
1

Neural Computation of Capacity Region of
Memoryless Multiple Access Channels

Farhad Mirkarimi, Sharif University of Technology, and Nariman Farsad, Ryerson University

Abstract—This paper provides a numerical framework for
computing the achievable rate region of memoryless multiple-
access channel (MAC) with a continuous alphabet from data. In
particular, we use recent results on variational lower bounds
on mutual information and KL-divergence to compute the
boundaries of the rate region of MAC using a set of func-
tions parameterized by neural networks. Our method relies
on a variational lower bound on KL-divergence and an upper
bound on KL-divergence based on the f -divergence inequalities.
Unlike previous work, which computes an estimate on mutual
information, which is neither a lower nor an upper bound, our
method estimates a lower bound on mutual information. Our
numerical results show that the proposed method provides tighter
estimates compared to the MINE-based estimator at large SNRs
while being computationally more efficient. Finally, we apply the
proposed method to the optical intensity MAC and obtain a new
achievable rate boundary tighter than prior works.

I. INTRODUCTION

Computing closed-form expressions for the capacity region
of general multi-user channels, except in few cases, has proved
to be challenging. The capacity region of a two and three user
memoryless multiple access channel (MAC) was formulated
in [1]. Later, [2] considered the capacity region of MAC with
correlated sources and derived its achievable rates region. In
[3] it was shown that feedback can increase the rate region
of memoryless MAC, while [4] derived the capacity region
of finite state MACs and provided multi-letter expressions
for capacity region. These prior works focused on Gaussian
MACs without fading or interference. In [5] capacity region
of K-user MAC over cellular systems was considered, where
there is interference from adjacent cells, while [6] provides the
optimal resource allocation scheme and the capacity region
of Gaussian MAC with fading. Finally, a number of other
works including [7], [8] consider the capacity of optical
intensity MAC with both average and peak power constraints
on inputs of the channel, and derive different inner and outer
bounds for capacity region. Despite all these results, numerical
computation of the capacity region of the arbitrary memoryless
MAC has been challenging [9].

Numerical computation of capacity most notably dates
backs to the well-known work of Blahut and Arimoto [10],
[11], where an alternating maximization method was used
iteratively for computation of the capacity of the point-to-point
discrete memoryless channel. There have been many follow-up
works that extend this to other point-to-point channels. In [12],
an algorithm that maximizes mutual information for infinite-
state indecomposable (noise-free) channel was considered for
Markov sources, and in [13], the authors extend their work
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to the general finite-state channels. An extension of Blahut-
Arimoto to channels with noncausal transmitter side informa-
tion is provided in [14], and [15] presented an algorithm called
deterministic annealing for finding the capacity of discrete-
time Poisson channel. The authors in [16] provide an extension
of Blahut-Arimoto for estimating directed mutual information
and use it for estimating the capacity of channels with feed-
back. Finally, in [17] dynamic assignment Blahut-Arimoto
(DAB) algorithm is introduced for efficiently evaluating the
capacity of memoryless channels with continuous input and
optimal input distribution with finite mass-points.

Recently deep learning has become a new and powerful tool
in communications with possible applications for designing
new channel codes, new modulation schemes, and evaluating
achievable information rates [18]. Reinforcement learning is
used to evaluate the capacity of point-to-point channels with
feedback in [19]. Recent advancements in estimating mutual
information from data samples using deep learning methods
[20] has resulted in several new works. In [21], the estimator
in [20] is used to produce efficient joint encoder and decoders
for modulation (with a low probability of error) by maximizing
mutual information between inputs and outputs of the channel.
In [22], a capacity estimation algorithm is developed for
continuous channels with feedback using a deep learning-
based estimator of directed information.

