write type(e) = (u, v) if e ∈ S(u,v). The size of S(u,v) can be counted as:

|S(u,v)| =

(

nh −
∑

ℓ/∈{i1,i2,...iτ}
λℓ

s− wH(v)

) τ
∏

ℓ=1

(

λiℓ

vℓ

)

−
∑

x∈F
t
2

(xi1 ,xi2 ,...,xiτ )=v

(

s− 1

s− wH(x)

) t
∏

ℓ=1

(

λℓ

xℓ

)

Next, we shall define a relation ≃ within S(u,v). Define A(u) = ∪i∈Supp(u)Li∪Q as the support of all overwhelmed local codes

combined with that of global parities. Define B(u) = ∪i∈[t]\Supp(u)Li as the support of unaffected local codes. Let e1, e2 ∈ E .

We say that e1 is equivalent to e2 or e1 ≃ e2 if they are of same type and

Supp(e1) ∩A(u) = Supp(e2) ∩ A(u) if u 6= 0,

Supp(e1) ∩B(u) = Supp(e2) ∩B(u) if u = 0.
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Type (u, v) |S(u,v)| f = (f1, f2, f3) N(f) β(u, v)

(00, 00) 0 − 0 −
(00, 01) 6 (0, 1, 4) 6 1
(00, 10) 6 (1, 0, 4) 6 1
(00, 11) 144 (1, 1, 3) 144 4
(01, 0) 246 (0, 2, 3) 60 1

(0, 3, 2) 120 1
(0, 4, 1) 60 1
(0, 5, 0) 6 1

(01, 1) 1110 (1, 2, 2) 540 6
(1, 3, 1) 480 6
(1, 4, 0) 90 6

(10, 0) 246 (2, 0, 3) 60 1
(3, 0, 2) 120 1
(4, 0, 1) 60 1
(5, 0, 0) 6 1

(10, 1) 1110 (2, 1, 2) 540 6
(3, 1, 1) 480 6
(4, 1, 0) 90 6

(11,−) 1500 (2, 2, 1) 900 1
(2, 3, 0) 300 1
(3, 2, 0) 300 1

Fig. 4: Classification of erasure patterns for a [16, 10, 6] pyramid code with t = 2, (λ1, λ2, λ3) = (6, 6, 4).

In otherwords, equivalent erasure patterns remain the same at every location except possibly within unaffected local codes, and

their code-erasure pattern remains the same within unaffected local codes. It is easy to verify that ≃ is an equivalence relation,

and hence partitions S(u,v) into equivalence classes. The set of equivalence classes is denoted by B = S(u,v)/≃, and we define

µ(u,v) = |B|. Whenever the type (u, v) is evident from the context, we simply write µ in place of µ(u,v). The equivalence

classes within B are denoted by B1(u, v), B2(u, v), . . . , Bµ(u, v). The size of every equivalence class Bj(u, v), 1 ≤ j ≤ µ is

the same and we define

β(u, v) = |Bj(u, v)|

=

{

∏

ℓ∈[t]\Supp(u)

(

λℓ

fℓ

)

u 6= 0
(

λt+1

ft+1

)

u = 0

where (f1, f2, . . . , ft+1) is the code-erasure pattern of e. We refer to β(e) as the bunching factor of every e ∈ Bj(u, v), for

reasons that will become apparent in later subsections. Since (fi1 , fi2 , . . . , fiu) remains the same for every erasure pattern in

S(u,v), the bunching factor too remains the same for them. Thus ≃ partitions S(u,v) into equivalence classes of the same size.

An example partition of E is illustrated in Fig. 4.

C. The Aggregation Strategy At

As discussed in Sec. II-A, the codeword transmitted from all edges is an (ne × nh) matrix over Fq

C =











c11 c12 · · · c1,nh

c21 c22 · · · c2,nh

...
...

. . .
...

cne,1 cne,2 · · · cne,nh











All ne erasure patterns together can be represented as a matrix ME over F2.

ME =











ǫ11 ǫ12 · · · ǫ1,nh

ǫ21 ǫ22 · · · ǫ2,nh

...
...

. . .
...

ǫne,1 ǫne,2 · · · ǫne,nh











:=











ǫ1
ǫ2
...

ǫne











.

We refer to ME as the observed erasure matrix. The code symbol cij is unerased if ǫij = 0, and erased if ǫij = 1. Here

ǫi, 1 ≤ i ≤ ne is the erasure pattern observed by the i-th edge. It is possible that an erasure pattern can repeat at multiple

edge-clients, and thus E = {ǫ1, ǫ2, . . . , ǫne
} is a multi-set of observed erasure patterns.

