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Abstract—We interpret likelihood-based test functions from a
geometric perspective where the Kullback-Leibler (KL) diver-
gence is adopted to quantify the distance from a distribution
to another. Such a test function can be seen as a sub-Gaussian
random variable, and we propose a principled way to calculate
its corresponding sub-Gaussian norm. Then an error bound for
binary hypothesis testing can be obtained in terms of the sub-
Gaussian norm and the KL divergence, which is more informative
than Pinsker’s bound when the significance level is prescribed.
For M -ary hypothesis testing, we also derive an error bound
which is complementary to Fano’s inequality by being more
informative when the number of hypotheses or the sample size
is not large.

I. INTRODUCTION

Hypothesis testing is one central task in statistics. One of

its simplest forms is the binary case: given n independent

and identically distributed (i.i.d.) random variables Xn
1 ≡

(X1, . . . , Xn), one wants to infer whether the null hypothesis

H0 : Xi ∼ P0 or the alternative hypothesis H1 : Xi ∼ P1 is

true. The binary case serves as an important starting point from

which further results can be established, in the settings of both

classical and quantum hypothesis testing [1], [2]. With Xn
1 ,

one can construct the empirical distribution P̂n = 1
n

∑n
i=1 δXi

,

where δX is the Dirac measure that puts unit mass at X .

Adopting the Kullback-Leibler (KL) divergence as a distance

from P̂n to P0 or P1, one can construct a test function as

Φ(Xn
1 ) = I{DKL(P̂n‖P0)−DKL(P̂n‖P1) > c}, (1)

where I{·} is the indicator function, c ≥ 0 serves as a

threshold beyond which the decision that P̂n is closer to P1

than to P0 is made, and DKL(P‖Q) =
∫

ln(dP/dQ)dP is the

KL divergence from probability P to probability Q if P ≪ Q.

Conventionally, if P is not absolutely continuous with respect

to Q, then DKL(P‖Q) ≡ ∞. Note P̂n is discrete; hence if

both P0 and P1 are discrete with the same support, (1) is well

defined. Denote the densities of P0 and P1 with respect to the

counting measure as p0 and p1, respectively, and we have

DKL(P̂n‖P0)−DKL(P̂n‖P1) =
1

n
ln

(∏n
i=1 p1(Xi)

∏n
i=1 p0(Xi)

)

.

(2)

In fact, in this case, (1) is equivalent to the test function for

the likelihood ratio test [4]

Φlrt(X
n
1 ) = I

{∏n
i=1 p1(Xi)

∏n
i=1 p0(Xi)

> c′
}

, (3)
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where c′ = ecn. In the case that both P0 and P1 are continuous,

the KL divergence difference DKL(P̂n‖P0) − DKL(P̂n‖P1)
is not well defined. Nonetheless, the technically tricky part

is the term “
∫

p̂n ln(p̂n)dµ,” where we use p̂n to denote the

density of P̂n with respect to the Lebesgue measure µ as if it

had one. But it appears twice and is cancelled out formally.

We might conveniently define the KL divergence difference

in this case as (2), and still find the equivalence between (1)

and (3). Using the KL divergence in the context of hypothesis

testing can be beneficial. Firstly, it provides a clear geometric

meaning to the likelihood ratio test, as well as to the general

idea underlying hypothesis testing. Secondly, it also offers a

geometric, or even physical, interpretation of the lower bound

for the resulting statistical errors, as shown below.

Under the null hypothesis H0, the type I error rate (or the

significance level) α that is incurred by applying (1) for a fixed

c is

α = EXn

1 ∼P⊗n

0
Φ(Xn

1 ), (4)

where P⊗n
0 is the product probability measure for Xn

1 under

H0. In practice, by prescribing the significance level, for

example, letting α = 0.05, one can derive the corresponding

c and determine the desired test function. However, in this

work, our focus is not to find a test function at given α, we

mainly deal with the case that c is fixed, and α is obtained

in a somewhat passive way. Thanks to the Neyman-Pearson

lemma [3], the likelihood ratio test is known to be optimal

in the sense of statistical power. Hence, given the incurred α,

test function (1) has the minimal type II error rate β among

all possible test functions with the corresponding type I error

rate no gretaer than α:

β = 1− EXn

1 ∼P⊗n

1
Φ(Xn

1 ), (5)

where P⊗n
1 is the product probability measure for Xn

1 under

the alternative hypothesis H1.

