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Abstract

1This paper considers the sparse recovery with shuffled labels, i.e., y = Π\Xβ\+w, where y ∈ Rn,
Π ∈ Rn×n, X ∈ Rn×p, β\ ∈ Rp, w ∈ Rn denote the sensing result, the unknown permutation
matrix, the design matrix, the sparse signal, and the additive noise, respectively. Our goal is
to reconstruct both the permutation matrix Π\ and the sparse signal β\. We investigate this
problem from both the statistical and computational aspects. From the statistical aspect, we
first establish the minimax lower bounds on the sample number n and the signal-to-noise ratio
(SNR) for the correct recovery of permutation matrix Π\ and the support set supp(β\), to be
more specific, n & k log p and log SNR & logn+ k log p

n . Then, we confirm the tightness of these
minimax lower bounds by presenting an exhaustive-search based estimator whose performance
matches the lower bounds thereof up to some multiplicative constants. From the computational
aspect, we impose a parsimonious assumption on the number of permuted rows and propose a
computationally-efficient estimator accordingly. Moreover, we show that our proposed estimator
can obtain the ground-truth (Π\, supp(β\)) under mild conditions. Furthermore, we provide
numerical experiments to corroborate our claims.

In this study, we focus on the “single measurement” problem, i.e., y ∈ Rn and β\ ∈ Rp, and
require SNR being at least of the order Ω(nc · (k · log p/n)c). A recent work (Zhang and Li, 2023)
studies the permuted sparse recovery problem with multiple measurements, i.e., y ∈ Rn×m and
β\ ∈ Rp×m, with m > 1. They exploit the strategy of “borrowing strength“ across different sets
of measurements and reduce the SNR requirement for the permutation recovery. They propose
a new estimator and develop a series of new techniques (including a novel modification of the
“leave-one-out” method), which however do not apply to our problem (with m = 1) in this paper.

1Preliminary work appeared in Proceedings of the IEEE International Symposium on Information Theory (ISIT’21).
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1 Introduction
This paper considers the linear sensing relation with shuffled labels, which can be formulated as

y = Π\Xβ\ +w.

Here y ∈ Rn denotes the sensing result, Π\ ∈ Rn×n is the unknown permutation matrix, X ∈ Rn×p
is the design (sensing) matrix, β\ ∈ Rp represents the signals of interests, and w ∈ Rn denotes
the additive noise. In real life, we have witnessed a broad spectrum of its applications, which
spans from communication to data privacy to computer vision to curve registration to natural
language processing (Pananjady et al., 2018; Slawski and Ben-David, 2019; Unnikrishnan et al.,
2015; Zhang et al., 2019). Two prominent examples include linkage record, which is to merge two
datasets containing different pieces of information about the same objects into one comprehensive
dataset; and data de-anonymization, which infers the hidden labels and can be viewed as the inverse
problem of data anonymization used for privacy protection. Apart from the above applications,
other applications include correspondence estimation between pose and estimation in graphics to
time-domain sampling in the presence of clock jitter to multi-target tracking in radar. For a detailed
discussion, we refer the interested readers to Pananjady et al. (2018); Slawski and Ben-David (2019);
Unnikrishnan et al. (2015); Zhang et al. (2019); Slawski et al. (2020).

In the majority of existing works (Pananjady et al., 2018; Slawski and Ben-David, 2019; Un-
nikrishnan et al., 2015; Zhang et al., 2019; Slawski et al., 2020; Hsu et al., 2017; Zhang et al., 2022;
Zhang and Li, 2020), their focus is usually on the regime of sufficient samples, in other words, the
sample number n is larger than the signal length p (i.e., n ≥ p). For a general case where the signal
β\ ∈ Rp an arbitrary vector residing within the linear space Rp, the requirement n ≥ seems to be
inevitable, even with the perfect correspondence information, namely, the permutation matrix Π\.
Meanwhile, the sample number can be reduced given some prior knowledge of the signal β\, e.g., we
know that β\ lies within a small subspace, or equivalently, β\ is with a low inherent dimension. One
typical example is the literature on the “compressed sensing” (or sparse recovery) (Donoho, 2006;
Candes et al., 2006; Candès et al., 2006). Assuming the signal β\ is k-sparse (with k-nonzero entries),
it is proved that the required sample number n can be reduced to Ω(k log p), which is far less than
p provided k � p. For other low-dimensional structures, similar results have been obtained under
the names M-estimator with regularizers (Negahban et al., 2012), atomic norms (Chandrasekaran
et al., 2012), random convex optimizations (Amelunxen et al., 2014), etc.

Inspired by these works, we investigate the shuffled linear sensing problem with insufficient
samples, namely, n� p, by placing a parsimonious assumption on the signal β\. Assuming β\ to be
k-sparse, we show that the correspondence information can be restored with n = Ω(k log p). Notice
that this order is the same as the classical works on compressed sensing/sparse recovery (Donoho,
2006; Candes et al., 2006; Candès et al., 2006) and is far less than the previously required sample
number such that n = Ω(p) (Pananjady et al., 2018; Slawski and Ben-David, 2019; Hsu et al., 2017;
Unnikrishnan et al., 2015).