Our scheme is inspired by the AMC scheme proposed in [18]. In AMC, code symbols from different rows of the codeword

array are “aggregated” and transmitted to reduce the communication cost from helpers to the master. In our approach, we will

carry out aggregation of symbols leveraging upon the local-decoding capabilities of Ct. The aggregation strategy will take into
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account the distribution of overwhelmed and unaffected local codes. We begin with formalizing what is meant by aggregation

of code symbols.

Definition 2: Let the code Ct and the observed erasure matrix ME be given. We say that the code-symbols are aggregated

over a set of rows R ⊂ [ne] and a set of columns T ⊂ [nh] if the following operations are executed in order:

(a) Identify a minimal subset IR,T of CR,T = {ci,j | j ∈ R, i ∈ [n] \ T } such that symbols in IR,T are unerased, and it is

possible to recover CR,T given the knowledge of IR,T .

(b) Identify subsets T1 ⊆ T , T 1 ⊂ [n] \ T such that (i) T1 ∪ T 1 is an information set of Ct, and (ii) ci,j is not erased for

every j ∈ T1 and every i ∈ R.

(c) Compute

dj =
∑

i∈R

cij , j ∈ T1

and generate the set D = {dj | j ∈ T1} ∪ IR,T .

We refer to D as the aggregated set of code symbols over a set of rows R and a set of columns T .

In the following, we describe the aggregation strategy At associated with the pyramid code Ct, 2 ≤ t ≤ ⌊nh−s+1
3 ⌋. The

strategy takes in the codeword C and the observed erasure matrix ME (or the multi-set E) as inputs.

1) Let {(uj , vj) | j = 1, 2, . . . , jmax} be the set of types of erasure patterns in E. Let us write µj = µ(uj , vj). Let

Ψj,ℓ = {i | type(ei) = (uj , vj), ei ∈ Bj(uj , vj)}, j = 1, 2, . . . , jmax, ℓ = 1, 2, . . . , µj .

2) For every j = 1, 2, . . . , jmax, do the following:

(a) compute ℓ∗(j) = argmaxℓ=1,2,...,µj
|Ψj,ℓ|

(b) Let T (uj) = A(uj) if uj 6= 0, or else T (uj) = B(uj). Aggregate code symbols over set of rows Ψj,ℓ∗(j) and columns

T (uj). Let Dj be the aggregated set of symbols.

3) For every row ℓ ∈ [ne] \ ∪
jmax

j=1Ψj,ℓ∗(j), identify a set of unerased information symbols Iℓ. Let Djmax+1 = ∪ℓIℓ.

4) The master instructs helpers to transmit Dag = ∪jmax+1
j=1 Dj .

D. Calculation of CEH and CHM

By Lemma 4.1, the code Ct has dimension kt = nh − s− t+ 1. It follows that the communication cost by edge-nodes for

the pyramid scheme (Ct,At) is given by:

CEH,Pyr(t) =
nh

nh − s− t+ 1
(1)

We assume that the observed erasure matrix is a uniform random variable in F
ne×nh

2 . Since the aggregation strategy depends

on the erasure multi-set E, the size of aggregated set of symbols D is a random variable. Thus CHM is the expected value of

the random variable |Dag|/kt:

CHM,Pyr(t) =
E[|Dag|]

kt
. (2)

The problem thus reduces to finding expectation of |Dag|. For every u ∈ F
t
2, v ∈ F

t−wH(u)
2 , ℓ ∈ [µ(u, v)], define the random

variable

Mℓ(u, v) = |{j ∈ [ne] | ǫj ∈ Bℓ(u, v)}|

as the number of rows subjected to an erasure pattern in Bℓ(u, v). Next we define

M(u, v) = max
ℓ

Mℓ(u, v).

