
On Greedy Approaches to Hierarchical Aggregation∗

Alexandra Porter
Department of Computer Science

Stanford University
Stanford, CA

amporter@stanford.edu

Mary Wootters
Departments of Computer Science

and Electrical Engineering
Stanford University

Stanford, CA
marykw@stanford.edu

02/09/21

Abstract

We analyze greedy algorithms for the Hierarchical Aggregation (HAG) problem, a strategy introduced
in [Jia et al., KDD 2020] for speeding up learning on Graph Neural Networks (GNNs). The idea of HAG
is to identify and remove redundancies in computations performed when training GNNs. The associated
optimization problem is to identify and remove the most redundancies.

Previous work introduced a greedy approach for the HAG problem and claimed a 1-1/e approxima-
tion factor. We show by example that this is not correct, and one cannot hope for better than a 1/2
approximation factor. We prove that this greedy algorithm does satisfy some (weaker) approximation
guarantee, by showing a new connection between the HAG problem and maximum matching problems
in hypergraphs. We also introduce a second greedy algorithm which can out-perform the first one, and
we show how to implement it efficiently in some parameter regimes. Finally, we introduce some greedy
heuristics that are much faster than the above greedy algorithms, and we demonstrate that they perform
well on real-world graphs.

1 Introduction

In this work, we analyze an optimization problem that arises from Hierarchical Aggregration (HAG), a
strategy that was recently introduced in [4] for speeding up learning on Graph Neural Networks (GNNs).

At a high level, HAG identifies redundancies in the computations performed in training GNNs and
elimates them. This gives rise to an optimization problem, the HAG problem, which is to find and eliminate
the most redundancies possible. In this paper, we study greedy algorithms for this optimization problem.

Our contributions are as follows.

1. The work [4] proposed a greedy algorithm, which we call FullGreedy, for the HAG optimization
problem, and claimed that it gives a 1 − 1/e approximation. Unfortunately, this is not true, and
we show by example that one cannot hope for a better than a 1/2 approximation. We prove a new
approximation guarantee for FullGreedy in Theorem 13. In more detail, we are able to establish a
1
d (1− 1/e) approximation ratio for a related objective function, where d is a parameter of the problem
(d = 2 is a reasonable value).

2. We propose a second greedy algorithm, PartialGreedy, for the HAG optimization problem. We
show by example that this algorithm can obtain strictly better results than FullGreedy mentioned
above. It is not obvious that PartialGreedy is efficient, and in Theorem 12 we show that it can be
implemented in polynomial time in certain parameter regimes.

∗This work is partially supported by NSF grant CCF-1657049 and NSF CAREER grant CCF-1844628. AP is partially
supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518.

1

ar
X

iv
:2

10
2.

01
73

0v
3

 [
cs

.D
S]

 5
 F

eb
 2

02
1

3. While both of the greedy algorithms we study are “efficient,” in the sense that they are polynomial
time, they can still be slow on massive graphs. To that end, we introduce greedy heuristics and
demonstrate that they perform well on real-world graphs.

Our approach is based on a new connection between the HAG problem and a problem related to maximum
hypergraph matching. We use this connection both in our approximation guarantees for FullGreedy and
in our efficient implementation of PartialGreedy.

In Section 2, we define the HAG problem and set notation. In Section 3, we define algorithms Full-
Greedy and PartialGreedy. In Section 4, we discuss the efficiency of these algorithms and show that
both can be implemented in polynomial time in certain parameter regimes. In Section 5, we give a new
approximation guarantee for FullGreedy, and show by example that PartialGreedy can do strictly
better. In Section 6, we compare FullGreedy and PartialGreedy in practice. We then discuss faster
greedy heuristics and show empirically that they perform well.

2 Preliminaries and Problem Definition

2.1 Abstraction of Graph Neural Networks

Let G = (V,E) be a directed1 graph that represents some underlying data. For example, G could arise
from a social network, a graph of transactions, and so on. The goal of a GNN defined on G is to learn a
representation hv ∈ Rs for each v ∈ V , with the goal of minimizing some loss function L({hv : v ∈ V }),
which is typically designed so that the representations hv can be used for prediction (for example, classifying
unlabeled nodes).2 Graph neural networks were originally introduced by [9], and have numerous extensions
and applications [3, 5, 10, 11, 1].

Learning these representations hv follows the abstract process depicted in Algorithm 1. Each node v calls
a function Aggregate on the values hw for w ∈ Γin(v), resulting in an aggregated value av. Here, Γin(v)
represents the set of nodes w ∈ V so that (w, v) ∈ E. Next, the node v calls a function Update on av and
the current value of hv to obtain an updated hv. Then this repeats. Here, the function Aggregrate can
be as simple as a summation (e.g. in GCN [5]), or it can be more complicated (e.g. in GraphSAGE-P [3]).
In this work, we assume that Aggregate does not depend on the order of its inputs and can be applied
hierarchically. For example, we would have:

Aggregate(Aggregate(x, y),Aggregate(z, w))

= Aggregate(Aggregate(x,w),Aggregate(z, y))

= Aggregate(x, y, z, w).

This is often the case in GNNs (see [4] for more details).

Algorithm 1 Abstract GNN aggregation [4]

Require: Graph G = (V,E), depth K

1: Initialize h
(0)
v appropriately. . Typically, set h

(0)
v to the feature vector xv.

2: for k = 1, ...,K do
3: for v ∈ V do
4: a

(k)
v ← Aggregate({h(k−1)

u |u ∈ Γin(v)})
5: h

(k)
v ← Update((a

(k)
v ,h

(k−1)
v))

1Throughout the paper we work with directed graphs, but if the underlying graph is undirected we may treat it as a directed
graph by adding directed edges in both directions.

2A typical set-up for a GNN might be the following. The representations hv are some function f of the features xu and
representations hu of the nodes u in the neighborhood of v; a prediction ov is a function g of the xv as well as of hv ; and both
f and g are fully connected feed-forward neural networks. However, the details of GNNs will not actually matter for this work.

2

A B

C

D

E

1(a)

A B C D

C : A,B D : A,B ,C E : A,B ,D

1
(b)

A B C D

C : A,B D : A,B ,C E : A,B ,D

A⊕B

1
(c)

Figure 1: Example of hierarchical aggregation: (a) shows a directed graph G = (V,E), (b) shows the GNN
computation graph G, and (c) shows a possible HAG computation graph Ĝ, equivalent to G. The notation
[D : A,B,C] means that the node D is requesting information from nodes A,B,C. The notation A ⊕ B
means that this intermediate node computes Aggregate(A,B).