Despite all these recent results, there has been little work
on estimating the capacity region of multi-user channels. In
this work, we expand the approach proposed in [22], for
estimating capacity of single user channels, to multi-user
channels. Moreover, we expand the neural estimators [20] and
[23], which were used in [22], and provide a different lower
bound estimator on mutual information. This is achieved by
proposing different variational lower and upper bounds on
KL-divergence and using these variational bounds to obtain
a lower-bound on mutual information and conditional mutual
information. We then describe a method using neural networks
for estimating this bound from data, while maximizing it with
respect to the input distribution. Our algorithm is compu-
tationally more efficient than the method proposed in [22].
Numerical evaluations demonstrate that the estimation of this
bound from data will be close to the optimal rates for the
Gaussian MAC. We also show that our approach can be used to
estimate a new and tighter bound for the optical intensity MAC
[7], [8]. The proposed neural estimator for mutual information
and conditional mutual information can also be used for design
of end-to-end communication systems, including multi-user
systems, and for representation learning in machine learning.
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II. NEURAL ESTIMATION OF MUTUAL INFORMATION

In this section, we present a method for computing lower
bounds on mutual information using variational bounds. To
do this, we first provide a lower and upper bound on KL-
divergence in Section II-A, and then use these bounds to
present an estimator for the lower bound on mutual informa-
tion in Section II-B.
A. Bounds on KL-Divergence

First, we present a variational lower bound on KL-
divergence using a similar approach to the one taken in [24]
to lower bound mutual information.

Theorem 1. Let P ∈ P(X ) and Q ∈ P(X ) be two probability
measures on the random variables X with the sample space
X , where P(X ) denote the set of all probability measures
over the Borel σ-algebra on X . If P is absolutely continuous
with respect to Q, then the KL-divergence between the two
distributions P and Q is lower bounded by:

D(P ||Q) ≥ EP [T (x)]−
EQ
[
eT (x)

]
a

− log(a) + 1, (1)

for all integrable functions T (x) and a ≥ 0.

Proof: From [20], [24], [25] we have:

D(P ||Q) ≥ EP [T (x)]− log
(
EQ[eT (x)]

)
, (2)

where T (x) is any function T : X → R that satisfies
the integrability constraints of Theorem 1. Now using the
inequality log(u) ≤ u

α + log(α) − 1 with α ≥ 0 and
u = EQ[eT (x)] in (2) we conclude (1).

Note that the equality in the lower bound is tight when
T (x) = log( dPdQ ) + c, for some constant c. To find the a
and T (x) that maximize this lower bound on KL-divergence,
one can represent T (x) by neural networks φθT (x) with
parameters θT , as a trainable parameter . Using the variational
methods, and a loss function that will be described in the next
section, we can maximize the lower bound on KL-divergence
in (1). By using enough data and a large batch size, it is
theoretically possible to find a tight lower bound on KL-
divergence between P and Q as data size goes to infinity.
Note that it is possible to extend Theorem 1 to the case where
P and Q are joint distributions of multiple random variables.

For the upper bound on KL-divergence, we use the follow-
ing inequality presented in [26, Theorem 20], which is restated
here for convenience.

Theorem 2. Let P and Q be two distributions defined in
Theorem 1. Then we have the following upper bound on the
KL-divergence:

D(P ||Q) ≤ log(1 + χ2(P ||Q))

− 1.5(χ2(P ||Q))2 log e

(1 + χ2(Q||P ))(1 + χ2(P ||Q))2 − 1

,χ2
UP(P ||Q), (3)

where χ2(P ||Q) represents χ2 distance between P and Q
distributions defined as:

χ2(P ||Q) =

∫
(p(x)− q(x))2

q(x)
dx (4)

Proof: See [26, Theorem 20] for the proof.
In the next section, we use these two bounds to derive a

variational lower bound on mutual information.

B. Estimation of Entropy and Mutual Information

We begin the section by presenting variational bounds
on entropy. To estimate these bounds using the variational
methods [23], a reference (and arbitrary) distribution Q over
the random variable X with pdf q(x) is used in place of the
true and unkown distribution P with pdf p(x). Using Q, the
entropy of the random variable X can be written as:

h(X) = EP [− log(q(x))]−D(P ||Q). (5)

Note that the first term is the cross-entropy term hCE(P,Q).
Now we seek to find a variational bound on this expression.
The second term, which is the KL-divergence, could be
bounded using Theorem 1 that was provided in the previous
section, which results in an upper bound on entropy of X
given by:
h(X) ≤EP [−log(q(x))]−EP [T (x)]+

EQ
[
eT (x)

]
a

+log(a)−1.

