
Codes approaching the Shannon limit with polynomial

complexity per information bit

Ilya Dumer and Navid Gharavi
University of California, Riverside, USA

Email: dumer@ee.ucr.edu, navid.gharavi@email.ucr.edu

Abstract

We consider codes for channels with extreme noise that emerge in various low-power
applications. Simple LDPC-type codes with parity checks of weight 3 are first studied for
any dimension m → ∞. These codes form modulation schemes: they improve the original
channel output for any SNR > −6 dB (per information bit) and gain 3 dB over uncoded
modulation as SNR grows. However, they also have a floor on the output bit error rate
(BER) irrespective of their length. Tight lower and upper bounds, which are virtually
identical to simulation results, are then obtained for BER at any SNR. We also study a
combined scheme that splits m information bits into b blocks and protects each with some
polar code. Decoding moves back and forth between polar and LDPC codes, every time
using a polar code of a higher rate. For a sufficiently large constant b and m → ∞, this
design yields a vanishing BER at any SNR that is arbitrarily close to the Shannon limit
of -1.59 dB. Unlike other existing designs, this scheme has polynomial complexity of order
m lnm per information bit.

1 Introduction

In this work, we address code design that protects information transmitted on the AWGN chan-
nels with extreme noise. One particularly ubiquitous application is the Internet of things (IoT).
To efficiently employ it, prospective standards [2] are supposed to achieve a 20 dB reduction
in snr per channel bit (below SNR denotes the signal-to-noise ratio per information bit, and
notation snr implies channel outputs).

From the theoretical standpoint, we consider binary linear codes C(n, k) of length n → ∞
and dimension k used on the BI-AWGN channels N (0, σ2n) with noise power σ2n →∞. To achieve
a fixed signal-to-noise ratio SNR = 1/

(
2σ2nRn

)
, these codes must have the vanishing code rates

Rn that have an order of σ−2n . Moreover, the fundamental Shannon limit shows that any such
code may achieve the vanishing BERs only if SNR > ln 2 (equivalently, this limit corresponds
to 10 log10 ln 2 = −1.5917 dB).

The central problem here is to design a capacity-achieving sequence of codes that have low
decoding complexity and a rapidly declining BER. Currently, this problem is far from solution.
To date, most existing capacity-achieving codes have code rates Rn that decline exponentially
in code dimension m. In turn, this yields an exponential growth in bandwidth and decoding
complexity, both proportional to R−1n .

For example, biorthogonal codes C(2m−1,m) achieve the Shannon limit; however, their code
rate Rn = m/2m−1 declines exponentially in m. By contrast, the output word error rates (WER)
of these codes experience very slow decline, which is only polynomial in blocklength n. In
particular, for the low SNR ∈ (ln 2, 4 ln 2), codes C(2m−1,m) have WER [1] bounded from
above by
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Pm = exp{−m(
√
SNR−

√
ln 2)2}

For a practically important range of SNR ∈ [1, 2] (which gives the range of [0, 3] dB), long codes
Cm – up to billions of bits – still have very high error rates Pm. This is shown below for m = 18
and m = 30.

SNR (dBs) 0 1 2

P18 .60 .22 .04

P30 .43 .08 .0045

Further analysis shows that concatenations of codes C(2m−1,m) with the outer RS codes or
AG codes still have similar shortcomings, due to the fact that codes C(2m−1,m) should have
length n proportional to σ2n → ∞. In summary, codes Cm or their concatenations fail to yield
acceptable output error rates on the high-noise AWGN channels with SNR of [0,2] dB for the
blocks of length n < 108.

As the second example, consider general RM codes or their bit-frozen subcodes. Let Wm

be a sequence of the binary symmetric channels (BCHp) with transition error probabilities
pm = (1 − εm)/2 such that εm → 0 as m → ∞. It is well known that channels Wm yield a
sequence of vanishing capacities

Cm ∼ ε2m/ ln 4, m→∞

It was proven in [3, 4] that long low-rate RM codes RM(m, r) of order r = o(m) and length
n = 2m approach the maximum possible code rates Cm on channels Wm under the maximum-
likelihood (ML) decoding. Even in this case, code rates Rn decline exponentially as mr2−m and
require exponential decoding complexity.

Consider also the existing low-complexity algorithms known for RM codes [7], [8], [9] or their
bit-frozen subcodes [5, 6]. For low SNR < 1 dB, these algorithms yield high error rates above
10−3 or require unacceptably large lists under successive cancellation list (SCL) decoding.

Finally, consider polar codes [12] of rate Rn → 0 that operate under growing noise power
σ2n ∼ 1/ (2SRn) for a fixed SNR = S. One construction of such codes is considered in [10].
For σ2n →∞, these codes begin with a growing number µ ∼ log2 σ

2
n of upgrading channels and

employ long repetition codes B(2µ, 1) or RM codes C(2µ,m+ 1). This design again results in a
rapid complexity increase as σ2n →∞. To advance polar design, it is important to analyze how
polar codes of length n → ∞ operate within a vanishing margin εn → 0 to the Shannon limit.
One particular problem is to derive the trade off between the BER and code complexity arising
when εn → 0.

For moderate lengths, one efficient construction of [11] concatenates repetition code of length
4 with a (2048,40) polar code. The resulting code has WER of .002 at the SNR of 2 dB and
improves the NB-IoT standard [2] by 1 dB. Another recent design [13] yields WER of .0007 for
the similar parameters. Below we improve asymptotic performance of codes [13] with a new
design and analytical tools. Our main statement is as follows.

Statement 1. There exist codes Ĉm of dimension k →∞ and length O(k2) that have complexity
of order O(k2 log k) and limit BER to the order of exp{−cSNR

√
k}, where cSNR > 0 depends

on SNR and is positive for any SNR above the Shannon limit of ln 2.

Statement 1 is predicated on our ”weak-independence” assumption discussed in Section 4.
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2 Basic construction and its decoding algorithm

Our basic code - which we denote Cm - has generator matrix Gm = [Im|Jm], where Im is an
m × m identity matrix and Jm is an m × (m2 ) matrix that includes all columns of weight 2.
Clearly, n =

(
m+1
2

)
and k = m. Let a(s) be any codeword generated by s rows of Gm. Note that

every row in Jm has weight m − 1, every two rows have a single common 1, and every s ≥ 2
rows have (s2) common 1s. Any codeword a(s) that has weight s in Im has overall weight

ws = ms− 2 (s2) = s(m− s+ 1) (1)

Thus, code Cm has distance m, which is achieved if s = 1,m.
Let [i, j] = [j, i] denote code positions in Gm, where 0 ≤ i 6= j ≤ m. Encoder aGm receives

a string a = (a0,1, ..., a0,m) of m information bits and adds (m2 ) parity bits a1,2, ..., am−1,m such
that ai,j = a0,i + a0,j . Note that encoding has complexity O(n).