The strategy At attempts to aggregate code symbols over M(u, v) rows for every observed type (u, v). Therefore, if M(u, v) =
0, then it does not impact the value of |Dag|, but if M(u, v) > 0, aggregation will happen over those rows and columns given

by A(u). The size of aggregated set of code symbols for each (u, v) depends on the dimension accumulated by both the
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unaffected local codes and the overwhelmed local codes. Let 1(x) be an indicator function, i.e., 1(x) = 1 if x 6= 0, and

1(x) = 1 if x = 0. We can express Dag and compute its expectation as given below:

|Dag| =
∑

u∈F
t
2

∑

v∈F
t−w
2

1(M(u, v))





∑

i∈[t]\Supp(u)

kt(i)M(u, v) +
∑

i∈Supp(u)

kt(i)



+



ne −
∑

u∈F
t
2

∑

v∈F
t−w
2

M(u, v)



 kt (3)

E[|Dag|] =
∑

u∈F
t
2

∑

v∈F
t−w
2





∑

i∈[t]\Supp(u)

kt(i)E[M(u, v)] +
∑

i∈Supp(u)

kt(i) Pr(M(u, v) ≥ 1)



+



ne −
∑

u∈F
t
2

∑

v∈F
t−w
2

E[M(u, v)]



 kt (4)

In order to compute the expression, it is required to determine both E[M(u, v)] and Pr(M(u, v) ≥ 1) for every (u, v).
Following the approach in [18], we identify the random variable M(u, v) with a quantity associated with well-known balls-

and-bins experiment. Every row of (ne × nh)-codeword is identified as an unlabeled ball, and each erasure pattern in E as

a labelled bin. The random experiment is to throw these ne unlabeled balls at
(

nh

s

)

labeled bins. The number of balls in a

bin, referred to as bin-size, is the number of rows subjected to the same erasure pattern. Without loss of generality, let us

restrict focus to a single type, i.e., we focus on to bins associated with S(u,v). Since we are interested in number of rows

subjected to equivalent erasure patterns, we will bunch up multiple (real) bins to form an artificial bin. As the bunching factor

remains the same for a given type, we bunch up a fixed number of real bins. It follows that M(u, v) is maximum over

bin-sizes of all artificial bins of a fixed type. Thus the problem reduces to the following: Throw r unlabeled balls in n labeled

bins uniformly at random. The first bm bins are bunched up to form m artificial bins each constituting of b real bins. Let

Xi, i = 1, 2, . . . , n−bm+m denote the bin-sizes of all bins, and let Z = maxi=1,2,...,m Xi. Let us define ρ(n, r,m, b) = E[Z]
and φ(n, r,m, b) = Pr(Z ≥ 1). Then we have

E[M(u, v)] = ρ

((

nh

s

)

, ne,
|S(u,v)|

β(u, v)
, β(u, v)

)

(5)

Pr[M(u, v) ≥ 1] = φ

((

nh

s

)

, ne,
|S(u,v)|

β(u, v)
, β(u, v)

)

(6)

Both ρ(n, r,m, b) and φ(n, r,m, b) are determined in App. A. Substituting (5), (6) back in (4) and then to (2), we obtain an

expression for communication cost at helper-nodes for pyramid scheme (Ct,At). Thus we have proved the theorem:

Theorem 4.2: Let (ne, nh, s) be given. The pyramid scheme (Ct,At) for coded aggregation of gradient achieves the

communication cost-pair (CEH,Pyr(t), CHM,Pyr(t)) as given in (1), (2) for 2 ≤ t ≤ ⌊nh−s+1
3 ⌋.

V. AN ACHIEVABLE TRADEOFF BETWEEN CEH AND CHM

The communication cost-pairs achieved by the pyramid scheme combined with that of AMC scheme permit to achieve a

tradeoff between CEH and CHM.

A. CHM of AMC

In [18], authors derived an upperbound on the communication cost at helpers CHM of the AMC scheme. With no further

modification, their bound can be converted to an equality with the help of ρ(·) function. Thus we obtain the following theorem.

Theorem 5.1: Let (ne, nh, s) be given. The communication cost-pair (CEH,AMC, CHM,AMC) of AMC scheme is given by

CEH,AMC =
nh

nh − s

CHM,AMC = ne + 1− ρ

((

nh

s

)

, ne,

(

nh

s

)

, 1

)

B. Illustration of Tradeoff with An Example

For practical reasons, it is desirable to scale nh logarithmically with ne and to keep s = αnh as a fraction of nh. Following

this rationale, we choose example parameters (ne, nh, s) = (2048, 16, 5) to illustrate the tradeoff in Fig. 2.
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VI. IMPROVED AMC CONSIDERING m MAXIMAS

In the AMC scheme [18], the master finds the maximum number of matching rows in the erasure matrix. Within these

matching rows, the helper nodes can aggregate and transmit the aggregated vector to the master node. For the remaining rows,

the helper nodes transmit the received messages without any aggregation to the master. We observe that the aggregation can

be performed at the helper nodes not just for the maximum number of matching rows, but even for second maximum, third

maximum and so on. To illustrate this, consider the system model with ne = 5, nh = 4 and s = 1. Let the observed erasure

matrix be

ME =













0 0 0 1
0 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0













.