To make the upper bound tight, a neural network φθT (x) is
used to represent T (x), and the parameters θT are optimized
using the loss function

L(θ) = −EP [φθT (x)] +
EQ[eφθT (x′)]

αa
+ log(αa)− 1, (6)

where x ∼ p(x) and x′ ∼ q(x′). Note that the expectation
terms are evaluated using empirical averaging over the samples
in the minibatch and the parameter αa can be tuned as a
hyperparameter or be treated as a trainable parameter.

We now present a method to compute the variational lower
bound on mutual information. Using (5), and i.i.d. reference
random variables X

′
and Z

′
, mutual information is repre-

sented as
I(X;Z) = h(X) + h(Z)− h(X,Z),

= D(PX,Z ||QX′
,Z

′ )−D(PX ||QX′ )−D(PZ ||QZ′ ).
(7)

Note that since we can choose the reference distributions to
be i.i.d., the cross-entropy terms in (5) will cancel out leaving
only the KL-divergence terms. In addition [22] computes (7)
by using Donsker-Varadhan bound for all terms (even the
negative terms), which results in neither a lower or an upper
bound. For finding variational lower bound on I(X;Z), we
lower bound the first term in (7) using Theorem 1 and upper
bound the next two terms using Theorem 2. Therefore, we
have

I(X;Z) ≥EPX,Z[T (X,Z)]−
EQ

X
′
,Z

′

[
eT (X

′
,Z

′
)
]

a(z′)
−log(a(z

′
))+1︸ ︷︷ ︸

Variational lower bound onD(PX,Z ||Q
X

′
,Z

′ )

− χ2
UP(PX ||QX′ )︸ ︷︷ ︸

χ2 upper bound onD(PX ||Q
X

′ )

− χ2
UP(PZ ||QZ′ )︸ ︷︷ ︸

χ2 upper bound onD(PZ ||Q
Z

′ )

.

(8)

Note that Z
′

and X
′

are reference random variables, and
in this work they are uniformly distributed over the support
of X and Z in each batch as was suggested in [22], [23].
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We estimate the χ2 distance terms in (8) using a histogram-
based density estimation as follows. Assume that we have two
histogram estimates of probability density functions P and Q
with m bins. Let the estimated probability corresponding to
bin i for P and Q be f(i) and g(i), respectively. In this case
we have:

χ2(P ||Q) =

m∑
i=1

(f(i)− g(i))2

g(i)
. (9)

This method is also applied for computation of χ2-divergence
between joint distributions. To maximize the lower bound
and make it tighter, neural networks are used to represent
the function T in (8), which is then trained to minimize the
negative of the loss function in (6) (i.e., maximize the loss in
(6)) by setting x and x′ to (x, z) and (x′, z′), respectively. The
expectations in (8) are estimated using the empirical average
over the minibatch.

III. ESTIMATING ACHIEVABLE REGION OF MAC

In this section, we provide a numerical framework for
computing inner bounds on the capacity region of memoryless
MAC. To simplify the presentation we focus on a two-user
MAC, but the framework can be extended to larger number of
users. In a 2-user memoryless MAC, if we denote the input
distribution of the first, and second user by X and Y , and the
output distribution by Z, then each user’s rate, R1 and R2

respectively, satisfies the following conditions:

R1 ≤ I(X;Z | Y ), R2 ≤ I(Y ;Z | X), R1 +R2 ≤ I(X,Y ;Z).

We continue the rest of this section by describing our neural
achievable rate region (NARR) estimator that estimates tight
lower bounds on I(X;Z|Y ), I(Y ;Z|X), and I(X,Y ;Z).
Then we describe how we optimize the input distributions
to maximize boundaries of the achievable rate regions in an
iterative manner.

A. NARR Estimator

In order to compute boundaries of the capacity region in the
two-user MAC, we need to estimate I(X;Z|Y ), I(Y ;Z|X),
and I(X,Y ;Z). First, we focus on I(X;Z|Y ) for presenting
our algorithm, which can also be applied to I(Y ;Z|X).