Controlling statistical errors is of practical importance;

however, typically one cannot suppress both types of error

simultaneously. Under our i.i.d. setting, a classical result,

based on Pinsker’s inequality, concerning the error bound for

any (measurable) test function is that [4]

α+ β ≥ 1−

√

n

2
DKL(P1‖P0). (6)

This result is striking in that without going into the details

of calculating α and β, one can have a nontrivial lower
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bound of their sum in terms of the KL divergence between

two candidate probabilities, as long as the right-hand side

of (6) is greater than 0. For a fixed n, this bound is solely

determined by DKL(P1‖P0), which reflects the “distance”

from P1 to P0. This result also has a significant physical

meaning. At a nonequilibrium steady state, if P1 denotes the

probability associated with observing a stochastic trajectory in

the forward process, and P0 in the backward process, then the

theory of stochastic thermodynamics tells us that DKL(P1‖P0)
is equivalent to the average entropy production ∆S in the

forward process, which is always nonnegative [5], [6]. Hence,

if one wishes to infer the arrow of time based on observations,

then Pinsker’s result (6) implies that the chance of making an

error is high if ∆S is small. In fact, we know that ∆S = 0
at equilibrium, and one cannot tell the arrow of time at all;

hypothesis testing is just random guess in this case.

While (6) is useful, can we have a tighter and thus more

informative bound? In this work, we will show that by taking

advantage of the sub-Gaussian property of Φ(Xn
1 ) [7], [8],

one can derive a bound (15) on statistical errors in terms of

its sub-Gaussian norm (as well as the KL divergence from

P1 to P0). We name such an error bound as “sub-Gaussian”

to highlight this fact. It turns out that it is a tighter bound

than (6) in the sense that it provides a greater lower bound

for α + β (or for β at any given α 6= 0.5). In practice, a

small α is commonly set as the significance level, and our

result can hopefully be more relevant. Moreover, in the case

of M -ary hypothesis testing where M > 2 hypotheses are

present, we also derive a bound (19) for making incorrect

decisions, which is complementary to the celebrated Fano’s

inequality [9] when the number of hypothesesM or the sample

size n is not large. The error bounds presented in this work

are universal and easily applicable. We hope these findings

can help better quantify errors in various statistical practices

involving hypothesis testing.

II. MAIN RESULTS

We will first introduce the sub-Gaussian norm of Φ(Xn
1 ).

Then error bounds in the binary and M -ary cases are estab-

lished, respectively.

A. Sub-Gaussian norm of Φ(Xn
1 )

Sub-Gaussian random variables are natural generalizations

of Gaussian ones. The so-called sub-Gaussian property can be

defined in several different but equivalent ways [7], [8]. In this

work, we pick one that suits most for our purposes.

Definition 1. A random variable X with probability law P is

called sub-Gaussian if there exists σ > 0 such that its central

moment generating function satisfies

EP e
s(X−EPX) ≤ eσ

2s2/2, ∀s ∈ R.

Definition 2. The associated sub-Gaussian norm σXP of X
with respect to P is defined as

σXP ≡ inf{σ > 0 : EP e
s(X−EPX) ≤ eσ

2s2/2, ∀s ∈ R}.

Remark 1. σXP is a well defined norm for the centered

variable X−EPX [6]. It is the same for a location family of

random variables that have different means but are otherwise

identical. Also, σXP is equal to the ψ2-Orlicz norm of

X − EPX up to a numerical constant factor.

Lemma 1. A bounded random variable is sub-Gaussian. In

particular, if X ∈ [a, b] almost surely with respect to P , then

σXP ≤ (b − a)/2.

Proof. This is a well known result that can be found in, for

example, [7], [8].

Test function (1) is an indicator function and takes on values

in {0, 1}; hence it is bounded. No matter what the law of Xn
1

is, Φ(Xn
1 ) is always sub-Gaussian by Lemma 1 with a uniform

upper bound of its sub-Gaussian norm that

σΦP ≤ 0.5. (7)

However, if α is fixed as a result of some c being used in (1),

then a more informative sub-Gaussian norm for Φ(Xn
1 ) can

be obtained under the situation that Xn
1 ∼ P⊗n

0 . In this case,

by (4),

Pr(Φ(Xn
1 ) = 1|H0) = EXn

1 ∼P⊗n

0
Φ(Xn

1 ) = α,

and one can explicitly write

EXn

1 ∼P⊗n

0
es[Φ(Xn

1 )−α]

= Pr(Φ = 1|H0)e
s(1−α) + Pr(Φ = 0|H0)e

s(0−α)

= αes(1−α) + (1− α)e−sα ≡ ef .