Let code Cm of rate R = 2/(m+ 1) be used on an AWGN channel with p.d.f. N(0, σ2) and

constant SNR =
(
2σ2R

)−1
per information bit. In the sequel, it will be convenient for us to

use a constant c = 4(SNR). We use a map {0, 1} → {±1} for each transmitted symbol ai,j ,
where 0 ≤ i 6= j ≤ m. Then the parity checks ai,j form the real-valued products

a0,i = a0,jai,j (2)

Let an all-one codeword 1n be transmitted. Then the received symbols yi,j ≡ yj,i form inde-
pendent Gaussian R.V. N(1, σ2). We will use rescaled r.v. zi,j = δyi,j,where δ = 1/

(
σ2 + 1

)
=

c/ (m+ c+ 1) . It is easy to verify that this scaling gives power moments x0 = E(zi,j) and
σ20 = E(z2i,j) such that

x0 = σ20 = δ (3)

Given some zi,j , an input ai,j = 1 has posterior probability

qi,j , Pr{1 | zi,j} = 1/(exp (−2zi,j) + 1).

Decoding algorithm Ψsoft(z) described below employs two closely related quantities, the log-
likelihoods (l.l.h.) hi,j and the “probability offsets” ui,j :

hi,j = ln[qi,j ]− ln[1− qi,j ] = 2zi,j (4)

ui,j = 2qi,j − 1 = tanh(zi,j) (5)

Given the offsets u0,j and ui,j in (2), it is easy to verify that symbol a0,i has offset u0,i = u0,jui,j .
Also, ui,j = tanh(zi,j) = tanh(hi,j/2). Function tanh(x) has derivatives tanh′(0) = 1 and
tanh′′(0) = 0 at x = 0. Thus, for the vanishing values of zi,j → 0,

ui,j = zi,j + o(z2i,j) = hi,j/2 + o(h2i,j) (6)

Algorithm Ψsoft performs several steps of belief propagation. Unlike conventional algorithms,
we estimate only information bits a0,i. We will show that Ψsoft requires L ∼ lnm/ ln c iterations
to achieve the best performance.

For every step ` = 1, ..., L and every symbol a0,i, consider its j-th parity check a0,i = a0,jai,j
of (2). To re-evaluate a0,i, we introduce the offset ui | `(j) of the symbol a0,j used in this parity
check. Then the estimate ui,juj | `(j) re-evaluates symbol a0,i via the product a0,jai,j . We then
obtain the l.l.h. hi | `+1(j) of the j-th parity check using transforms (4) and (5). Next, the sum
of l.l.h. hi | `+1(j) gives the compound estimate hi | `+1 of the symbol a0,i. Finally, we derive the
partial l.l.h. hj | `+1(i) of the symbol a0,i that will be used in the next round to estimate a0,j via
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its i-th parity check a0,j = a0,iai,j . This excludes the intrinsic information hi | `+1(j) that symbol

a0,j already used in round `. Our recalculations begin with the original estimates ui | 0(j) , u0,i.
Round ` of Ψsoft is done as follows.

For all i, j ∈ {1, ...,m} and j 6= i :

A. Derive quantities ui | `+1(j) = ui,jui | `(j)

and hi | `+1(j) = 2 tanh−1
[
ui | `+1(j)

]
.

B. Derive quantities hi | `+1 =
∑

j hi | `+1(j)

and hj | `+1(i) = hi | `+1 − hi | `+1(j)

C. If ` < L, find ui | `+1(j) = tanh(hi | `+1(j)/2).

Go to A with ` := `+ 1. If ` = L :

estimate BER τL = 1
m

∑
i Pr{hi |L < 0};

output numbers hi |L and ai = sign (hi |L). (7)

To estimate the complexity of Ψsoft, note that Step A uses at most n multiplications and n
two-way conversions u↔ h. Step B calculates the sums hi | `+1 using m operations for each i. It
also requires 2n operations to derive the residual sums hi | `+1(j) and their offsets ui | `+1(j) for
all pairs i, j. Then the overall complexity has the order O(n) for every iteration `. Assuming
that we have L = O( logm) iterations, we obtain complexity O(n log n).

3 Lower bounds for BER of codes Cm

We will now study the output BER of codes Cm. We first show that long codes Cm fail to
achieve BER Pc → 0 for any SNR = c/4 even if they employ ML decoding. This is similar to
the uncoded modulation (UM). Let

Q(x) = (2π)−1/2
∫ ∞
x

exp{−y2/2)dy

Assume that an all-one codeword 1n (formerly, a 0n codeword in Fn2 ) is transmitted and z = (zi,j)
is received. Consider the sets of positions I0 = (0, j | j 6= 0, 1) and I1 = (0, j | j 6= 0, 1). For any
vector z, we will define the corresponding r.v.

Y0 =
∑

j 6=0,1
z0,j , Y1 =

∑
j 6=0,1

z1,j

Below we use asymptotic pdfs as m→∞. Then r.v. zi,j have asymptotic pdf N(δ, δ). It is also
easy to verify that r.v. Zi =

∑
j zi,j , Y0, and Y1 have asymptotic pdf N(c, c).

Codewords of minimum weight in Cm include m generator rows g(p), p = 1, ...,m, of the
generator matrix Gm and their sum g(0) = g(1) + ...+ g(m). Under ML decoding, any two-word
code {1n, g(p)}, has BER

Pc = Pr {Y1 < 0} = Q

(
mδ − δ√
m(δ − δ2)

)
∼ Q

(√
c
)

(8)

Here we write f(m) ∼ g(m) if lim f(m)/g(m) = 1 as m → ∞. Similarly, we use notation
f(m) & g(m) if lim f(m)/g(m) ≥ 1.
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Theorem 1. Let codes Cm be used on an AWGN channel with an SNR of c/4 per information
bit. Then for m→∞, ML decoding of codes Cm has BER

pML(c) & 2Pc(1− Pc) = 2Q
(√
c
)
− 2Q2

(√
c
)

(9)

Proof. Without loss of generality, we consider BER of symbol a0,1. In essence, we prove that
ML decoding gives a0,1 = −1 if so does one of the codes {1n, g(p)} for p = 0, 1. All received
vectors z form four disjoint subsets U = A,B,C,D, where

A = {z |Y0 < 0, Y1 > 0}, B = {z |Y0 > 0, Y1 < 0} (10)

C = {z |Y0 > 0, Y1 > 0}, D = {z |Y0 < 0, Y1 < 0} (11)

Clearly, Pr{A} = Pr{B} = Pc(1− Pc). We will prove that pML(c) & Pr{A}+ Pr{B}.
Two vectors g(p), p = 0, 1, have supports Jp = {(p, j)}, where j ∈ {0, ...,m}\ {p} . For any

z, consider bitwise products g(p)z that flip symbols of z on the supports Jp. Then

g(0)A = C, g(1)A = D, g(0)B = D, g(1)B = C (12)

Let z be decoded into some a(z) ∈ Cm and let a0,1(z) be the first symbol of a(z). We decompose
each set U into

U+ = {z ∈ U : a0,1(z) = 1}, U− = {z ∈ U : a0,1(z) = −1}

Note that a
(
g(p)z

)
= g(p)a(z). Then

g(0)A+ = C−, g(1)A+ = D− (13)

g(1)B+ = C−, g(0)B+ = D−

Conditions (12) and (12) show that maps g(0) and g(1) flip full sets U and there subsets U+ and
U−.