2.2 Hierarchical Aggregation

The starting point for our work is the paper [4], which showed that there are significant improvements to
be made (up to 2.8x, empirically), by cutting out redundant computations in Algorithm 1. To see where
redundant computations might arise, suppose that two nodes u, v ∈ G have a large shared out-neighborhood
Γout(u)∩Γout(v). In Algorithm 1, we would call Aggregate on the nodes u and v many times, once for each
node in this shared out-neighborhood. However, we can save computation by introducing an intermediate
node m so that Γin(m) = Γin(u) ∩ Γin(v) and Γout(m) = Γout(u) ∩ Γout(v), and then disconnecting u and
v from its original shared out-neighborhood. Then, we only call Aggregate on u and v once, and we can
use the stored computation many times. This process is shown in Figure 1.

The Hierarchical Aggregation (HAG) problem is to find the best way to introduce such intermediate
nodes. We formally define the problem below.

Definition 1 (GNN Computation Graph). Given a directed graph G = (V,E), the GNN Computation
Graph G for G is a bipartite graph (L,R, E), where L and R are copies of V , and, for u ∈ L and v ∈ R,
(uL, vR) ∈ E if and only if (u, v) ∈ E. We use Γin(v) to denote the set of in-neighbors of a vertex v in G,
and we use Γout(v) to denote the set of out-neighbors of v in G.

Definition 2 (HAG Computation Graph). Given a directed graph G = (V,E), a HAG Computation
Graph Ĝ for G is a graph (V̂, Ê), where V̂ = L ∪M ∪ R and L and R are copies of V . Ê contains directed
edges from L to M , from M to R, and possibly within M , and the following property holds. For every
directed edge (u, v) ∈ E, there is a unique directed path from uL to vR in Ĝ. We use Γ̂in(v) to denote
the set of in-neighbors of a vertex v in Ĝ, and we use Γ̂out(v) to denote the set of out-neighbors edges of
v in Ĝ. When no edges in Ê have both endpoints in M , so Ĝ is tripartite, we call this a single-layer HAG
computation graph. When there exists integer d such that for all w ∈ M , |Γ̂in(w)| = d, then we call Ĝ a
d-HAG computation graph.

See Figure 1 for an example of a GNN computation graph and a HAG computation graph arising from
a directed graph G. We say that a GNN computation graph G and a HAG computation graph Ĝ are
equivalent if they are both computation graphs for the same underlying graph G.

We also use the cover function, as defined by [4]. The cover of a vertex v is just the set of all nodes in L
that eventually feed into it.

Definition 3. For a vertex v in a HAG computation graph Ĝ = (L∪M ∪R, Ê), the cover of v is defined as

cover(v) = {w ∈ L : there is a directed path from w to v in Ĝ}.

We will subsequently assume any HAG computation graph has the property that cover(m) is a distinct
set for all distinct m ∈ M . This is without loss of generality, because if nodes m1 and m2 have the same
cover, then they can perform the same function in the HAG graph and one of them can be removed.

3

Given a HAG computation graph, we can re-organize the computation in Algorithm 1 in order to aggregate
computations at the intermediate nodes in M . This process is shown in Algorithm 2. Note that we need an
ordering of M such that for any v ∈ M , the vertices in Γ̂in(v) ∩M appear in the sequence before v. Since
Ĝ is a DAG, such a sequence can easily be constructed.

Algorithm 2 Abstract GNN aggregation with added intermediate nodes [4]

Require: HAG Computation Graph Ĝ = (V̂, Ê); depth K.

Require: Sequence M = {mi}|M |i=1 for M ⊂ V̂ such that every v ∈M appears exactly once and after all its
in-neighbors

1: Initialize h
(0)
v appropriately.

2: for k = 1, ...,K do
3: for i = 1, ..., |M | do

4: a
(k)
mi ← Aggregate({h(k−1)

u |u ∈ Γ̂in(mi)})
5: for v ∈ R do
6: a

(k)
v ← Aggregate({h(k−1)

u |u ∈ Γ̂in(v)})
7: h

(k)
v ← Update((a

(k)
v , h

(k−1)
v))

In [4], the following cost function for a computation graph was considered. We say that the cost of a
computation graph G with vertices V and right-hand side R (either a HAG computation graph or a GNN
computation graph) is

cost(G) = cAgg

∑
w∈V

(|Γin(w)| − 1) + cUp · |R|

where cAgg and cUp are some constants representing the cost of an aggregation and an update respectively.
The reason for this cost function is that the cost to do an aggregation at a node w ∈ V is proportional to
the number of items in the aggregation, minus one. That is, one can “aggregate” a single item for free, and
the cost grows linearly as we add more items. The second term counts the cost of each update. We define
to value of a HAG computation graph Ĝ to be proportional to the amount of cost that it saves.

Definition 4. The value of a HAG Computation Graph Ĝ = (V̂, Ê) is given by

value(Ĝ) =
1

cAgg

(
cost(G)− cost(Ĝ)

)
=
∑
v∈M

[
|Γ̂out(v)|(|cover(v)| − 1)− (|Γ̂in(v)| − 1)

]
.

To see that the two quantities are indeed equal, we may write

1

cAgg

(
cost(G)− cost(Ĝ)

)
=
∑
w∈R

(|Γin(w)| − 1)−

(∑
v∈M

(|Γ̂in(v)| − 1) +
∑
w∈R

(|Γ̂in(w)| − 1)

)

=
∑
w∈R

 ∑
v∈Γ̂in(w)

|cover(v)|

− 1

−(∑
v∈M

(|Γ̂in(v)| − 1) +
∑
w∈R

(|Γ̂in(w)| − 1)

)

=
∑
w∈R

 ∑
v∈Γ̂in(w)∩M

(|cover(v)| − 1)

−(∑
v∈M

(|Γ̂in(v)| − 1)

)

=
∑
v∈M

[
|Γ̂out(v)|(|cover(v)| − 1)− (|Γ̂in(v)| − 1)

]
,

where in the second line we have used the equivalence of G and Ĝ to say that Γin(w) is equal to the disjoint
union

⋃
v∈Γ̂in(w) cover(v), in the third we have combined summations over w ∈ R and used the fact that

v ∈ Γ̂in(w) \M implies v ∈ L and thus |cover(v)| = 1, and in the fourth we have switched the order of
summations and used the fact that each v in

∑
w∈R

∑
v∈Γ̂in(w) appears |Γ̂out(v)| times.

4

2.3 The HAG Problem

Given the above setup, we can formally define the HAG problem. We additionally take two parameters d
and k. The parameter d is a bound on the left-degree of the aggregation nodes (for example, the work [4]
considered d = 2 in their algorithm). The parameter k is a budget on the number of intermediate nodes
allowed.

Definition 5 (HAG problem). Let d be an integer. The d-HAG problem is the following. Given a graph G
and a node budget k, find a HAG computation graph Ĝ = (V̂, Ê) for G with the largest value, so that |M | ≤ k
and |Γ̂in(w)| = d for all w ∈M .

We also define a single-layer variation of the problem, which is to find the best way to add intermediate
nodes in a way so that the resulting graph is tri-partite. The single layer variation is faster to compute and
we show empirically that single-layer solutions achieve almost as much value as general multi-layer solutions.