Using f , one can rewrite the sub-Gaussian property as

h ≡ f −
1

2
σ2s2 ≤ 0, ∀s ∈ R. (8)

Since Φ is sub-Gaussian, there exists σ such that at any α, we

have h(s = 0) = 0, which is the maximal value of h. This

fact implies ∂h/∂s|s=0 = 0 and ∂2h/∂s2|s=0 ≤ 0. The latter

poses a constraint on σ’s under which (8) holds:

∂2h/∂s2|s=0 ≤ 0 =⇒ σ2 ≥ ∂2f/∂s2|s=0 = α(1 − α). (9)

Since α(1−α) ≤ 0.25, we know the minimal universal σ for

all α is 0.5, consistent with (7).

For a specific α, the minimal σ that makes (8) valid is

denoted as σΦ0(α), which is defined to be the sub-Gaussian

norm of Φ(Xn
1 ) under the law Φ#P

⊗n
0 , the push forward

probability measure of P⊗n
0 induced by Φ. We may also

simply state that σΦ0(α) is the sub-Gaussian norm of Φ(Xn
1 )

under H0. The norm σΦ0(α) can be numerically obtained in

a principled way, as summarized in the following theorem.

Theorem 1. For α 6= 0.5, besides the trivial solution (σ, 0)
with any σ > 0, the equations

{

f = 1
2σ

2s2,
∂f
∂s = σ2s,

(10)

have only one nontrivial solution (σ∗, s∗) where s∗ 6= 0. The

sub-Gaussian norm of Φ(Xn
1 ) under H0 is σΦ0 = σ∗. For

α = 0.5, σΦ0 = 0.5.
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Fig. 1. Assuming α = 0.05, we show the main idea underlying Theorem 1,
and numerically calculate σΦ0, which is the minimal σ such that h(s) is no
greater than 0 for all s due to the sub-Gaussian property (8).

Proof. We will consider three cases based on the value of α.

Case I: α = 0.5. In this case, σΦ0 can be obtained directly

by noticing

exp[f ] = cosh
(s

2

)

=
∞
∑

n=0

(s/2)2n

(2n)!
≤

∞
∑

n=0

(s/2)2n

2nn!

= exp

(

1

2
× 0.52 × s2

)

.

Hence by direct inspection, σΦ0 = 0.5.

Case II: 0 < α < 0.5. Before diving into the proof, we

briefly address the main idea first. Given α, the function h
depends on both s and σ. Requiring its maximum to be no

greater than 0 at some σ naturally leads to two conditions

that h(s, σ) = 0 and ∂h(s, σ)/∂s = 0, which are just (10). It

is expected that σΦ0 can be obtained from the corresponding

nontrivial solutions, since it is the minimal σ that satisfies (8).

Fig. 1 confirms this intuition, where α = 0.05 is assumed for

illustration. By tuning σ to some σ∗, one can see the maximum

of h at some s∗ > 0 can be exactly equal to 0, i.e., h(s∗, σ∗) =
0. Also at this s∗, h is tangent to the s-axis, indicating that

∂h(s, σ∗)/∂s|s=s∗ = 0. Hence σΦ0 = σ∗.

Now we turn to the proof. It is trivial that for any α, h
attains its maximal value 0 at s = 0, no matter what σ > 0
is. This does not provide much useful information of σΦ0. To

proceed, we need a nontrivial local maximum of h(s) at some

s 6= 0. Our first observation is that when 0 < α < 0.5, there

is no local maximum achieved for s < 0, because ∂h/∂s > 0
for all s < 0. To see this, let a ≡ e−|s|(1−α), b ≡ e|s|α, and

δ ≡ 0.5− α, then we have that

∂h

∂s
= −α(1− α)

b− a

αa+ (1− α)b
+ σ2|s|

= −α(1− α)
1− e−|s|

(0.5 + δ) + (0.5− δ)e−|s|
+ σ2|s|

> −2α(1− α) tanh(|s|/2) + σ2|s|

> [σ2 − α(1− α)] × |s| ≥ 0,

0.00001 0.0001 0.001 0.01 0.1 0.5
	

0.2

0.3

0.4

0.5

σΦ0

Fig. 2. The sub-Gaussian norm σΦ0 is plotted as a function of type I error
α. Since σΦ0 is the same for α and 1 − α, we only plot the result for
α ∈ (0, 0.5].

where α < 0.5 (hence δ > 0) is used in the first inequality,

the second inequality is due to tanh(x) < x for x > 0,

and the last inequality is given by (9) since we have already

known Φ(Xn
1 ) is sub-Gaussian. This result indicates that the

nontrivial maximum, if any, can only be found at some s > 0.