We begin by expanding the conditional mutual information
in terms of a number entropy terms. Specifically, we have

I(X;Z | Y ) =h(Y,Z) + h(X,Y )− h(Y )− h(Y,X,Z)
=D(PX,Y,Z ||QX′ ,Y ′ ,Z′ ) +D(PY ||QY ′ )

−D(PX,Y ||QX′ ,Y ′ )−D(PY,Z ||QY ′ ,Z′ ),

(10)

where that last equality follows from (5), using i.i.d. reference
variable X

′
, Y

′
, and Z

′
, and canceling out the cross-entropy

terms. Applying Theorem 1 to the first two terms of (10) and
Theorem 2 to the last two terms results in

I(X;Z|Y ) ≥E[T (1)
θT1

(x, y, z)]−
E
[
e
T

(1)
θT1

(x′,y′,z′)
]

α(1)
−log(α(1))+1

+ E[T (2)
θT2

(y)]−
E
[
e
T

(2)
θT2

(y′)
]

α(2)
− log(α(2)) + 1

− χ2
UP(PX,Y ||QX′

,Y
′ )− χ2

UP(PY,Z ||QY ′
,Z

′ )
(11)

where T (1)
θT1

and T (1)
θT2

are two functions parameterized by two
distinct neural networks. Here for brevity we have omitted
from the notation the distribution over which the expectations
are taken. The reader may revisit the formulations in the
previous section for this information. The variational upper
bound terms in (11) can be evaluated once from the training
data as described in the previous section. The expectation
terms can all be estimated using empirical averages over a
minibatch of size N . The loss function used to maximize the
lower bound on the conditional mutual information is
L1(θT1, θT2, α

(1), α(2)) = L1(θT1, α
(1)) + L2(θT2, α

(2)),

L1(θT1, α
(1)) = − 1

N

N∑
i=1

T
(1)
θT1

(xi, yi, zi)

+
1
N

∑N
i=1 T

(1)
θT1

(x
′
i, y

′
i , z

′
i)

α(1)
+ log(α(1)),

L2(θT2, α
(2))=− 1

N

N∑
i=1

T
(2)
θT2

(yi)+
1
N

∑N
i=1 T

(2)
θT2

(y
′
i)

α(2)
+log(α(2)).

(12)

Once the parameters are trained, the lower bound on condi-
tional mutual information can be estimated from M samples
using (11), where M can be much larger than N .

To estimate the conditional mutual information I(Y ;Z|X)
the same approach can be used with a separate set of neural
networks S

(1)
θS1

and S
(2)
θS2

. The loss function for I(Y ;Z|X)

is then given by L2(θS1, θS2, β
(1), β(2)), which are defined

similar to (12).
Following the same approach we can obtain a variational

bound on I(X,Y ;Z) given by

I(X,Y ;Z) ≥E[UθU(x, y, z)]−
E
[
eUθU(x

′,y′,z′)
]

γ
−log(γ)+1

− χ2
UP(PX,Y ||QX′ ,Y ′ )− χ2

UP(PZ ||QZ′ )

(13)

where UθU is a neural network with parameters θU , is trainable
variable. We can employ the same technique applied to the
conditional mutual information to define a loss L3(θU , γ) and
using training to maximize the lower bound with respect to
θU .

To estimate an inner bound on the capacity of the MAC,
NARR estimates I(X;Z|Y ), I(Y ;Z|X), and I(X,Y ;Z)
jointly by using the loss function L = L1 + L2 + L3.