In the next step, we remove the first symbol a0,1 from each vector z and obtain four sets
U ′ = A′, B′, C ′, D′ with a punctured symbol a0,1. Let U ′+ and U ′− denote the punctured subsets
of U+ and U−. Below we show in Lemma 2 that the maps g(0) and g(1) cannot reduce the
probability of the sets A′ +B′. Namely,

Pr
{
C ′−
}

+ Pr
{
D′−
}
≥ 2 Pr

{
A′+
}

(14)

Pr
{
C ′−
}

+ Pr
{
D′−
}
≥ 2 Pr

{
B′+
}

(15)

Finally, consider pML(c) ≡
∑

U Pr {U−} . We then prove in Lemma 3 that removing one bit a0,1
has immaterial impact on Pr{U} as m→∞, so that Pr{U} ∼ Pr{U ′}. Then

pML(c) =
∑

U
Pr {U−} ∼

∑
U

Pr
{
U ′−
}

We can now use (14) and (15), which gives

pML(c) ∼ Pr
{
A′−
}

+ Pr
{
B′−
}

+ Pr
{
C ′−
}

+ Pr
{
D′−
}

≥ Pr
{
A′−
}

+ Pr
{
B′−
}

+ Pr
{
A′+
}

+ Pr
{
B′+
}

= Pr
{
A′
}

+ Pr
{
B′
}

Thus, we obtain (9). �
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Lemma 2. Punctured sets U ′ = A′, B′, C ′, D′ satisfy inequalities (14) and (15).

Proof. Recall that 1n is the transmitted vector. In this case, the set C has the highest probability
among all sets U , whileD is the least likely. We now can establish stronger conditions. In essence,
we show that the transition A 7→ C (or B 7→ C) produces a greater increase Pr(C)−Pr(A) than
the drop Pr(A)− Pr(D) required in transition A 7→ D.

We say that any x ∈ A′, B′ is a (θ, ρ) vector if Y0 = θ, Y1 = ρ. According to (10), any x ∈ A
has θ < 0, ρ > 0, whereas it is vice versa for x ∈ B.

Recall that r.v. Y0, Y1 have asymptotic pdf N(c, c). (The exact pdf is N(cλ, cλ − cδλ)).
Consider (θ, ρ)-vectors x ∈ A. On the subset I0 = {(0, j)} , these vectors x have pdf

p (θ) ∼ (2πc)−1/2 e−(θ−c)
2/2c

For any x, the transform g(0)x only flips symbols x0,j thus replacing p.d.f. p (θ) on the set I0
with p (−θ) . This gives the ratio

r (θ) = p (−θ) /p (θ) = e−2θ

The other transform g(1)x of any (θ, ρ)-vector x flips symbols x1,j . Then we obtain the ratio

r (ρ) = p (ρ) /p (−ρ) = e−2ρ

Now we consider two vectors from A+, namely, x = x (θ, ρ) and y = y (−ρ,−θ). Then g(0)x ∈ C
and g(1)x ∈ D. The same inclusion holds for vector y. Also, both vectors x and y have the same
pdf p(x) = p(y) = p generated on the sets I0 and I1, since both r.v. Y0 and Y1 have the same
distribution. We can now estimate the total pdf of vectors g(p)x and g(p)y as follows

p
(
g(0)x

)
+ p

(
g(1)x

)
=
(
e−2θ + e−2ρ

)
p

p
(
g(0)y

)
+ p

(
g(1)y

)
=
(
e2θ + e2ρ

)
p

Since exp{−2a}+ exp{2a} ≥ 2 for any a, we can reduce the latter equalities to

2
∑

p=1,2
p
(
g(p)x

)
+ p

(
g(p)y

)
≥ 4p

This immediately leads to inequality (14). Inequality (15) is identical if we replace A+ with B+.
Other inequalities of the same kind can be obtained if we consider subsets A′, B′ (or A′−, B

′
−).

�
We now prove that removing position (0, 1) is immaterial for our proof.

Lemma 3. Any set U and its one-bit puncturing U ′ satisfy asymptotic equality Pr{U} ∼ Pr{U ′}.

Proof. Note that r.v. z0,1 has pdf N(δ, δ), where δ ∼ c/m → 0 as m → ∞, whereas r.v. Y0 (or
Y1) has pdf N(δ, δ). Let r =

√
c/m lnm and r′ = r lnm. Then with probability tending to 1, we

have the following conditions:
z0,1 ∈ [−r, r], Y0 /∈ [−r′, r′] (16)

Thus, Pr{z0,1/Y0 → 0} → 1 as m → ∞. Now we see that equalities Pr{U} ∼ Pr{U ′} hold for
any set U or U+ or U− as m→∞. �
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4 Probabilistic Bounds for BP decoding

Our next goal is to study BP algorithm Ψsoft of (7). We first slightly expand on our notation.
We say that events Um hold with high probability Pm if Pm → 1 as m→∞. Let N(a, b) denote
the pdf of a Gaussian r.v. that has mean a, variance b, and the second power moment a2 + b.
Consider a sequence of Gaussian r.v. xm that have pdf N(a, bm), where bm = b(1 + θm), b > 0

is a constant, and θm → 0 as m→∞. Consider also any sequence tm such that tm = o(θ
−1/2
m ).

Then Pr{xm > tm} ∼ Q((tm − a) b−1/2) and we write N(a, bm) ∼ N(a, b).
Consider also r.v. zi,j that has pdf asymptotic N(δ, δ) as m→∞. Then restriction (16) shows

that with high probability zi,j → 0. Then equality (6) shows that ui,j = zi,j+o(z2i,j) ∼ zi,j . Thus,
we will replace r.v. ui,j in algorithm Ψsoft with zi,j .