For s > 0, following similar steps, we obtain

∂h

∂s
=

α(1− α)
1
2 coth

(

s
2

)

−
(

1
2 − α

) − σ2s,

and the condition ∂h/∂s = 0 then implies

g(s) ≡
s

2
coth

(s

2

)

=

(

1

2
− α

)

s+
α(1− α)

σ2
≡ l(s, σ).

It is straightforward to check that g(s) ≥ 1 is a positive,

monotonically increasing, and strongly convex function. Hence

it can intersect the straight line l(s, σ) at no more than two

points. Note g(0+) = 1, and g′(0+) = 0. The intercept of

l(s, σ) is α(1−α)/σ2 ∈ (0, 1) by (9), and the slope is greater

than 0. Hence by tuning σ, it is always possible to make g(s)
and l(s, σ) intersect twice. Denote these two points as s1(σ)
and s2(σ), respectively, with h(s1) < h(s2). As shown in Fig.

1, h(s1) is the minimum between two maxima h(s = 0) and

h(s2). Then further requiring h(s2(σ)) = 0 at some σ∗, which

is attainable since Φ is known to be sub-Gaussian, we obtain

σΦ0 = σ∗, and Theorem 1 for the 0 < α < 0.5 part is proved.

Case III: 0.5 < α < 1. Note f(s) or h(s) is invariant under

the transformations α ↔ 1 − α and s ↔ −s. Hence σΦ0 is

the same for α and 1− α.

Combining all three cases, we have proved Theorem 1.

One can calculate σΦ0 in a principled way with given α,

without knowing P0 or P1 or the constant c in the test function.

We summarize the relation between α and σΦ0 for (1) in Fig.

2. Error bounds for hypothesis testing can now be established

based on σΦ0.

B. Sub-Gaussian bound for binary hypothesis testing

Lemma 2. Consider two general probability measures ν and

µ on a common measurable space. Suppose ν ≪ µ, and let



g ≡ dν/dµ be the density of ν with respect to µ. Let Y be a

sub-Gaussian random variable which is a function of X that

has law µ or ν. Then we have

|EX∼νY − EX∼µY | ≤ σY#µ

√

2DKL(ν‖µ), (11)

where σY#µ denotes the sub-Gaussian norm of Y with respect

to the push forward measure Y#µ.

Recently, there have been several works with findings sim-

ilar to Theorem 2, in the context of nonequilibrium statistical

physics [6], data exploration or model bias analysis [10], [11],

or uncertainty quantification for stochastic processes [12].

They can, however, be analyzed in a unified way based on

the spirit in [13].

Proof. We have assumed ν ≪ µ and g ≡ dν/dµ. The

associated entropy functional of g with respect to µ is defined

as Entµ(g) =
∫

g ln gdµ. It is straightforward to find that

Entµ(g) =

∫

dν

dµ
ln

(

dν

dµ

)

dµ =

∫

ln

(

dν

dµ

)

dν

= DKL(ν‖µ). (12)

On the other hand, by the variational representation of

Entµ(g), we have that

Entµ(g) = sup
η

∫

ηgdµ, with

∫

eηdµ ≤ 1, (13)

where η is a measurable function. We have
∫

ηgdµ = Eµηg =
Eνη and

∫

eηdµ = Eµe
η.

By assumption, Y (X) is sub-Gaussian. If X ∼ µ, then the

sub-Gaussian norm of Y under the push forward measure Y#µ
is σY#µ. Let us construct η as

η = s[Y (X)− EX∼µY (X)]−
1

2
σ2
Y#µs

2.