Definition 6 (single-layer HAG problem). Let d be an integer. The single-layer d-HAG problem is defined
as the d-HAG problem with the additional constraint that Ĝ be tripartite.

We note that if Ĝ is a single-layer d-HAG computation graph, value can be simplified: value(Ĝ) =∑
v∈M (|Γ̂out(v)| − 1)(|Γ̂in(v)| − 1).

3 Greedy Algorithms

We study two natural greedy algorithms for the HAG problem. We call these two algorithms FullGreedy
and PartialGreedy. Intuitively, FullGreedy greedily choose an internal node, with all of its incoming
and outgoing edges, and fixes it. On the other hand, PartialGreedy greedily chooses an internal node
with all of its incoming edges, but re-optimizes the outgoing edges when each new internal node is added.
That is, FullGreedy is “fully” greedy in the sense that it makes a greedy choice for every edge, while
PartialGreedy is only “partially” greedy in the sense that it makes a greedy choice for the incoming
edges, subject to fully optimizing over the outgoing edges.

To formally describe these algorithms, we define an additional function on HAG computation graphs.

Definition 7. Given HAG computation graph Ĝ = (V̂, Ê) with V̂ = L ∪M ∪ R, for X,Y ∈ {L,M,R} let
TĜ(X,Y) denote the set edges in Ĝ that either connect X and Y in Ĝ, or connect Y to Y in Ĝ:

TĜ(X,Y) := (Ê ∩ (X × Y)) ∪ (Ê ∩ (Y × Y)).

We begin with the algorithm FullGreedy. This algorithm was proposed by [4], and works as follows.
At each step, it chooses the internal node—complete with all ingoing and outgoing edges—that will increase
value(Ĝ) by the most. This is shown in Algorithm 3.

We next consider a greedy algorithm, PartialGreedy, in which the edges between the intermediate
nodes and receiving nodes are re-assigned at each iteration. In particular, at the ith step the edge set
TĜi(Mi, R) is chosen to be optimal given Mi and TĜi(L,R), rather than constructed by adding edges to the
set TĜi−1

(Mi−1, R) from the previous step. Algorithm 4 describes this process.

Remark 8. We note that both FullGreedy and PartialGreedy can be easily modified to find a single-
layer solution. In FullGreedy (Algorithm 3), we simply take the arg max over L instead of L ∪Mi−1. In
PartialGreedy (Algorithm 4), we replace “Cj ⊆ L∪Mi−1 s.t. |Cj | = d” in Line 6 with “Cj ⊆ L s.t. |Cj | =
d”.

In the next two sections, we analyze the efficiency and approximation guarantees of both FullGreedy
and PartialGreedy.

4 Efficiency of FullGreedy and PartialGreedy

In this section, we discuss the efficiency of the two greedy algorithms presented above. We note that
FullGreedy (Algorithm 3) is clearly polynomial time if d is constant. In particular, the argmax can be
naively implemented in time O(nd).

5

Algorithm 3 Greedy Algorithm FullGreedy

Require: GNN Computation Graph G = (L,R, E); aggregation node limit k, aggregation in-degree d.
1: M0 ← ∅
2: Ê0 ← E
3: Ĝi ← (L ∪M0 ∪R, Ê0)
4: for i = 1, ..., k do
5: C ← arg maxC⊆L∪Mi−1 s.t. |C|=d |

⋂
v∈C Γ̂out(v) ∩R|

. Find the set C of size d to maximize the number of nodes in R that request all of the nodes in C.
6: RC ←

⋂
v∈C Γ̂out(v) ∩R

7: Mi ←Mi−1 ∪ {vi} . add a new vertex vi to M
8: Construct the new edge set Êi:

• Êi ← Êi−1

• Add edge (`, vi) to Êi for all ` ∈ C.

• Add edge (vi, r) to Êi for all r ∈ RC .

• Remove any edges (`, r) from Êi with ` ∈ C and r ∈ RC .

9: Ĝi ← (L ∪Mi ∪R, Êi)

Algorithm 4 Greedy Algorithm PartialGreedy

Require: GNN Computation Graph G = (L,R, E); aggregation node limit k, aggregation in-degree d.
1: M0 ← ∅
2: Ê0 ← E
3: Ĝ0 ← (L ∪M0 ∪R, Ê0)
4: for i = 1, ..., k do
5: Suppose that Ĝi−1 has vertices V̂i−1 = L ∪Mi−1 ∪R.
6: for C ⊆ L ∪Mi−1 s.t. |C| = d do
7: Mi ←Mi−1 ∪ {vi} . Add a new vertex vi
8:

SC =

Ĝ(C) = (L ∪Mi ∪R, Ê(C)) :
Ĝ(C) is a d-HAG computation graph

equivalent to G and
TĜ(C)(L,Mi) = TĜi−1

(L,Mi−1) ∪ (C × {vi})

. SC is the set of all graphs Ĝ(C) that extend the left-hand side TĜi−1

(L,M) of Ĝi−1 by adding an

intermediate node v with Γin(v) = C.

9: Ĝ(C)
opt ← arg maxĜ(C)∈SC value(Ĝ(C))

10: Ĝi ← arg maxC value(Ĝ(C)
opt)

6

On the other hand, it is not clear that PartialGreedy (Algorithm 4) is even polynomial time (in n),
because it is not clear how to solve the optimization problem in line 9. However, we show that in fact this
can be re-cast as a matching problem in hypergraphs, which is efficient in certain parameter regimes. To do
this, we need a few more definitions.

Definition 9. Let Ĝ = (L∪M∪R, Ê) be a HAG computation graph. We define the partial HAG computation
graph induced by Ĝ to be P̂ = (L ∪M,TĜ(L,M)), the induced subgraph on the vertices L ∪M .

Given a partial HAG computation graph P̂, and a GNN computation graph G = (L ∪ R, E), let S(P̂,G)
denote the set of HAG computation graphs Ĝ on the vertices L ∪M ∪R, so that:

(a) Ĝ is equivalent to G, and

(b) P̂ is a partial computation graph induced by Ĝ.

In this language, the arg max in Line 9 of Algorithm 3 is maximizing over the set S(P̂(C),G), where
P̂(C) is the partial HAG computation graph induced by Ĝi−1 with an additional intermediate vertex v with
Γ̂in(v) = C.

Below, we show that efficiently computing this arg max is equivalent to solving a hypergraph matching
problem.

Definition 10. Let G = (L ∪R, E) be a GNN computation graph, and let P̂ be a partial HAG computation
graph with vertices L ∪M . Then for r ∈ R, define Hr = Hr(P̂,G) to be the hypergraph with vertices L and
edges

{cover(v) : v ∈M and cover(v) ⊆ Γin(r)}.

For an edge e = cover(v) of Hr, define the weight of e to be |cover(v)| − 1.
Let H = H(P̂,G) be the disjoint union of the Hr, for r ∈ R. (That is, the vertices of H are |R| disjoint

copies of L, and the edges on the rth copy correspond to the edges in Hr.)