To derive analytical bounds, we will slightly simplify algorithm Ψsoft and assign the same
value hi | `+1(j) = hi | `+1 for all j instead of different assignments hi | `+1(j) := hi | `+1−hj | `+1(i).
It can be shown that this change is immaterial for our asymptotic analysis. It also makes very
negligible changes even on the short blocks C. The simplified version of the algorithm Ψsoft -
described below - begins with the initial assignment uj | 0 = z0,j in round ` = 0. We will perform
L = 2 lnm/ ln c rounds. In round `, Ψsoft proceeds as follows.

A. Derive quantities ui | `+1(j) = zi,juj | `

and hi | `+1(j) = 2 tanh−1
[
ui | `+1(j)

]
.

B. Derive quantities hi | `+1 =
∑

j hi | `+1(j)

C. If ` < L, find ui | `+1 = tanh(hi | `+1/2).

Go to A with ` := `+ 1. If ` = L :

estimate BER τL = 1
m

∑
i Pr{hi |L < 0};

output numbers hi |L and a0,i = sign (hi |L). (17)

To derive analytical bounds, we will also assume that different r.v. hi | ` are “weakly dependent”.
Namely, we call r.v. ξ1, ..., ξm weakly dependent if for m→∞, we have asymptotic equality

E(ξi | ξj1 , ..., ξjb)→ E(ξi)

for any constant b, index i, and any subset J = {j1, ..., jb} such that i /∈ J . In particular, we
will assume that the conditional moment E(hi | `+1 |hj1 | `, ..., hjb | `) tends to the unconditional
moment E(hi | `+1). This assumption does not necessarily hold if b is a growing number. However,
in our case, r.v. hi | `+1 includes m− 1 different summands hi | `+1(j) for all j 6= i. On the other
hand, only one related term hj | `(i) is included in each sum hj | ` for any j ∈ J. (Both terms
include the same factor ui,j used to evaluate symbols a0,i and a0,j in parity check (2)). The
above assumption is also corroborated by the simulation results, which essentially coincide with
the theoretical bounds derived below (see Fig. 3, in particular).

Our goal is to derive BER Psoft(c) = lim τL for Ψsoft as L,m → ∞. Given c > 0, consider
the equation

x =
1√
2π

∫ ∞
−∞

tanh(t
√
xc)e−(t−

√
xc)

2
/2dt (18)

In Lemma 8, we will show that for c ≤ 1 equation (18) has a single root x = 0. For c > 1, (18)
has the root x = 0 and two other roots x∗ and −x∗, where x∗ ∈ (0, 1).

For any ` = 0, 1, ..., L and any m → ∞, we introduce parameter c` = c(`+1)/2. We then

7



derive probabilities P` using recursion P`+1 = S` + P`T`, where

S` = (2π)−1/2
∫ ∞
−∞

Q(c`t)e
−(t−c`)2/2dt (19)

T` = (2π)−1/2
∫ ∞
−∞

Q(c`t)
(
e−(t+c`)

2/2 − e−(t−c`)2/2
)
dt (20)

and P0 = Q(
√
c). For any `, probabilities P` depend on c only. We will also show that quantities

P` converge exponentially fast as ` → ∞. Let P∞ = lim`→∞ P`. We can now establish the
asymptotic value of BER as m→∞.

Theorem 4. Let codes Cm be used on an AWGN channel with an SNR c/4 per information bit.
For m→∞ and c ≤ 1, algorithm Ψsoft has BER Psoft(c)→ 1/2. For c > 1,

Psoft(c) ∼ (1− P∞)Q (
√
x∗c) + P∞(1−Q (

√
x∗c)) (21)

In Fig. 2 of this section, we will plot analytical bound (21) along with simulation results and
the lower bound (9) of ML decoding. We will see that all three bounds of Fig. 2 give very tight
approximations.

We begin the proof of Theorem 4 with Lemma 5. Here we analyze the sums of r.v. zj that
have asymptotic pdf N(δ, δ) with a small bias δ → 0.

Lemma 5. Consider m independent r.v. z1, ..., zm with pdf N(δ, δ), where δ ∼ c/m. Let Z =∑
j zj and Y =

∑
j z

2
i.j . Then for m→∞,

E (Z |Y ) ∼ E (Z) ∼ c (22)

Proof. Consider r.v. εj = zj − δ that has pdf N(0, δ). Let R =
∑

j ε
2
j . This r.v. has ℵ2

distribution that tends to N(c, 2δc) as m → ∞. Next, note that r.v. z2j and ε2j are equivalent
with high probability. Indeed,

z2j = ε2j + 2δεj + δ2 ∼ ε2j (23)

Here with high probability we have two events. First, ε2j ≥
√
δ/ lnm, whereas the terms |δεj |

and δ2 are bounded from above by δ3/2 lnm = o
(√

δ/ lnm
)
. Thus, z2j ∼ ε2j and Y ∼ R as

m→∞. In turn, this implies that r.v. Yi has asymptotic pdf N(c, 2δc).
To prove (22), we now may consider unbiased r.v. εj and prove asymptotic equality

E
(∑

j
εj |R

)
∼ E

(∑
j
εj

)
= 0 (24)

Consider any subset S of 2m unbiased vectors (±ε1, ...,±εm) that give the same sum R =
∑

j ε
2
j .

Then asymptotic equality (24) holds for each subset S, which proves Lemma 5. �

To prove Theorem 4, we will first study r.v. ui | ` and their average power moments

x` = E
∑

i

(
ui | `/m

)
(25)

σ2` = E
∑

i

(
u2i | `/m

)
(26)

Then r.v. u` =
∑

i ui | `/m has power moments x` and σ2` /m (here we assume that r.v. ui | `
are weakly dependent).

In the following statements (Lemmas 6-8 and Theorem 4), we will show that r.v. u` undergo
two different processes as `→∞. In the initial iterations ` = 1, ..., r.v. u` take vanishing values
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with high probability as m→∞. In these iterations, they also may take multiple random walks
across the origin. For c < 1 and ` → ∞, r.v. u` converge to 0. By contrast, for c > 1, r.v. u`
gradually move away from the origin in opposite directions, albeit with different probabilities.
In the process, r.v. u` cross 0 with the rapidly declining probabilities as `→∞. They approach
two end points, x∗ and −x∗ with probabilities 1 − P∞ and P∞, respectively, and converge to
these points after ` & lnm/ ln c iterations. At this point, any r.v. ui | ` (that represents a specific
bit i) has BER of Q

(√
x∗c
)

and 1−Q
(√
x∗c
)
. This constitutes bound (21).