Since the maximum matching rows is three, as per the AMC scheme, the helper nodes aggregates the first three rows and

transmit the aggregated gradient. For the last two rows, it transmits all the received messages directly. However, the helper

nodes can aggregate the messages in the last two rows and reduce the cost of transmission at helper nodes. As per the AMC

scheme, for the observed erasure matrix ME the communication cost at the helper nodes is 3. By considering the second

maxima also, the communication cost at the helper nodes can be reduced to 2.

The idea is to generalize the AMC scheme by considering more than one set of maximum matching rows. We propose a

scheme in which the helper nodes consider m maximas for some integer m ≥ 1. For m = 1 the proposed scheme reduces

to the AMC scheme. Let Mi, i ∈ [m] denote the number of i-th maximum set of matching rows. The helper nodes perform

aggregation at each of these matching sets and transmits aggregated gradient vectors. For i ∈ [m], the helper nodes can

aggregate Mi rows and transmit the aggregated partial gradients. The communication cost incurred for the transmission of

aggregated partial gradient for each set of matching rows is (nh − s) 1
nh−s = 1. For the remaining rows, similar to the AMC

scheme, the helper nodes transmit the received messages without any aggregation to the master. Hence, the communication

cost incurred at the helper nodes is equal to (ne −
∑m

i=1 Mi) (nh−s) 1
nh−s = (ne −

∑m
i=1 Mi). Hence, for a particular erasure

matrix ME the communication cost at the helper nodes for the scheme considering m maximas is

ne −

m
∑

i=1

Mi +m.

The normalized communication load is obtained by averaging over all erasure patterns. Hence, we have,

CHM = ne −

m
∑

i=1

E[Mi] + 1.

For a system with ne = 64, nh = 6 and s = 1, using Monte-Carlo technique, the CHM values for various values of m are

obtained and plotted in Fig. 5. It can be observed from Fig. 5 that as m increases, more and more aggregation opportunities

arise and hence a reduction in CHM is obtained. In the graph m = 0 indicates the naive scheme in which the helper nodes

transmits all the received messages directly to the master node without any aggregation. We performed simulation to compute

the normalized communication cost for different values of ne, keeping nh = ⌊log(ne)⌋, and s = 0.2 ∗nh. The communication

cost at the helper nodes reduces with increasing values of m as evident from Fig. 6.

VII. A GREEDY APPROACH TO ARC

We begin with illustrating the ARC scheme with an example.

Example 1: Consider a system with ne = 4 client nodes and nh = 6 helper nodes with at most s = 2 straggling links

between each client and helper nodes. The client node partitions the gradient vector into k = nh

s+1 = 2 parts and uses a

generator matrix

G =

[

1 0 1 0 1 0
0 1 0 1 0 1

]

.

Let the observed erasure matrix be

ME =









0 1 1 0 0 0
1 0 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0









.

The observed erasure pattern is also depicted in Fig. 7. Following the aggregation strategy employed in ARC, it can be observed

that all the helper nodes needs to transmit the messages and hence the communication cost at the helper nodes for this particular

scenario is s+ 1 = 3.
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Fig. 5: CHM values corresponding to m ∈ [6] for (ne, nh, s) = (64, 6, 1).
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Fig. 6: Comparison of variation of CHM with ne for different values of m.

The principal idea of ARC is to repeat the components of the computed gradient to helper nodes without coding. Therefore

the gradient aggregation at the helper nodes for ARC can be viewed as a set cover problem [26]. Having recognized that, we

can employ a greedy algorithm to solve it. We show by simulations the greedy algorithm performs better than the existing

aggregation strategy followed in [18].

A. Greedy approach

The objective of the master is to compute the total gradient g
D

=
[

∑ne

i=1 gi,1
∑ne

i=1 gi,2 · · ·
∑ne

i=1 gi,k

]

. Let U =
⋃

i∈[ne]
j∈[k]

g
i,j

denote a set of gradient vectors. Each helper node Hi receives a subset of partial gradients denoted by Si.