Lemma 11. Let G = (L ∪ R, E) be a GNN computation graph, and let P̂ be a partial HAG computation
graph. Let H = H(P̂, E) be as in Definition 10.

Let M(H) denote the set of matchings in H. Then there is a bijection

ϕ :M(H)→ S(P̂,G),

so that for a matching N ∈M(H),

value(ϕ(N)) = value(N)− c(P̂),

where the value of a matching is defined as the sum of the weights of the edges in that matching, and where
c(P̂) is a constant that depends only on the partial HAG graph P̂. When P̂ is a partial d-HAG graph with
k intermediate nodes, c(P̂) = k(d− 1).

In particular, if N is a maximum weighted hypergraph matching for H, then ϕ(N) is a maximum value
HAG computation graph in S(P̂,G).

Proof. We define the bijection ϕ as follows. Let N be a matching in H, and let Nr denote the restriction of
N to Hr, recalling that H is the disjoint union of Hr for r ∈ R. Suppose that the edges in Nr correspond to
sets cover(v) for v ∈ Cr, for some set Cr. (Notice that the edges in Nr will have this form by the definition
of Hr.) Then define ϕ(N) to be the HAG computation graph Ĝ so that the partial HAG computation graph
induced by Ĝ is P̂, and so that

Γ̂in(r) = Cr ∪

(
Γin(r) \

⋃
v∈Cr

cover(v)

)
(1)

for r ∈ R. Notice that P̂ sets the edge structure between L and M and within M , so specifying Γ̂in(r) for
each r ∈ R completes the description of Ĝ.

We now verify that Ĝ = ϕ(N) is an element of S(P̂,G). First, by construction it induces P̂ as a partial
HAG graph. Second, Ĝ = (L∪M ∪R, Ê) is a HAG computation graph that is equivalent to G = (L∪R, E).

7

To see this, consider any edge (`, r) ∈ E . We need to show that there is a unique path from ` to r in Ĝ.
This is true because either ` is contained in exactly one set cover(v) for v ∈ Γin(r), in which case the path
is the one that goes through v; or ` is not in any sets cover(v), in which case the edge (`, r) is added to Ê by
definition in (1). It cannot be the case that ` is contained in cover(v) for multiple v ∈ Γin(r), because Nr

was a matching.
Next, we show that ϕ is a bijection. To see this, let Ĝ ∈ S(P̂,G). Then observe that ϕ−1(Ĝ) is given by

the matching N that is the disjoint union of matchings Nr for r ∈ R, so that Nr includes the edges cover(v)
for v ∈ Γ̂in(r) ∩M .

Finally, we establish the claim about the values of N and ϕ(N). Let N = ϕ−1(Ĝ) for some Ĝ ∈ S(P̂,G).
By the definition of the weights, and by the construction of N , we have

value(N) =
∑
r

∑
v∈Γ̂in(r)∩M

(|cover(v)| − 1).

On the other hand, by the definition of the value of a HAG computation graph, we have

value(Ĝ) =
∑
v∈M

[
|Γ̂out(v)|(|cover(v)| − 1)− (|Γ̂in(v)| − 1)

]
=
∑
v∈M
|Γ̂out(v)|(|cover(v)| − 1)−

∑
v∈M

(|Γ̂in(v)| − 1)

=
∑
r∈R

∑
v∈Γ̂in(r)∩M

(|cover(v)| − 1)−
∑
v∈M

(|Γ̂in(v)| − 1)

= value(N)− c(P̂),

where we define c(P̂) =
∑

v∈M (|Γ̂in(v)| − 1), which we note depends only on the partial HAG graph P̂. In

particular, when P̂ is a partial d-HAG with k intermediate nodes, c(P̂) = k(d− 1).

As a corollary, when d = O(1) is a constant, we see that PartialGreedy (Algorithm 4) can be im-
plemented using a polynomial number of maximum weighted-hypergraph matching problems. In particular,
when d = 2 or when deg(G) (the degree of the underlying graph) is constant, we can implement Algorithm 4
in polynomial time.

Theorem 12. Suppose that either:

• d = 2, and Algorithm 4 is restricted to a single layer (see Remark 8); or

• d = O(1) and deg(G) = O(1), where deg(G) is the maximum degree of the original graph G.

Then Algorithm 4 can be implemented in polynomial time.

Proof. When d = 2 and PartialGreedy is set to return a single layer graph, the associated hypergraph
H is just a graph with at most n2 vertices and at most kn edges; indeed, there are at most n vertices and
k edges for each Hr, and H is the disjoint union of the Hr over at most n vertices r ∈ R. The problem
of maximum weight matching in a graph can be solved using Edmond’s algorithm in time O(|V |2|E|) for a
graph with |V | vertices and |E| edges. Thus, by Lemma 11, the arg max in Line 9 of Algorithm 4 can done
in time O(n3k). Algorithm 4 needs to call this algorithm O(k · (n+ k)2) times, for each i = 1, . . . , k and for
each C ⊆ L ∪Mi−1 of size d = 2. Thus, the total running time is O(k2(n+ k)2n3).

When d > 2 or PartialGreedy is set to return a multi-layer graph, then the reduction from Lemma 11
yields a weighted hypergraph maximum matching problem, which unfortunately is NP-hard. However, when
the degree deg(G) of the underlying graph (and hence of G) is a constant, then this decomposes into n
weighted hypergraph maximum matching problems, one for each Hr, and the number of vertices in Hr is
|Γin(r)| ≤ deg(G) = O(1). Therefore we can solve a maximum weighted hypergraph problem in Hr by brute
force in time O(1). There are at most n such problems, one for each r, and as above we solve each of them
at most k · (n + k)d times, yielding a running time of O(k · n · (n + k)d), where the O(·) notation is hiding
dependence on deg(G).

8

A B C D

A,B ,C ,DA,B B ,C C ,D

1
(a)

A B C D

A,B ,C ,DA,B B ,C C ,D

A⊕B
2

B ⊕C
1

C ⊕D
3

1
(b)

A B C D

A,B ,C ,DA,B B ,C C ,D

A⊕B B ⊕C C ⊕D

1
(c)

Figure 2: Example of a GNN computation graph (a) demonstrating that FullGreedy cannot do better
than a 1/2 approximation (in this example, for k = 3) and that PartialGreedy can strictly outperform
FullGreedy. The algorithm FullGreedy will arrive at the solution shown in (b) by choosing the internal
nodes in the order indicated: B ⊕ C, A ⊕ B, C ⊕D. The optimal solution for k = 3 is shown in (c). The
solution from FullGreedy in (b) achieves a value of 1 while the optimal solution has a value of 2. There
is a strict separation between FullGreedy and PartialGreedy because PartialGreedy will reach the
solution in (c) even if it chooses the internal nodes in the same order as FullGreedy shown in (b).

5 Approximation Guarantees for Single-Layer HAGs

In this section, we consider the approximation guarantees that can be obtained by FullGreedy and Par-
tialGreedy.