B. Estimating the Optimal Input Distributions
In the previous section we presented NARR, which is a data-

driven approach for estimating various information theoretic



4

Algorithm 1: Neural MAC inner bound estimator
Input: Channel model or its GAN approximation
Output: Estimate of the inner capacity region of MAC
Initialize parameters of NARR and NIT randomly
while not converged or max iteration not reached do

Phase 1: Train NARR
Generate B sample of N1, N2: {(n(i)1 , n

(i)
2 )}Bi=1

Generate {(xi, yi, zi)}Bi=1 using NIT and channel
Calculate the NARR loss L for this batch
Train S, T, U using gradient-descent
Phase 2: Train NIT
Generate B sample of N1, N2: {(n(i)1 , n

(i)
2 )}Bi=1

Generate {(xi, yi, zi)}Bi=1 using NIT and channel
Use channel and NARR to calculate:

Î = Î(X;Z | Y ) + Î(Y ;Z | X) + Î(X,Y ;Z)

Use −Î as loss to train NIT
Perform final evaluation on all or subset of data
Return: Î(X;Z | Y ), Î(Y ;Z | X), Î(X,Y ;Z)

quantities that appear in capacity region of a two-user MAC,
for a specific input distribution. This data-driven approach can
yield tight lower bounds on corresponding mutual information
terms if a proper network architecture and large number
of samples and batch sizes are used for training. However,
to find an inner capacity region, these information theoretic
quantities must be maximized with respect to the channel input
distributions.

Inspired by generative networks (GAN) [27] and [22], we
use a separate generative neural network that uses two i.i.d.
random variables from a known distribution (N1 and N2) as
seeds, and outputs the channel inputs X and Y . We call this
network the neural input transformer (NIT). Note that the NIT
can approximate a wide range of channel input distributions.
This is similar to the generative neural network, called normal-
izing flow, which transforms a known distribution to another
by training the generator such that its output moves towards
the target distribution.

The NARR and NIT are trained iteratively to find a lower-
bound on achievable rate region of memoryless MAC. A single
training iteration has 2 phases. In phase 1, the weights of
the NIT network are kept constant and the NARR network is
trained. In our experiments we have found that setting α, β,
γ to an appropriate constant value as explained in numerical
section gives the best performance.. Note that the same batch
is used in training phase 1.1 and 1.2. In phase 2, a new batch
is generated and the NARR network is kept constant while the
NIT network is trained. The training continues in this fashion
until the estimates I(X;Z|Y ), I(Y ;Z|X), and I(X,Y ;Z)
converge or until a specific number of iterations are reached.
Algorithm 1 summarizes this training procedure.

IV. NUMERICAL RESULTS

This section evaluates the proposed method on two dif-
ferent MACs. The implementations are available at GitHub

Fig. 1: The optimal achievable rates of the first user I(Y ;Z |
X) AWGN MAC.

repository of paper1. First, the additive white Gaussian noise
(AWGN) MAC is considered and it is shown that the proposed
approach is a better estimator of the optimal user rates and the
sum rate compared to the method based on mutual information
neural estimator (MINE) [20] in high SNR regimes. Note that
the capacity region of the AWGN MAC is known and our
goal in this first experiment is to evaluate the performance of
the proposed approach. Second, the optical intensity multiple
access channel (OIMAC) is considered. For this channel the
capacity region is unknown. Hence, we compare our inner
bound estimator to recent inner and outer bounds derived in
[7] and [8], and show that using our approach a tighter bound
can be estimated compared to these prior work.

For all the experiments, each of the neural networks in
NARR is a four-layer feedforward (FF) neural network with
64 hidden dimensions and the ReLU activation function. Each
reference random variable (e.g., X

′
) is a uniform random

variable over the support of the corresponding variable it
is representing (e.g., X). The support is taken to be the
maximum and minimum of the corresponding variable in the
minibatch as suggested in [23]. In the MINE-based approach,
we use a similar technique proposed in [22], where all the KL-
divergence terms in I(X;Z|Y ), I(Y ;Z|X), and I(X,Y ;Z)
(e.g., see (10)) are estimated using MINE [20]. The NIT
consists of six-layer FF neural network. The input to the NIT is
[N1, N2] where N1 and N2 are i.i.d. standard Gaussians. First
four-layer uses ReLU activation function. The last two layers
are normalization layers to enforce the average and peak power
constraints. Outputs of the NIT (X ,Y ) is fed to the channel
to produce the channel output Z.