It is clear that Eµe
η ≤ 1 can be satisfied. Combining η with

(12) and (13), we arrive at

DKL(ν‖µ) ≥ EX∼µη(Y (X))g

= EX∼µg

[

s(Y − EX∼µY )−
1

2
σ2
Y#µs

2

]

= EX∼ν

[

s(Y − EX∼µY )−
1

2
σ2
Y#µs

2

]

= s(EX∼νY − EX∼µY )−
1

2
σ2
Y#µs

2,

which holds for any s ∈ R. Hence, Lemma 2 is proved:

|EX∼νY − EX∼µY | ≤

[

inf
|s|

DKL(ν‖µ)

|s|
+

1

2
σ2
Y#µ|s|

]

= σY#µ

√

2DKL(ν‖µ).

Theorem 2. Suppose P1 ≪ P0, and denote the sub-Gaussian

norm of test function (1) under the null hypothesis H0 as σΦ0.

Then we have

|EXn

1 ∼P⊗n

0
Φ(Xn

1 )−EXn

1 ∼P⊗n

1
Φ(Xn

1 )|

≤ σΦ0

√

2nDKL(P1‖P0). (14)

Proof. Let X = Xn
1 , ν = P⊗n

1 and µ = P⊗n
0 , and due to the

i.i.d. setting, DKL(P
⊗n
1 ‖P⊗n

0 ) = nDKL(P1‖P0). Then the

proof is completed by letting Y = Φ(Xn
1 ) in Lemma 2.

Corollary 1. One has

α+ β ≥ 1− σΦ0

√

2nDKL(P1‖P0). (15)

Proof. Insert definitions (4) and (5) into (14) and then simplify

to obtain the result.

Remark 2. Corollary 1 can be relaxed by replacing the sub-

Gaussian norm σΦ0 with one of its upper bounds. In fact, if we

use the universal upper bound provided by (7), then Corollary

1 reduces to Pinsker’s classical result (6). However, our bound

is always stronger in general. In particular, when controlling

α is more important than controlling β, one might set c > 0
to put more emphasis on it. Hence for the same sample size

n, the larger c is, the smaller α and σΦ0 are, resulting in a

tighter bound for β.

Remark 3. There is another inequality from Theorem 2 that

α+β ≤ 1+σΦ0

√

2nDKL(P1‖P0). But it is somewhat trivial

because the bound is greater than 1 and in general does not

provide much useful information. For example, one can always

accept H0, and for this trivial decision rule, α = 0, but

β ≤ 1 by definition. Hence α + β ≤ 1, and the extra term

σΦ0

√

2nDKL(P1‖P0) is not informative at all.

Remark 4. Suppose also P0 ≪ P1, which is the usual case

in hypothesis testing. Then by symmetry, it is straightforward

to have

α+ β ≥ 1− σΦ1

√

2nDKL(P0‖P1), (16)

where σΦ1 is the sub-Gaussian norm of Φ(Xn
1 ) under H1, and

it is a function of β. This result is nontrivially different than

(15), not only because different norms are applied, but also

because the KL divergence is not symmetric in two involved

probabilities. Given (16), we can either bound α when β is

given or bound β in an implicit way when α is given.

Remark 5. Similar to (6), our bound is also nonasymptotic

in nature as it holds for any finite n. The expense we pay for

this, however, is that in the large n and small α limit, our

bound for β is not as tight as Stein’s lemma which states that

β ∼ e−nDKL(P0‖P1) [4].

C. Sub-Gaussian bound for M -ary hypothesis testing

A generalization of our result to the M -ary hypothesis

testing can be obtained. Suppose there are M hypotheses,

represented by the corresponding probability distributions

{P1, . . . , PM}. Suppose from one of such distributions Pi0 ,

n data points Xn
1 are drawn independently. Our task is to

infer the hypothesis index i0 from data. Similar to (1), let us

consider the test function for the i-th hypothesis as

ϕi(X
n
1 ) =

∏

j 6=i

I{DKL(P̂n‖Pj)−DKL(P̂n‖Pi) > ci},

with ϕ = 1−Φ in the binary case. We will consider the case

that ci = 0 for all i ∈ {1, . . . ,M}. Unlike in the binary case



where c > 0 can be adopted to intentionally render a small

α, the test function here is purely likelihood-based without

any prescribed preference over any particular hypothesis. It is

known that this approach minimizes α+ β in the binary case

(the Bayes classifier). From M such test functions ϕi, one can

construct a random vector ϕ = (ϕ1, . . . , ϕM ). Assume there

always exists a single index i0 such that

DKL(P̂n‖Pj)−DKL(P̂n‖Pi0) > 0

holds for all j 6= i0. In this case, ϕi0 = 1, and ϕj = 0 for

j 6= i0. Since Xn
1 is random, we expect that i0 may differ for

each realization. However, it is almost surely with respect to

all Pi’s that
M
∑

i=1

ϕi(X
n
1 ) = 1. (17)

Under M hypotheses, we can construct a matrix, denoted

Eϕ, that encodes the error incurred in testing:

Eϕ ≡







E1ϕ1 · · · E1ϕM

...
. . .