We first derive how quantities x` and σ2` change in consecutive iterations. Let σ > 0 and
−σ ≤ x ≤ σ. Below we use two functions

Fc(x, σ) = (2π)−1/2
∫ ∞
−∞

tanh
(
σt
√
c
)
e−(t−x

√
c/σ)2/2dt (27)

Gc(x, σ) = (2π)−1/2
∫ ∞
−∞

tanh2
(
σt
√
c
)
e−(t−x

√
c/σ)2/2dt (28)

Lemma 6. Let r.v. ui | `, i = 1, ..,m, have average power moments x` and σ2` of (25) and (26).
Then any r.v. ui | `+1 has conditional power moments

E (x`+1 |x`, σ`) = Fc (x`, σ`) (29)

E
(
σ2`+1 |x`, σ`

)
= Gc (x`, σ`) (30)

Proof. Below we consider r.v. zi,j , Zi =
∑

j zi,j and Yi =
∑

j z
2
i,j . The proof of Lemma 5

shows that these r.v. have pdfs N(δ, δ), N(c, c), and N(c, 2δc), respectively. For m → ∞, we
will use three restrictions, all of which hold with high probability. Firstly, |zi,j | ≤ ∆, where
∆ = 2

√
δ lnm→ 0. Indeed,

Pr {|zi,j | > ∆} ≤ 2Q(2 lnm−
√
δ) = m−2 lnm+o(1) (31)

Also,
c−
√
c lnm ≤ Zi ≤ c+

√
c lnm (32)

Yi ∈ (c−∆1, c+ ∆1), ∆1 = m−1c lnm (33)

Since zi,j → 0 for all i, j, algorithm Ψsoft can use the following approximations

ui | `+1(j) = ui,juj | ` ∼ zi,juj | ` (34)

hi | `+1(j) = 2 tanh−1
[
zi,juj | `

]
∼ 2zi,juj | ` (35)

Here we assume that r.v. zi,j and uj | ` are “weakly dependent”. Indeed, any estimate of uj | `
includes m−1 terms and only one term includes r.v. zi,j . We then fix the sums Zi =

∑
j zi,j and

consider conditional r.v. zi,juj | ` |Zi. Given restrictions (32) and (33) we obtain the moments

E
(
zi,juj | `|Zi

)
= E (zi,j)E(uj | `) = x`Zi/m (36)

D
(
zi,juj | ` |Zi

)
= E(z2i,j |Zi)E(u2j | `)− (x`Zi/m)2 ∼ δσ2` (37)

Similarly to the proof of Lemma 5, we consider r.v. z2i,j and the sums Zi to be independent.

We also remove the term (x`Zi/m)2 in (37). Indeed, this term is immaterial since x2` ≤ σ2`
and (Zi/m)2 . cm−2 lnm = o (δ) , according to (32). In essence, here r.v. zi,juj | ` have negli-
gible means, which yield similar values of conditional variances D

(
zi,juj | ` |Zi

)
and the second

moments E
(
zi,juj | ` |Zi

)2
.
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We can now proceed with r.v. hi | `+1 = 2
∑

j zi,juj | ` that sums up independent r.v. zi,juj | `
derived in Step B of Ψsoft. Here we obtain

E
(
hi | `+1|Zi

)
= mE

(
zi,juj | ` |Zi

)
∼ 2x`Zi (38)

D
(
hi | `+1|Zi

)
= mD

(
zi,juj | ` |Zi

)
∼ 4cσ2` (39)

We can now proceed with the r.v. ui | `+1 ∼ tanh(hi | `+1/2) used in Step C of Ψsoft. For a
given Zi, r.v. hi | `+1 has Gaussian pdf N(2x`Zi, 4cσ

2
` ). By using the variables z ≡ x`Zi and

t = z/σ`
√
c, we obtain (29):

E
(
ui | `+1

)
∼
(
2πσ2` c

)−1/2 ∫ ∞
−∞

tanh(z)e−(z−x`c)
2/2cσ2

` dz

= (2π)−1/2
∫ ∞
−∞

tanh(σ`t
√
c)e−(t−x`

√
c/σ`)

2
/2dt = Fc(x`, σ`) (40)

Similarly, we obtain (30):

E
(
u2i | `+1

)
∼ Gc(x`, σ`) (41)

which completes the proof. �

Recall that the original r.v. ui | 0 have equal power moments x0 = σ20 of (3). The following
lemma shows that nonlinear transformations (40) and (41) preserve this equality. It is for this
reason that we rescaled the original r.v. yi,j into zi,j to achieve equality (3).

Consider function Fc(x, σ) of (27) for |x| = σ2. For any c, this gives the function

Rc(x) = (2π)−1/2
∫ ∞
−∞

tanh(t
√
|x| c)e−

(
t−
√
|x|c

)2
/2
dt (42)

Lemma 7. For any two quantities x, σ such that |x| = σ2 and any c > 0, functions Fc(x, σ)
and Gc(x, σ) satisfy relation

Fc(x, σ) = Gc(x, σ) = Rc(x), if x ≥ 0

Fc(x, σ) = −Gc(x, σ) = −Rc(x), if x < 0
(43)

Proof. Let x = σ2 and r = t
√
xc. Then e−(t−

√
xc)

2
/2 = ere−t

2/2e−xc/2. Consider the function

f(r) = er
(
tanh(r)− tanh2(r)

)
=

er − e−r

1 + e2r + e−2r

Clearly, f(r) is an odd function of r. Then

Fc(x, σ)−Gc(x, σ) = (2πxc)−1/2 e−xc/2
∫ ∞
−∞

f(r)e−r
2/2xcdr = 0

The case of x < 0 is similar. Note that Fc(x, σ) is an odd function and Gc(x, σ) is an even
function. Then we proceed as above. �

Lemma 8. For c ≤ 1, equation (18) has a single solution x = 0. For c > 1, equation (18) has
three solutions: x = 0, x∗ ∈ (0, 1) and −x∗.
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Proof. Let x > 0. Integration in (42) includes the pdf of N(
√
xc, 1), which gives negligible

contribution beyond an interval t ∈ (−x−1/4, x−1/4). For x → 0, we can now limit 42) to this
interval. In this case, t

√
xc→ 0 for any c and tanh(t

√
xc) ∼ t

√
xc. Then

Rc(x) ∼ (2π)−1/2
∫ ∞
−∞

t
√
xce−(t−

√
xc)

2
/2dt = xc (44)

Thus, inequalityRc(x) > x holds for sufficiently small x iff c > 1.On the other hand, tanh(t
√
xc) <

1 and therefore Rc(x) < 1 for any x. Now we see that functions y = Rc(x) and y = x intersect at
some point x∗ ∈ (0, 1) for any c > 1. Finally, it can be verified that Rc(x) has a declining positive
derivative R′c(x), unlike the constant derivative 1 of the function y = x. Therefore, equation (18)
has a single positive solution x∗. �

In Fig. 1, function y = Rc(x) is shown for different values of x ∈ [0, 1] and SNR =
10 log10(c/4). The cross-point of functions y = Rc(x) and y = x represents the root x∗. Here the
threshold c = 1 corresponds to SNR = −6 dB.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Y=X
Rc(x) for SNR = -6 dB
Rc(x) for SNR = -4 dB
Rc(x) for SNR = -2 dB
Rc(x) for SNR = 0 dB
Rc(x) for SNR = 2 dB
Rc(x) for SNR = 4 dB
Rc(x) for SNR = 6 dB

Figure 1: Functions y = Rc(x) and y = x for different values of SNR = 10 log10 (c/4) .