5.1 Approximation ratios for FullGreedy

We begin with FullGreedy. The work [4] introduced FullGreedy and claimed that it gives a 1 − 1/e
approximation, in the sense that value(Ĝgreedy) ≥

(
1− 1

e

)
value(Ĝopt), where Ĝopt is the HAG computation

graph of maximum value. Unfortunately, as the example in Figure 2 shows, this is not correct, and we
cannot hope for better than a 1/2 approximation.

In this section, we analyze FullGreedy (Algorithm 3), in the single-layer case. Our main theorem is
the following.

Theorem 13. For a d-HAG computation graph Ĝ with k internal nodes, define

ṽalue(Ĝ) := value(Ĝ) + k(d− 1).

Then the single-layer d-HAG computation graph returned by FullGreedy (Algorithm 3, with a restriction
to single-layer; see Remark 8) Ĝgreedy satisfies

ṽalue(Ĝgreedy) ≥ 1

d

(
1− 1

e

)
ṽalue(Ĝ∗),

where Ĝ∗ is the d-HAG computation graph with the largest value (and also the largest ṽalue).

Unfortunately, we are not able to establish an approximation ratio for the function value(·) itself, although
we conjecture that a similar result holds.

The idea of the proof—which we give below in Section 5.3—is as follows. It is a standard result that
greedy algorithms for submodular functions achieve a 1 − 1/e approximation ratio; this was the approach
taken by [4]. Unfortunately, the FullGreedy objective function is not technically submodular, since the
order of the inputs matters, and this prevents the 1−1/e approximation result from being true. However, we
can use the connection to hypergraph matching developed in Lemma 11 in order to translate the objective
function of FullGreedy to an objective function where the order does not matter, at the cost of a factor

of d. This results in a 1
d (1− 1/e) approximation ratio for ṽalue.

9

A B C D

A,B ,C ,DA,B B ,C A,D

1
(a)

A B C D

A,B ,C ,DA,B B ,C A,D

A⊕B

1
(b)

A B C D

A,B ,C ,DA,B B ,C A,D

A⊕B B ⊕C

1
(c)

A B C D

A,B ,C ,DA,B B ,C A,D

B ⊕C A⊕D

1
(d)

A B C D

A,B ,C ,DA,B B ,C A,D

A⊕B A⊕D

1
(e)

A B C D

A,B ,C ,DA,B B ,C A,D

A⊕B B ⊕C A⊕D

1
(f)

Figure 3: Example of a GNN computation graph (a) demonstrating that PartialGreedy cannot do better
than a 1/2 approximation (in this example, for k = 2), and that the objective function for PartialGreedy
is not submodular. The algorithm PartialGreedy will arrive at the solution in (c) by choosing A⊕B (as
shown in (b)) and then B ⊕C, arriving at a value of 1. The optimal solution for k = 2 is shown in (d), and
has a value of 2. We see from (e) and (f) that the objective function for PartialGreedy is not submodular,
in the sense that adding an internal node A⊕D is more valuable after A⊕B and B ⊕ C have been added
than when just A⊕B has been added. In (b) the value is 1 and adding A⊕D to get (e) leaves the value at
1. In (c) the value is 1 and adding A⊕B to get (f) increases the value to 2.

10

5.2 PartialGreedy can strictly outperform FullGreedy

We first observe by example that PartialGreedy also cannot achieve an approximation ratio better than
1/2: the example is given in Figure 3. Notice that this example also shows that the objective function that
PartialGreedy is greedily optimizing is not submodular.

However, we also show by example that there are graphs for which PartialGreedy is strictly better
than FullGreedy. Indeed, an example is shown in Figure 2.

Thus, the algorithm that runs both FullGreedy and PartialGreedy and takes the better of the two
achieves at least the approximation guarantee of Theorem 13, and can sometimes do strictly better than
FullGreedy.

5.3 Proof of Theorem 13

In this section we prove Theorem 13. Since we are consider single-layer graphs, we can simplify the notation
somewhat. Let

Ad = {s ⊂ L : |s| = d}

be the set of subsets of size d; we will associate each such subset with a possible intermediate node m ∈M ,
so that Γ̂in(m) = s. Let

Bd,k = {{s1, s2, . . . , sk} : si ∈ Ad ∀i}

be the collection of all ways to choose k sets s ∈ Ad. Thus, an element S = {s1, s2, . . . , sk} ∈ Bd,k represents
a set of possible solutions to the single-layer d-HAG problem, where the intermediate nodes are m1, . . . ,mk

so that Γ̂in(mi) = si.

Remark 14. With the above connection in mind, we will abuse notation and say that “P̂ is the partial
HAG computation graph induced by S = {s1, . . . , sk} and G,” when we mean that P̂ is induced by a HAG
computation graph Ĝ that is equivalent to G and whose intermediate nodes m1, . . . ,mk have Γ̂in(mi) = si.

We first define the sequence of HAG graphs chosen by this algorithm.

Definition 15. Let G be a GNN computation graph. Let s1, s2, . . . , sk ∈ Bd,k. Define the greedy d-HAG

sequence of HAG computation graphs Ĝ1, . . . , Ĝk to be the sequence of graphs that arise when we greedily
assign edges between M and R while inserting the internal nodes corresponding to s1, . . . , sk in that order.
That is, we define Ĝ0 = G, and given Ĝi−1 = (L ∪Mi−1 ∪R, Êi−1), we recursively define Ĝi as follows.

Let Ĝ′i = (L∪Mi ∪R, Ê ′i), where Mi = Mi−1 ∪ {vi}, and Ĝ′i = Êi−1 ∪ {(u, vi) |u ∈ si}. Now let P̂i denote

the partial HAG computation graph induced by Ĝ′i and G (as per Definition 9), and define

Ĝi = arg max
Ĝ∈S(P̂,G)

TĜi−1
(Mi−1,R)⊆TĜ(Mi,R)

value(Ĝ).

Remark 16. Let Ĝi = (L ∪Mi ∪ R, Êi) be the ith graph in the greedy d-HAG sequence. Then we obtain Ĝi
from Ĝi−1 by (a) adding an internal vertex vi with Γ̂in(vi) = si, and (b) for each r ∈ R, greedily adding the
edge (vi, r) if we can; that is, if cover(vi) ⊆ (Γ̂in(r) ∩ L). (And if we do that, we remove any edges between
cover(vi) and r).

Before we proceed, we set some notation that will be helpful for the rest of the proof.

Definition 17. We will denote a length-i ordered sequence (s1, . . . , si) ∈ Ai
d by ~si. Throughout, S∗ ∈ Bd,k

will denote an element corresponding to an optimal solution Ĝ∗ to the single-layer d-HAG problem; that is,
the intermediate nodes M of an optimal solution Ĝ∗ define S∗ by S∗ = {Γ̂in(m) : m ∈ M}. We will order

the elements of S∗ arbitrarily as (s∗1, . . . , s
∗
k), and denote a prefix (s∗1, . . . , s

∗
i) by ~s∗. We will use (~s, ~s′) to

denote concatenation e.g. (~si, ~s∗i) = (s1, ..., si, s
∗
1, ..., s

∗
i).