...

EMϕ1 · · · EMϕM






, (18)

where the matrix element Eiϕj ≡ EXn

1 ∼P⊗n

i

ϕj . By (17),

the row sum of Eϕ is 1. The diagonal elements of Eϕ are

actually the probabilities that the underlying hypothesis is

correctly identified. In other words, the probability of making

an incorrect decision when the data are generated from the ith
hypothesis is αi ≡ 1 − Eiϕi. We denote αmax ≡ maxi αi.

The following theorem provides a lower bound to αmax that

is complementary to Fano’s inequality.

Theorem 3. Suppose Pi ≪ Pj for all i, j ∈ {1, . . . ,M}. For

any j ∈ {1, . . . ,M}, we have

αmax ≥ 1−
1

M
−

1

M

M
∑

i=1

σϕi

√

2nDKL(Pj‖Pi), (19)

where σϕi
is the sub-Gaussian norm of ϕi with respect to the

ith hypothesis.

Proof. First note that ϕi is sub-Gaussian since it takes on

values in {0, 1}. If αi is fixed, then the sub-Gaussian norm

σϕi
can be calculated similarly as in the binary case. Even αi

is unknown, by (14), we can formally have

Eiϕi ≤ σϕi

√

2nDKL(Pj‖Pi) + Ejϕi. (20)

Summing over i and combining (17), we find

M(1− αmax) ≤

M
∑

i=1

Eiϕi ≤ 1 +

M
∑

i=1

σϕi

√

2nDKL(Pj‖Pi).

Finally, we arrive at (19) by rearranging the terms. Hence the

proof is completed.

If we aim at lower bounding αmax, then using the sub-

Gaussian norm σϕi
in Theorem 3 seems not useful practically,

since σϕi
itself depends on αi. Nonetheless, due to the

universal upper bound (7), we can have a relaxed version of

(19) as in the corollary below.

Corollary 2. For any j ∈ {1, . . . ,M}, we have

αmax ≥ 1−
1

M
−

1

M

M
∑

i=1

√

n

2
DKL(Pj‖Pi), (21)

or, using the mean square root of KL divergences, we have

αmax ≥ 1−
1

M
−

1

M2

M
∑

i,j=1

√

n

2
DKL(Pj‖Pi). (22)

Furthermore, if DKL(Pi‖Pj) ≤ δ holds for each pair of i and

j, then

αmax ≥ 1−
1

M
−

√

n

2
δ. (23)

Remark 6. It is interesting to compare (23) with Fano’s

inequality [9], which, under the same assumption that all KL

divergences are uniformly bounded by δ, states that

αFano
max ≥ 1−

nδ + ln 2

ln(M − 1)
. (24)

As evidenced by the scalings of M and n in (23) and (24),

respectively, there is a region that our result outperforms

Fano’s in the sense that it provides a greater lower bound

for αmax. Qualitatively, this happens when at least one of the

number of hypotheses M and the sample size n is not large.

For example, when M = 3, Fano’s inequality is trivial, while

our result can still work nontrivially.

III. CONCLUSION AND DISCUSSION

In this work, by using the sub-Gaussian property of test

functions, we uncover two universal error bounds in terms of

the sub-Gaussian norm and the Kullback-Leibler divergence.

In the case of binary hypothesis testing, our bound (15) is

always tighter than Pinsker’s bound (6) for any given α 6=
0.5. In the case of M -ary hypothesis testing, our result (19)

is complementary to Fano’s inequality (24) by providing a

more informative bound when the number of hypotheses or

the sample size is not large.

Given the universality of our results, we hope, with possible

generalizations, they can find potential applications in fields

ranging from clinical trials to quantum state discrimination. In

particular, the quantum extension of these bounds is of special

interest. Due to the experimental cost, it may be important to

quantify statistical errors in the presence of a limited number

of observations, and nonasymptotic rather than asymptotic

results are thus more relevant. Both our bounds hold for any

finite sample size, and can hopefully be helpful in such cases.
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