Summarizing Lemmas 6-8, we have

Corollary 9. Let m → ∞. Then r.v. ui | `, i = 1, ..,m, have power moments x` and σ2` that
satisfy equality |x`| = σ2` for any iteration `. Iteration ` transforms x` and σ2` into

|x`+1| = σ2`+1 = Rc(x`) (45)

Proof of Theorem 4.
1. Lemma 8 shows that for c > 1, function Rc(x`) grows for positive x`. Thus, equality

Rc(x`) = x` holds iff x` = x∗, where x∗ the root of (18). Next, consider initial iterations
` = 0, ... Here r.v. u0 has pdf N(δ, δ/m) and (with high probability) has vanishing values
|u0| ≤

√
δ/m lnm. In further iterations `, transform (44) performs simple scaling x`+1 ∼ cx` as

long as x` → 0 for m→∞. Thus, algorithm Ψsoft fails for c < 1 since x` → 0 in this case.
2. Now let c > 1 and L = lnm/ ln c. Note that u0 < 0 with probability Q(

√
δm) ∼ Q(

√
c).

For iterations ` = o(L) and m→∞, we still obtain vanishing moments |E(u`)| . c`δ → 0 .It can
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also be verified that E(u`) moves away from 0 in µ = αL iterations for some α > 0.. Note also
that r.v. u` has variance D(u`) ≤ D(ui | `)/m ≤ 1/m. Thus, both cases, u` → x∗ or u` → −x∗,
hold with high probability as `→∞.

3. We can now derive the BER for both cases. From (38) and (37), we see that the Gaussian
random variable hi | `+1 has the moments

E
(
hi | `+1

)
∼ 2x`E (Zi) = 2x`c, D

(
hi | `+1

)
∼ 4cσ2`

For any iteration `, we can now estimate BER pi | `+1 = Pr{hi | `+1 < 0} as

pi | `+1 = Q
(
x`c/σ`

√
c
)

=

{
Q
(√
x`c
)
, if x` > 0

1−Q (
√
−x`c) , if x` < 0

(46)

4. Consider the probabilities P` = Pr {x` < 0} and 1 − P` = Pr {x` > 0} , which define
conditions of (46). We will now use two partial distributions of r.v. u` that have opposite means
±b`, where b` = |x`|. According to (45), r.v. ui | ` have the second moment E(u2i | `) = b`. Then

r.v. u` =
∑

i

(
ui | `/m

)
has the pdf N(± b`, η`) with the variance

η` =
(
b` − x2`

)
/m = b`(1− b`)/m

Note that b` → x∗ for ` > L, whereas η` → 0 as `,m→∞. Thus, r.v. u` cross 0 with a vanishing
probability for any iteration ` > L. On the other hand, r.v. u` may cross 0 multiple times if
` = o(L). From now on, we take ` = o(L). Then we will express P`+1 via P` using the mean

b` = c`δ

5. Consider both distributions N(x`, η`), where x` = ±b` = ±c`δ. Given some value u of r.v.
u`, define r.v. u`+1 |u = m−1

∑
i

(
ui | `+1 |u

)
. This r.v. has pdf

p(u) = N(cu, cη`) = (2πη`)
−1/2e−(u−x`)

2m/2η`

First, let E(u`) = b`. Clearly Pr{cu < 0} = Q(u
√
c/η`). Then we average over all values u of u`

and obtain the probability

S` = Pr{u`+1 < 0 |E(u`) = b`} =

∫ ∞
−∞

Q(u
√
c/η`)p(u)du

∼ (2π)−1/2
∫ ∞
−∞

Q(t
√
c)e−(t−b`/

√
η`)

2/2dt

Here we use variable t = u/
√
η`. Next, we consider the initial iterations ` = o(lnm/ ln c) and

introduce parameter

C` = b`/
√
η` ∼

√
c`+1/(1−m−1c`+1) ∼ c(`+1)/2 (47)

Note that b`/
√
η` = C` ∼ c`, which gives (19). Similarly, for E(u`) = −b`, we obtain the

probability

Q` = Pr{u`+1 < 0 |E(u`) = −b`} =

∫ ∞
−∞

Q(u/
√
c/η`)p(−u)du

For ` < L = lnm/ ln c, this gives the probability

P`+1 = Pr {u`+1 < 0} = (1− P`)S` + P`Q` = S` + P`T` (48)
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where T` = Q` − S` is given by (20). We can also slightly tighten estimates (19) and (20), by
using quantity C` of (47) instead of c`.

We can now proceed with iterations P`, which begin with P0 = Q(
√
c). For any `, quantities

S` and T` depend on c only. Also, quantities c` = c(`+1)/2 grow exponentially, in which case
S` → 0 and Q` → 1. Thus, quantities P` converge, since P`+1 ∼ P`Q` for sufficiently large ` ≥ L.

We can now evaluate Psoft. For ` → ∞, we replace P` with P∞ in (48) and use x∗ of (18).
Finally, note that (21) is only an asymptotic estimate. Here we excluded the residual term
O (lnm/

√
m) used in approximations (31) and (33). �

−6 −4 −2 0 2 4 6 8
SNR [dB]

10−6
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pfinite length
psim
pML

Figure 2: Simulation results and analytical bounds for the algorithm Ψsoft applied to
modulation-type codes C128 of length 8256.

High-signal case. Consider functions S` and T` of (19) and (20) as c → ∞. Then S` → 0,
T` → 1, and P∞ → P0 = Q (

√
c) . In this case, Psoft ∼ 2Q (

√
c) ∼ (2/πc)1/2e−c/2. The latter

represents a 3 dB gain over the uncoded modulation, whose BER has the order of e−c/4.
Complexity. Given m information bits, algorithm Ψsoft has complexity of order m2 logm.