With this notation, we have the following definition.

11

Definition 18. For some GNN computation graph G = (V, E), we define the functions h : Ak
d → Z+ and

f : Bk,d → Z+ as follows. The ordered matching value function h is defined as

h({si}ji=1) = (d− 1)

j∑
i=1

|Γ̂(j)
out(mi)|,

where Ĝ1, ..., Ĝk is the additive greedy d-HAG sequence, Γ̂
(j)
out(mi) is the out-neighborhood of mi in Ĝj, and mi

is the vertex in M in Ĝj with Γin(mi) = si. Now let Γ̂
(j)
out be defined with respect to the graph Ĝ = (L,M,R, Ê)

that is the maximum value HAG computation graph in S(P̂,G), so that P̂ is the partial HAG computation
graph induced by Sj and Ĝ (c.f. Remark 14), and let M = {m1, . . . ,mj}. Then the maximum matching
value function f is defined as

f(Sj) = (d− 1)

j∑
i=1

|Γ̂(j)
out(mi)|.

The functions h and f are related by an additive term of (d − 1)k to the values of various graphs, as
shown below in Lemma 19. We use them instead of these values, because as per Lemma 11, we will see that
they correspond directly to the size of the matchings in a hypergraph.

Lemma 19. Let G be a GNN computation graph. For any ~sj ∈ Aj
d, let Ĝj be the jth graph in the greedy

d-HAG sequence defined by ~sj and G. Let Ĝ∗ be the maximum-value element of S(P̂,G), where P̂ is the
partial d-HAG graph induced by Sj = {s1, . . . , sj} ∈ Bd,j (c.f. Remark 14). Then

value(Ĝj) = h(~sj)− (d− 1)j

and
value(Ĝ∗) = f(Sj)− (d− 1)j.

In particular, h(~sj) = ṽalue(Ĝj) and f(Sj) = ṽalue(Ĝ∗).

Proof. For the first expression, let Γ̂out(mi) denote the out-neighborhood of mi in Ĝj , where mi is the vertex

in M in Ĝj with Γin(mi) = si. Then using the fact that |Γ̂in(mi)| = d and cover(mi) = Γ̂in(mi) for all i,
(recall that we are working in a single-layer d-HAG) we have

value(Ĝj) =

j∑
i=1

(|Γ̂in(mj)| − 1)(|Γ̂out(mj)| − 1)

=

j∑
i=1

[
|Γ̂out(mi)| · d−

(
|Γ̂out(mi)|+ d− 1

)]
=

j∑
i=1

[
|Γ̂out(mi)| · (d− 1)− (d− 1)

]
= (d− 1)

j∑
i=1

[
|Γ̂out(mi)| − 1

]
= (d− 1)

j∑
i=1

[
|Γ̂out(mi)|

]
− (d− 1)j

= h(~sj)− (d− 1)j.

Similarly, let Γ̂∗out be with respect to the graph Ĝ∗. Then again using that |Γ̂∗in(mi)| = d for all i, we have

value(Ĝ) =

j∑
i=1

[
|Γ̂∗out(mi)| · d−

(
|Γ̂∗out(mi)|+ d− 1

)]
= (d− 1)

j∑
i=1

[
|Γ̂∗out(mi)|

]
− (d− 1)j

= f({s1, . . . , sj})− (d− 1)j.

12

Observation 20. The function f is monotone.

Proof. By Lemma 19 it suffices to show that

max
Ĝ∈S(P̂,G)

value(Ĝ)

does not decrease when P̂ goes from being the partial d-HAG graph induced by {s1, . . . , sj} to the partial

d-HAG graph induced by {s1, . . . , sj , sj+1}. This is true because the set S(P̂,G) only grows larger with this
change, and so the maximum is being taken over a larger set.

Lemma 21. Let G be a GNN graph. Let St ∈ Bd,k. Then for any ordering ~st = s1, ..., st of St:

1

d
· f(St) ≤ h(~st) ≤ f(St)

Proof. Let P̂ be the partial d-HAG graph induced by St and G (c.f. Remark 14), and let S = S(P̂,G). Let
Ĝ1, . . . , Ĝt be the greedy d-HAG sequence defined by ~st and G. Let H(i) be the hypergraph associated with
Ĝi = (L ∪Mi ∪ R, Êi) as in Definition 10. Consider the bijection ϕ from (the proof of) Lemma 11, and let
N (i) be a matching in H(i), so that ϕ(N (i)) = Ĝi. Recall that the matching N (i) can be decomposed into

matchings N (i)
r , each on the graph Hr from Definition 10. In more detail, the proof of Lemma 11 shows that

the hyperedge (sj ∩ Γin(r)) is in N (i)
r if and only if the edge (mj , r) is in Ĝi.

First, we observe by Lemma 11 and Lemma 19 that for any i ≤ t and for any ~si ∈ Ai
d,

h(~si) = (d− 1) ·
∑
r

|N (i)
r | = value(N (i)), (2)

where the value on the right hand side represents the (weighted) value of the matching. (Notice that since
we are looking at the single-layer d-HAG problem, all weights are equal to d− 1).

Similarly, let N ∗ be such that ϕ(N ∗) = Ĝ∗, where Ĝ∗ is the maximum-value element of S(P̂,G) where P̂
is induced by St. Lemma 11 implies that N ∗ is a maximum hypergraph matching for H(t). As above, by the

definition of H, N ∗ decomposes into matchings N ∗r of H
(t)
r for each r ∈ R. Then for St ∈ Bd,t, Lemma 11

and Lemma 19 imply that

f(St) = (d− 1) ·
∑
r

|N ∗r | = value(N ∗). (3)

Now consider the change from N (i)
r to N (i+1)

r . When we pass from H(i) to H(i+1), we add a hyperedge

er := si ∩Γin(r) to each graph H
(i)
r . The hyperedge er is added to the matching N (i+1)

r if and only if it can
be: that is, if and only if it does not intersect sj ∩ Γin(r) for some j < i. This is because of the definition of

the correspondence ϕ, and also the observation in Remark 16 about how Ĝi+1 is created from Ĝi.
Therefore, for any r ∈ R, the matching N (t)

r can be found by the following algorithm:

• Let H
(t)
r be as above.

• N (0)
r = ∅

• For i = 1, . . . , t:

– If the hyperedge si ∩ Γin(r) can be added to N (0)
r and still form a hypergraph matching of H

(t)
r ,

then let N (i)
r = N (i)

r ∪ {si ∩ Γin(r)}.

We observe that this is the classical greedy algorithm for maximum hypergraph matching. This algorithm
is well-known to achieve an approximation ratio of 1/d [2]. That is,

1

d
value(N ∗) ≤ value(N (t)) ≤ value(N ∗).

By (2) and (3), this implies that
1

d
f(St) ≤ h(~st) ≤ f(St),

as desired.