The master nodes wants each element in U to be aggregated and transmitted by one helper node. The master can then combine

the transmissions suitably to find the total gradient g
D

. The master node effectively wants to find a cover of the universal set
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H1 H2 H3 H4 H5 H6

E1 g11 ✟✟❍❍g12 ✟✟❍❍g11 g12 g11 g12
E2 ✟✟❍❍g21 g22 g21 g22 g21 ✟✟❍❍g22
E3 ✟✟❍❍g31 g32 ✟✟❍❍g31 g32 g31 g32
E4 g41 ✟✟❍❍g42 g41 ✟✟❍❍g42 g41 g42

Fig. 7: Aggregation strategy of the ARC scheme for (ne = 4, nh = 6, s = 2) .

of gradients U using minimum number of sets from Si, i ∈ [nh]. The minimum number is desired since the communication

cost at the helper nodes depends on the number of helper nodes participating in the aggregation phase. Hence we can model

the aggregation phase of ARC to a set cover problem with universal set U and subsets Si, i ∈ [nh]. The set covering problem

is an NP-complete problem with a heuristic greedy algorithm [26]. The greedy algorithm for the aggregation phase in ARC

scheme is described in Algorithm 1.

Algorithm 1 Greedy algorithm

1: Input: U and Si, i ∈ [nh]
2: Initialize U ← U , C ← φ
3: while U 6= φ do

4: Select an i ∈ [nh] such that |Si ∩ U | is maximum

5: Ai = Si ∩ U
6: C ← C ∪ i
7: U ← U \ Si
8: end while

9: For every i ∈ C, the master node asks helper node Hi to aggregate the partial gradients in Ai and transmit.

Example 2: For the system considered in Example 1 and the erasure patter as described in Fig. 7, the greedy algorithm

outputs C = {5, 6, 2},A5 = {g
1,1

, g
2,1

, g
3,1

, g
4,1
}, A6 = {g

1,2
, g

3,2
, g

4,2
} and A2 = {g

2,2
}. The communication cost at the

helper nodes for this particular scenario is equal to 1.5.

B. Simulation Results

The example described in Section VII-A considers only one particular erasure pattern. Recall that the normalized

communication load CHM = 1
|Ω(s)|

∑

ǫ∈Ω(s)

∑nh

j=1
mj,ǫ

k . We consider a system with ne = 64 client nodes and s = 2
straggling links per client node. The CHM value for both greedy approach and the existing strategy is computed using Monte-

Carlo technique by averaging over a large number of iterations. The performance improvement of the greedy approach over

the existing ARC scheme can be observed from Fig. 8. The CHM values are plotted for different nh values.
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Fig. 8: Comparison of CHM values of ARC scheme and the proposed greedy approach for ne = 64, s = 2 and for different

values of nh
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APPENDIX A

MAXIMUM BIN-SIZE WITH BUNCHING

Suppose r unlabeled balls are thrown at n labeled bins uniformly at random. The first bm bins, bm ≤ n are bunched to

form m artificial bins each consisting of b real bins. Now there are a total of ν = n − bm + m bins. Let random vector

X = [X1 X2 · · · Xν ] denote the number of balls in each bin. When k1 + k2 + · · ·+ kν = r,

Pr(X = (k1, k2, . . . , kν)) =
r!

k1! k2! · · · kν !

(

b

n

)k1+k2+···+km
(

1

n

)km+1+km+2+···+kν

We define M = maxi=1,2,...,mXi. We are interested in determining both ρ(n, r,m, b) = E[M ] and φ(n, r,m, b) = Pr[M ≥ 1].
Since M is a non-negative integer valued random variable,

E[M ] =

r
∑

i=1

Pr(M ≥ i)

=

r
∑

i=1

Pr(∪mj=1{Xj ≥ i}) (7)
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Define Eij = {Xj ≥ i} and apply inclusion-exclusion principle to obtain ρ(n, r,m, b) =
∑r

i=1

∑m
ℓ=1 Aiℓ where Aiℓ is

given in (8).

Aiℓ = (−1)ℓ−1 ·

(

m

ℓ

)

·
∑

k1≥i,k2≥i,...,kℓ≥i∑
i∈[ℓ] ki≤r

r!

k1! k2! · · · kℓ! (r −
∑

i∈[ℓ] ki)!

(

b

n

)

∑
i∈[ℓ] ki

(

1−
ℓb

n

)r−(
∑

i∈[ℓ] ki)

(8)

Then it follows that

ρ(n, r,m, b) =

m
∑

ℓ=1

⌊ r
ℓ ⌋

∑

i=1

Aiℓ (9)

φ(n, r,m, b) =
m
∑

ℓ=1

A1ℓ (10)
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