For optimization we use the Adam optimizer with a learning
rate 10−5 to 10−3. The mini-batch size is chosen 9,000 for
SNRs above 20dB and 12,000 otherwise. In our experiments,
we have found that it suffices to choose the parameters α,
β, and γ in the range (0.9,3) for the algorithm to converge
quickly. Here we use the value of 2. Here, we treat this param-
eter as a hyperparameter and tune it for each signal-to-noise
ratio (SNR). In general, training using the proposed approach
takes less time compared to the MINE-based approach where

1https://github.com/Farhad-Mrkm/Neural-Capacity-Computation

https://github.com/Farhad-Mrkm/Neural-Capacity-Computation


5

Fig. 2: The optimal achievable rates of the second user
I(X;Z | Y ) AWGN MAC.

Fig. 3: The optimal sum rate I(X,Y ;Z) for AWGN MAC.

two more neural networks must be optimized for each of
I(X;Z|Y ), I(Y ;Z|X), and I(X,Y ;Z). The reason is that
computation of upper bounds are done outside training loop.
In a single GPU training our bounds for each SNR point takes
around 5 minutes. In general, using neural estimation does
not require days or hours of training, and could produce good
estimates for the channels considered in minutes.

We now present the results. First, we consider the AWGN
MAC where users 1 and 2 have the power constraints P1 =
E[X2] ≤ 30dB, and P2 = E[Y 2] ≤ 20dB, respectively. To
train our estimator and obtain the estimates, we use 6000
samples and draw the batches from these samples. Also at
highest SNRs we use the learning rate of 10−3 and decrease
the learning rate to 10−5 in the highest SNR. For computation
of different SNR point we fix noise variance to one and
increase power respectively. The achievable rates of each user
and sum capacity of MAC are shown in Figs. 1-3. As can be
seen, the proposed approach results in tighter estimated bounds
compared to the MINE-based approach, while maintaining
lower complexity. This is especially evident at higher SNRs.

Second, we consider OIMAC, which is defined as:

Z = X + Y +N, N ∼ N (0, σ2), 0 ≤ Y ≤ A1,

P1 = E[Y 2] ≤ ε1, P2 = E[X2] ≤ ε2, 0 ≤ X ≤ A2

Since the capacity region of OIMAC is unknown, we rely

Fig. 4: The outer and inner bounds of OIMAC from [7]
compared to our proposed neural lower-bound estimator and
MINE-based estimator. In the numerical evaluations, it is
assumed that E[X]

A2
= E[Y ]

A1
= .2, A1 = 10dB , A2 = 5dB,

and σ2 = 1

on recent inner and outer bounds derived in [7], [8] for
comparison. Fig. 4 depicts the achievable inner bound obtained
using our approach and the bound obtained using MINE and
compares them with the inner and the outer bounds of [7].
The neural estimations achieve a better inner bound compare
to the bound presented in [7]. However, we observe that at
R1 ≥ 0.9, the MINE-based estimator goes over the upper
bound. This can be due to numerical instabilities or because
MINE-based estimator is neither an upper bound nor a lower
bound on capacity. Regardless, both neural estimators show
that the as R1 rate goes above 0.9, the R2 rate drops towards
zero. This demonstrates that the neural estimators can be used
to find new and better bounds for channels where the capacity
region is not known. But one must be aware of numerical
instabilities that might exist at extremely small or large rates.

V. CONCLUSIONS

We proposed a new approach for evaluating a lower bound
on mutual information and conditional mutual information us-
ing neural networks and the variational methods. It was shown
that this technique can be used to estimate the inner bound on
the capacity region of the MAC directly from data, by using
the NIT network that learns the channel input distribution that
maximizes the inner bound. The estimated bounds were shown
to be tighter than prior methods based on MINE. Moreover,
the proposed method exhibits lower computational complexity
compared to the MINE-based approach. We must caution that
these results while promising are still preliminary and more
investigation is needed to establish that neural network based
estimation of bounds on the capacity region of MAC can be
reliable and stable at all rates. As part of future work, we will
further improve our upper bound in KL-divergence and will
also explore new bounds that can reduce sample complexity
and result in better estimators with theoretical guarantees. We
will also explore if the proposed method can be employed to
learn new channel codes for the MAC.
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