Indeed, each iteration ` recalculates quantities ui | `(j) and hi | `(j) for all ordered pairs (i, j). This
requires O(m2) operations. We also need O(logm/ log c) iterations ` to make the estimates ui | `
bounded away from 0 as m → ∞. Also, it can be shown that the stable point x∗ can be
reached within a margin ε→ 0 in O

(
ln ε−1 / ln c

)
iterations. For ε = m−1, this gives the overall

complexity of m2 lnm/ ln c operations.
Simulation results vs analytical bounds. In Fig. 2, we plot analytical bound Psoft of (21)

along with simulation results Psim and the lower bound PML of (9). Here we consider codes
Cm of dimension m = 128 on the AWGN channels with various SNRs 10 log10(c/4). We see that
both bounds (21) and (9) tightly follow simulation results and each other. This also supports
our main assumption that the algorithm Ψsoft can be considered using independent random
variables. For completeness, we also plot non-asymptotic bound Pfinite length obtained by using
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parameters C` of (47) in both formulas (19) and (20). Unexpectedly, this bound completely
coincides with a much simpler lower bound PML for high SNR.

5 Multilevel protection schemes

Let Bi = Bi(µ, µri) be a sequence of b capacity-achieving polar codes. The rates 0 ≤ r0 <
... < rb−1 will be specified later. We first encode data block ai of length µri into some vector
Ai ∈ Bi and then form a compound block A = (A0, ..., Ab−1) of length m = µb. Below µ → ∞
and b is a constant. Block A is further encoded by code Cm of rate Rm = 2/(m+ 1) and length
n =

(
m+1
2

)
. We use notation Ĉm for the compound code of rate R ∼ Rmr, where r =

∑
i ri/b.

Thus, code Ĉm reduces code rate Rm by a factor of r, which gives SNR of c/4r per information
bit.

Let Is = {µs + 1, ..., µ(s + 1)} for any s = 0, ..., b − 1. The received block Ĉ = Ĉ(0) of
length n is first decoded by the algorithm Ψsoft using L = O(lnm) iterations. The result is

some block Â(0) of length m. We then retrieve the first µ decoded bits in Â(0) that form the
sub-block Â0 = (â1, ..., âµ) of length µ. Block Â0 is decoded by a polar code B0 into some block
A0 = {a1, ..., aµ}. We assume that the corrected block A0 has WER → 0 as µ → ∞. We then

use A0 to replace the first µ symbols of the block Ĉ(0). The result is a new block Ĉ(1) of length
n. This completes round s = 0.

Round s = 1 is similar. Algorithm Ψsoft now also employs block A0 to recalculate the

remaining m−µ information bits of Ĉ(1). The obtained sub-block Â1 = (âµ+1, ..., â2µ) is decoded

into some vector A1 = {aµ+1, ..., a2µ} using code B1. Then A1 replaces Â1 in positions i ∈ I1 and

yields a new block Ĉ(2). Similarly, rounds s = 2, ..., b− 1 only retrieve a block As on positions
i ∈ Is Then we obtain block Ĉ(s+ 1) that include corrected bits a1, ..., a(s+1)µ.

In any round s, µs corrected information bits serve as frozen bits and aid the algorithm
Ψsoft. Indeed, with high probability, we use correct estimates uj | ` = aj for all j ≤ µs. Then the
parity checks ui | `+1(j) = ui,juj | ` are reduced to the repetitions/inversions ui | `+1(j) = ajui,j of
symbols ui,j . Also, recall that algorithm (7) outputs the likelihoods hi |L of all symbols ai. Thus,
we use hi |L as our bit estimates in every round s as follows.

For all i ∈ {µs+ 1, ...,m} and j ∈ {1, ...,m} :

A. Use block Ĉ(s). Derive ui | `+1(j) = ui,juj | `

and hi | `+1(j) = 2 tanh−1(ui,juj | `)

B. Derive hi | `+1 =
∑

j hi | `+1(j)

C. If ` < L, find ui | `+1 = tanh
(
hi | `+1/2

)
.

Goto A with ui | `+1 and ` := `+ 1.

D. If ` = L, use block Âs = (hi |L, i ∈ Is).
Decode it into As ∈ Bs(µ, µrs).

E. Replace Âs with As to form Ĉ(s+ 1).

If s < b− 1, let s := s+ 1, ` := 0. Goto A.

If s = b− 1, output bits a1, ..., am.

Let an information block A consist of m zeros. We then use antipodal signaling and transmit a
codeword 1n over an AWGN channel. Round s includes µs correct information bits ui | ` = ai = 1.
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Let λs = s/b. Then the remaining m− µs r.v. ui | `, i > µs, have the average power moments

x` = [m (1− λs)]−1
∑

i>µs
Eui | ` (49)

σ2` = [m (1− λs)]−1
∑

i>µs
E
(
u2i | `

)
(50)

In particular, the initial setup with ` = 0 employs the original r.v. ui | 0 that have asymptotic
pdf N(δ, δ) for all i > µs and satisfy equalities x0 = σ20 = δ.

Theorem 10. Let the algorithm Ψsoft have λm correct information symbols a1 = ... = aλm = 1,
where λ ∈ (0, 1). Then the remaining (1− λ)m symbols ai have BER

Psoft(λ, c) ∼ Q
(√

cX(λ)
)

(51)

where X(λ) satisfies equations

X(λ) = λ+ (1− λ)x(λ) (52)

x(λ) = (2π)−1/2
∫ ∞
−∞

tanh
(
t
√
cX(λ)

)
e
−
(
t−
√
cX(λ)

)2
/2
dt (53)

Proof. In essence, we follow the proof of Theorem 4. The main difference - that simplifies the
current proof - is that the former vanishing point x0 = δ → 0 is now replaced with X0 → λ.
This removes the random walks across 0 analyzed in parts 4 and 5 of the former proof. Thus,
now we have the case of P∞ = 0. The details are as follows.

For any j ≥ µs+ 1, we use approximations (34) and (35) and take uj | ` = 1 for j ≤ µs. Then

hi | `+1(j) ∼ 2ui | `+1(j) ∼

{
zi,juj | `, if j ≥ µs+ 1

zi,j , if j ≤ µs

For any given Zi, consider the sums Z ′i =
∑

j≤µs zi,j and Z ′′i =
∑

j≥µs+1 zi,j . These sums have
expected values E(Z ′i) = λZi and E(Z ′′i ) = (1− λ)Zi. Let

X` = λ+ (1− λ)x`

θ2` = λ+ (1− λ)σ2`

Then we define the moments

E
(
hi | `+1

)
∼ 2x`Z

′′
i + 2Z ′i ∼ 2Zi [λ+ x` (1− λ)] = 2ZiX` (54)

D
(
hi | `+1

)
∼ 4c (1− λ)σ2` + 4cλ = 4cθ2` (55)

Thus, r.v. hi | `+1/2 has Gaussian pdf N(X`c, θ
2
` c).