13

Lemma 22. Let S∗ be as in Definition 17. Let ~s∗k = (s∗1, ..., s
∗
k) be any order of elements of S∗. Let

~si = (s1, . . . , si) be the nodes added after i steps of FullGreedy. Then

h((~si, ~s
∗
k))− h(~s∗k) ≥ −d− 1

d
h(~s∗k).

Proof. Letting Si denote the set of elements of ~si, we have

h((~si, ~s
∗
k))− h(~s∗k) ≥ 1

d
f(Si ∪ S∗)− h(~s∗k) ≥ 1

d
f(S∗)− h(~s∗k) ≥ 1

d
h(~s∗k)− h(~s∗k) = −d− 1

d
h(~s∗k)

The first inequality is an application of Lemma 21. The second inequality follows from f being monotone
(Observation 20). The third inequality is because f(S∗) gives the optimal graph choice given S∗, while h(~s∗k)
gives one option of graph choice given S∗.

Lemma 23. Let S∗ be as in Definition 17. Let ~s∗k = (s∗1, ..., s
∗
k) be any order of elements of S∗. Let

~si = (s1, . . . , si) be the nodes added after i steps of FullGreedy. Then, we have

h((~si, ~s
∗
k))− h(~si) ≤

(
1− 1

k + 1

)
(h((~si, ~s

∗
k))− h(~si−1)).

Proof. For any ~s and s′`, let ∆(~s, s′`) = h((~s, s′`)) − h(~s). That is, ∆ is the marginal benefit of adding the
intermediate node s′` on top of the nodes ~s, assuming that we are greedily attaching all of the edges that we
can.

For i ≤ k, we have

h((~si, ~s
∗
k))− h(~si) =

k∑
j=1

[
h((~si, ~s

∗
j))− h((~si, ~s

∗
j−1))

]
=

k∑
j=1

∆((~si, ~s
∗
j−1), s∗j)

≤
k∑

j=1

∆(~si, s
∗
j),

where in the last line we have used the fact that the marginal benefit of adding s∗j later is less than adding
it earlier. (In this sense, h behaves like a submodular function, except that the order of the inputs to h
matters; crucially, the function f , which is defined on sets rather than sequences, is not submodular.) By
the definition of FullGreedy, we have ∆(~si, s

∗
j) ≤ ∆(~si, si+1) for all j, and with the above this implies

that

h((~si, ~s
∗
k))− h(~si) ≤

k∑
j=1

∆(~si, si+1) = k ·∆(~si, si+1).

Rearranging this, we have

∆(~si, si+1) ≥ 1

k
(h((~si, ~s

∗
k))− h(~si)) (4)

for any i ≤ k.
Furthermore,

h((~si, ~s
∗
k)) = h(~si−1) + ∆(~si−1, si) +

k∑
j=1

∆((~si, ~s
∗
j−1), s∗j)

≤ h(~si−1) + ∆(~si−1, si) +

k∑
j=1

∆((~si−1, ~s
∗
j−1), s∗j) (5)

14

where in the second line we have used the fact that

∆((~si, ~s
∗
j−1), s∗j) ≤ ∆((~si−1, ~s

∗
j−1), s∗j)

for any j. Thus, we have
h((~si, ~s

∗
k)) ≤ h((~si−1, ~s

∗
k)) + ∆(~si−1, si)

using the fact the the right hand side above is equal to the second line of (5). Rearranging, this establishes

h((~si−1, ~s
∗
k)) ≥ h((~si, ~s

∗
k))−∆(~si−1, si) (6)

Plugging (6) into (4), we obtain

∆(~si−1, si) ≥
1

k
(h((~si, ~s

∗
k))−∆(~si−1, si)− h(~si−1))

and rearranging this implies that

∆(~si−1, si) ≥
1

k + 1
(h((~si, ~s

∗
k))− h(~si−1)). (7)

Now we have

h((~si, ~s
∗
k))− h(~si) = h((~si, ~s

∗
k))− h(~si−1)−∆(~si−1, si)

≤ h((~si, ~s
∗
k))− h(~si−1)− 1

k + 1
(h((~si, ~s

∗
k))− h(~si−1))

=

(
1− 1

k + 1

)
(h((~si, ~s

∗
k))− h(~si−1))

where we have used (7) in the second line.
Finally, we can prove Theorem 13.

Proof of Theorem 13. From Lemma 23, we have

h((~si, ~s
∗
k))− h(~si) ≤

(
1− 1

k + 1

)
(h((~si, ~s

∗
k))− h(~si−1))

so

[h(~s∗k)− h(~si)] + [h((~si, ~s
∗
k))− h(~s∗k)] ≤

(
1− 1

k + 1

)
[h((~si, ~s

∗
k))− h(~si−1)]

=

(
1− 1

k + 1

)
[h(~s∗k)− h(~si−1)] +

(
1− 1

k + 1

)
[h((~si, ~s

∗
k))− h(~s∗k)] .

Rearranging, this implies that

h(~s∗k)− h(~si) ≤
(

1− 1

k + 1

)
[h(~s∗k)− h(~si−1)]− h((~si, ~s

∗
k))− h(~s∗k)

k + 1

Using Lemma 22, we see that, for all i,

h(~s∗k)− h(~si) ≤
(

1− 1

k + 1

)
[h(~s∗k)− h(~si−1)] +

h(~s∗k)

k + 1
· d− 1

d
(8)

Now suppose by induction that

h(~s∗k)− h(~si−1) ≤

(
1 +

1

d

((
1− 1

k + 1

)i−1

− 1

))
h(~s∗k)

15

Dataset Facebook Amazon Email-EU
Mean value for single-layer HAG 8636.09 1800.73 3088.73
Mean value for multi-layer HAG 8945.83 1806.29 3260.11
Mean % improvement for multi-layer HAG 3.2% 0.22% 4.9%
Std. dev. of % improvement for multi-layer HAG 1.02782 0.216026 1.674153

Table 1: The improvement of multi-layer over single-layer for FullGreedy on real-world datasets averaged
over k = 1, ..., 100.

The base case for i = 1 clearly holds. Plugging this inductive hypothesis into (8),

h(~s∗k)− h(~si) ≤
(

1− 1

k + 1

)
[h(~s∗k)− h(~si−1)] +

h(~s∗k)

k + 1
· d− 1

d

≤
(

1− 1

k + 1

)(
1 +

1

d

((
1− 1

k + 1

)i−1

− 1

))
h(~s∗k) +

h(~s∗k)

k + 1
· d− 1

d

=

(
1 +

1

d

((
1− 1

k + 1

)i

− 1

))
h(~s∗k),

which establishes the inductive hypothesis for i. By induction, we conclude that

h(~s∗k)− h(~sk) ≤

(
1 +

1

d

((
1− 1

k + 1

)k

− 1

))
h(~s∗k)

≤
(

1 +
1

d

(
1

e
− 1

))
h(~s∗k).

Rearranging, we have

h(~sk) ≥ 1

d

(
1− 1

e

)
h(~s∗k),

as desired.

6 Experimental Results

We first show that multi-layer HAG graphs do not have a significantly higher value for small k compared to
single-layer HAG graphs; this justifies our focus on single-layer HAG graphs in Theorem 13. We compared
FullGreedy single-layer and multi-layer results for three datasets: a Facebook dataset [8], an Amazon
co-purchases dataset [6] (the subset from March 2nd, 2003), and the Email-EU dataset [7]3. On average
over k = 1, ..., 100, the multi-layer results increased the value compared to the single-layer solution by 3.2%,
0.22%, and 4.9%, respectively (see Table 1).

We next show how well single-layer FullGreedy and PartialGreedy perform compared to the optimal
single-layer solution (computing the optimum is only tractable for limited graph parameters even in the
single-layer case, so we did not implement it for multi-layer HAGs). Figure 4 shows the quantity 1 − α,
where α is the approximation ratio value(Ĝgreedy)/value(Ĝopt), where Ĝgreedy is the solution returned by for

FullGreedy and PartialGreedy, and Ĝopt is the optimal solution, for Erdős-Rényi graphs G(n, p) with
n = 15 and various values of p. Higher values of p result in approximation ratios slightly further from 1 for
both k = 2 and k = 3, although in all experiments the approximation ratios are quite close to 1 for both
algorithms.

6.1 Faster Heuristics

While FullGreedy and PartialGreedy are much faster in practice than computing the optimal solution,
they are still computationally intensive for large values of k and large datasets. In this section we describe

3All three of these datasets can be found at snap.stanford.edu/data

16

(a) (b)

Figure 4: We compare FullGreedy and PartialGreedy to the optimal HAG computation graph on a
set of 50 Erdős-Rényi graphs G(n, p) with n = 15. The y-axis plots average values of 1− α, where α is the
approximation ratio. The x-axis plots the parameter p. Shown are (a) k = 2 and (b) k = 3.

DegreeHeuristic vs. FullGreedy HubHeuristic vs. FullGreedy
Dataset Value Ratio Runtime Ratio Value Ratio Runtime Ratio
Amazon 0.0699 0.123 0.629 0.124
Email-EU 0.558 0.0548 0.410 0.107
Facebook 0.376 0.0408 0.313 0.0894

Table 2: For each dataset, FullGreedy, DegreeHeuristic and HubHeuristic were run 10 times with
k = 100. Value Ratio is computed as the value of the DegreeHeuristic result divided by the value
of the FullGreedy result for the first column and the value of HubHeuristic result divided by value
of FullGreedy for the third column. Runtime Ratio is computed in the same way to compare the two
heuristics to FullGreedy.

two alternative heuristics, DegreeHeuristic and HubHeuristic, which only achieve a fraction of the
value of FullGreedy, but compute the HAG computation graph significantly faster.

DegreeHeuristic starts by ranking all of the vertices of the input graph G = (V,E) by degree: {vi}ni=1

with Γout(vi) ≥ Γout(vi+1) for i = 1, ..., n. It then takes the top k adjacent pairs of the sequence (i.e.,
(v1, v2), (v2, v3), . . . , (v2k−1, v2k)) as the covers of the k aggregation nodes and constructs a single-layer 2-
HAG computation graph. The out-edges of the aggregation nodes are assigned greedily in the same cover
order (v1, v2), (v2, v3), ... based on degree. We compare this heuristic to FullGreedy for value and runtime
in Table 2. This method performs decently on the Facebook and Email-EU datasets, and significantly worse
on the Amazon purchasing network. We conjecture that this is because the Amazon network has has a
significantly lower average degree (about 2.8) than the other two sets (about 22 for Facebook and 25 for
Email-EU).

HubHeuristic is based on searching for “good” intermediate aggregation nodes around high-degree
nodes of G. This algorithm is motivated by the frequency with which triangles appear in real-datasets.
HubHeuristic also starts by ranking the vertices from highest to lowest degree as {vi}ni=1. Then for
v1, ..., vk the heuristic does the following: for each u ∈ Γin(vi), compute the value of adding aggregation
node with cover {vi, u}. Then a new node m is added with cover {vi, u} using the u that allows for maximal
out-edges from m. This process is repeated for v1, .., vk in order, so it is greedy in the sense that out neighbors
of previous aggregation nodes remain the same during subsequent iterations. We compare HubHeuristic
to FullGreedy for value and runtime, shown in Table 2.

In this paper we have analyzed the optimization problem that arises from Hierarchical Aggregation (HAG),
as introduced by [4] for speeding up learning on GNNs. We showed that FullGreedy, the algorithm
proposed by [4], cannot do better than a 1/2 approximation. We also described a second greedy algorithm,
PartialGreedy, which can actually be implemented efficiently for some parameters, and can obtain results

17

strictly better than FullGreedy. We also showed that FullGreedy achieves a 1
d (1− 1/e) approximation

ratio for a related objective function where d is the in-degree of the intermediate aggregation nodes.
Next, we showed empirically that single-layer HAGs achieve nearly the same value as multi-layer HAGs

and FullGreedy and PartialGreedy both get fairly close to the optimal value on small synthetic graphs.
Finally, we defined two additional greedy heuristics, DegreeHeuristic and HubHeuristic, and showed
that they can achieve about a third to a half of the value of FullGreedy in a tenth or less of the runtime.

Our work suggests many interesting future directions, including pinning down the approximation ratio
for both FullGreedy and PartialGreedy, and proving approximation guarantees for the heuristics
DegreeHeuristic and HubHeuristic in terms of the characteristics of the graph.

Acknowledgements

We thank Zhihao Jia, Rex Ying, and Jure Leskovec for helpful conversations.

References

[1] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engi-
neering, 30(9):1616–1637, 2018.

[2] Barun Chandra and Magnús M Halldórsson. Greedy local improvement and weighted set packing
approximation. Journal of Algorithms, 39(2):223–240, 2001.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[4] Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. Redundancy-free com-
putation graphs for graph neural networks. arXiv preprint arXiv:1906.03707, 2019.

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[6] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral marketing. ACM
Transactions on the Web (TWEB), 1(1):5–es, 2007.

[7] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

[8] Julian J McAuley and Jure Leskovec. Learning to discover social circles in ego networks. In NIPS,
volume 2012, pages 548–56. Citeseer, 2012.

[9] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[10] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[11] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. arXiv preprint arXiv:1806.08804,
2018.

18

	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 Abstraction of Graph Neural Networks
	2.2 Hierarchical Aggregation
	2.3 The HAG Problem

	3 Greedy Algorithms
	4 Efficiency of FullGreedy and PartialGreedy
	5 Approximation Guarantees for Single-Layer HAGs
	5.1 Approximation ratios for FullGreedy
	5.2 PartialGreedy can strictly outperform FullGreedy
	5.3 Proof of Theorem 13

	6 Experimental Results
	6.1 Faster Heuristics