Next. consider r.v. ui | `+1 ∼ tanh(hi | `+1/2). Similarly to equalities (29) and (30), we have

E
(
ui | `+1

)
∼
(
2πθ2` c

)−1/2 ∫ ∞
−∞

tanh(z)e−(z−X`c)
2/2cθ2` dz = Fc(X`, θ`) (56)

E[u2i | `+1] ∼
(
2πθ2` c

)−1/2 ∫ ∞
−∞

tanh2(z)e−(z−X`c)
2/2θ2` cdz = Gc(X`, θ`)

Any round s = λb begins with the initial values X0(λ) and θ20(λ) that satisfy equalities

X0(λ) = θ20(λ) = λ+ δ (1− λ) ∼ λ (57)
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which are similar to the former equality x0 = σ20. Thus, we may follow the proof of Theorem
4 and obtain equality Fc(X`, θ`) = Gc(X`, θ`) for any iteration `. Now we see that x`+1 = σ2`+1

and X` = θ2` . Then for any λ and ` → ∞, we use variables x(λ) and X(λ) = λ + (1− λ)x(λ).
Equalities (49) and (56) then give

x(λ) = E (u∞i ) = Fc(X(λ),
√
X(λ))

which can be rewritten as (53).
This also gives estimate (51). Indeed, iterations (54) and (55) show that the original iteration

for ` = 0 gives r.v. h1i that has Gaussian pdf N(2λc, 4λc). Then for any round s = λb, r.v. u1 =
m−1

∑
i>µs ui | 1 has the mean Fc(λc, λc) = R(λc) and the vanishing varianceD =R(λc)/(1−λ)m,

where Rc(x) is defined in (42). Thus, for any λ > 0, our iterations begin with the crossover
probability P0 = Pr {u1 ≤ 0} → 0 as m → ∞. The latter implies that P` → 0 for ` → ∞, as
defined in (48). In turn, we can remove P∞ = 0 from (21). Now we can use r.v. hi | `+1that have
pdf N(2X`c, 4X`c), according to (54) and (55). For `→∞, this gives (51) as

Psoft(λ, c) = Pr{hi |∞ < 0} ∼ Q
(√

X(λ)c
)

(58)

�
The absence of random walks in our current setup also makes bound (51) very tight. This

is shown in Fig. 3, where we plot analytical BER of (51) along with simulation results obtained
for the algorithm Ψsoft(λ). Here we consider codes Cm with m = 128 and test various fractions
of frozen bits λ = s/m and different S/N ratios 10 log10(c/4).
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Figure 3: Simulation results and analytical bounds for the algorithm Ψsoft applied to
modulation-type codes C128 with a fraction λ of frozen bits.

Recall that the likelihoods hi |L(λ) give BER (51) in round s = λb. We can now represent
any Gaussian r.v. hi |L(λ) as a channel symbol that has pdf N(1, σ2) and a BER Q(1/σ). Thus,
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σ2 = 1/cX(λ). An important note is that codes Bs(µ, µrs) now operate on the AWGN channels
N(0, σ2) that have a limited noise power 1/cX(λ). Unlike the original code Cm, we can now use
codes Bs(µ, µrs) of non-vanishing code rates that grow from r0 to rb−1.

Theorem 11. Codes Ĉm of dimension k →∞ and length n = O(k2) precoded with b polar codes
have overall complexity of O(n lnn). For sufficiently large b, these codes achieve a vanishing BER
if used arbitrarily close to the Shannon limit of −1.5917 dB per information bit.

Proof. In round s = λb, we use a capacity-achieving code Bs(µ, µrs). The corresponding
BI-AWGN channel Ns(0, σ2s) has noise power σ2s = (X(λ)c)−1 and achieves capacity [14]

ρc(λ) = log2

√
cX(λ)

2πe
−
∫ ∞
−∞

f(y) log2 f(y) dy (59)

f(y) =

√
cX(λ)

8π

[
e−(y+1)2cX(λ)/2 + e−(y−1)

2cX(λ)/2
]

Here parameter λ changes from 0 to 1 in small increments 1/b, which tend to 0 as b→∞. The
average capacity for all AWGN channels Ns(0, σ2s) is ρc =

∫ 1
0 ρc(λ)dλ. Thus, for m → ∞, code

Ĉm achieves a vanishing BER for any code rate r < 2ρc/m, which gives SNR > c/4ρc.
We now proceed with code complexity. For b polar codes Bs(µ, µrs), design complexity

has the order of bµ2 ∼ 2n/b or less. Their decoding requires the order of bµ lnµ < m lnm
operations. Algorithm Ψsoft includes b rounds with L = O(lnm) iterations in each round. This
gives complexity order of n lnn if b is a constant or n ln2 n for growing b < lnm. Thus, overall
complexity has the order of k2 ln k, where k → ρcm is the number of information bits.

To calculate the minimum SNR κ = minc (c/4ρc) , we select parameters c and b. Then we
solve equation (52) for different values of λ = s/b, where s = 0, ..., b− 1, and calculate ρc. The
following table gives the highest value of code rate ρc, and the corresponding value of κ = κ(c, b).
Here we count κ in dB, as 10 log10 κ. The last line shows the gap κ/ ln 2 − 1 to the Shannon
limit of ln 2.

b 102 103 104 25000

ρc 0.404 .3621 .3623 .3623

κ (in dB) −1.5655 −1.5890 −1.5915 −1.5917

κ/ ln 2− 1 6E − 3 7E − 4 6E − 5 E − 5

Finally, note that b is a constant for any SNR > ln 2. Statement 1 now follows directly from the
existing bounds [12] on BER for polar codes. Here polar codes Bi have length µ = m/b > 2k/b.
�

6 Concluding remarks

In this paper, we study new codes that can approach the Shannon limit on the BI-AWGN
channels. We first employ “modulation ” codes Cm that use parity checks of weight 3. These
codes can be aided by other codes Bm via back-and-forth data recovery. Using BP algorithms
that decode information bits only, codes Cm achieve complexity order of n lnn. Then new
analytical techniques give tight lower and upper bounds on the output BER, which are almost
identical to simulation results. Finally, we employ multilevel codes of dimension k → ∞ that
approach the Shannon limit with complexity order of k2. One open problem is to find out if
there exists a close-form solution to the transcendental equations (52), which (unexpectedly)
give the Shannon limit using numerical integration in (59).
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Our future goal is to improve code design for moderate lengths. This work in progress
uses more advanced combinatorial designs for modulation codes. We conjecture that it also
may reduce code complexity to the order of ln2 k operations per information bit for dimensions
k →∞.
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