Related work. The research on unlabeled linear regression has a long history and can be at
least traced back to 70s under the name “broken sample problems” (DeGroot and Goel, 1976;
Goel, 1975; Bai and Hsing, 2005; DeGroot and Goel, 1980). In recent years, we have witnessed
a renaissance of the study in this area. (Unnikrishnan et al., 2015) investigate the permutation
recovery under the noiseless setting, i.e., w = 0; and establish the necessary condition n ≥ 2p for
the general signal recovery. In Pananjady et al. (2018), the noisy observation is considered and
a thorough analysis of the maximum likelihood (ML) estimator is presented. From the statistical
perspective, it is shown that the ML estimator can reach the statistical optimality with respect
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to the signal-to-noise ratio (SNR , ‖β\‖22/σ2) requirement for correct permutation recovery, to be
more specific, SNR � Ω(nc). From the computational perspective, Pananjady et al. (2018) show the
ML estimator is NP-hard except for the special case p = 1. This computational issue is later tackled
by Hsu et al. (2017), where an approximation algorithm for the permutation recovery is proposed
with polynomial complexity. In Slawski and Ben-David (2019), the authors take an alternative path
and impose parsimonious constraints on the number of permuted rows. By viewing (I−Π\)Xβ\ as
sparse outliers, (Slawski and Ben-David, 2019) reconstruct the correspondence information from the
viewpoint of de-noising. In this work, we adopt a similar viewpoint in designing the estimator for
practical usage. However, some modifications are required to handle the insufficient sample problem
(i.e., n� p). A detailed explanation of our proposed estimator can be found in Section 5.

In Emiya et al. (2014), they consider a similar setting as ours, namely, a sparse signal β\.
A branch-and-bound scheme is proposed to reconstruct the permutation matrix Π\. Potential
drawbacks of this work include their high computational cost and the missing performance guarantee.
(Zhang and Li, 2021) is the conference version of this work and proposes different practical estimators.
While the estimators in Zhang and Li (2021) are rooted in the literature about the sign consistency
in Lasso, Dantzig estimator, etc (Zhao and Yu, 2006; Wainwright, 2009; Meinshausen et al., 2009;
Donoho et al., 2005; Rosenbaum et al., 2010; Zhang et al., 2017; Lounici, 2008; Zhang et al., 2018),
the estimator in this work is more related to the study of robustness (Nguyen and Tran, 2013;
Dalalyan and Thompson, 2019). Despite the above differences and their distinct looks, we should
mention that they actually share the same spirit, i.e., the viewpoint of de-noising: Zhang and Li
(2021) performs de-noising in an implicit way while this work takes an explicit approach. Together
with the change brings a noticeable performance improvement, which is discussed in Remark 3.

Apart from the above-mentioned articles, there are other works that are worth mentioning,
e.g., (Tsakiris and Peng, 2019; Haghighatshoar and Caire, 2018; Emiya et al., 2014; Zhang et al.,
2019; Slawski et al., 2020; Fang and Li, 2022; Slawski and Sen, 2022). Since their connection to our
work are rather loose, we only mention their name without giving detailed discussion.

Contributions. Our contributions are summarized as follows:

• We establish the statistical lower bounds for the correct recovery of (Π\, supp(β\)). Different
from the previous works, our work focuses on the situation with insufficient samples, i.e.,
n� p. Exploiting the signal sparsity, we manage to reduce the sample number n from Ω(p)
to Ω(k log p), where k denotes the sparsity number of the signal β\. As compensation, our
required SNR inflates from log SNR & logn to log SNR & logn + k log p

n , which turns out to
be marginal since n & k log p. Moreover, we show an exhaustive-search-based estimator can
match the above lower bounds up to some multiplicative constants and thus conclude the
tightness of the minimax lower bounds thereof.

• We propose a computational-friendly estimator for the recovery of (Π\, supp(β\)). By imposing
a parsimonious assumption on the number of permuted rows, we view (I−Π\)Xβ\ as a sparse
outlier and obtain a rough estimation β̃ of the signal β\. Then, we reconstruct the missing
correspondence based on the estimated value β̃. We prove that the ground-truth permutation
matrix Π\ can be obtained under mild conditions. More importantly, we show these conditions
almost match the minimax lower bounds thereof. Once the permutation matrix Π\ is given,
we restore our problem to the classical setting of sparse recovery/compressed sensing and
detect the support set of β\ accordingly.
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Notations. We denote c, c0, c
′ as some positive real constants. For two arbitrary real numbers,

we denote a ∨ b as the maximum of a and b while a ∧ b as the minimum. We denote a . b if
there exists a positive constant c0 > 0 such that a ≤ c0b. Similarly, we define a & b provided the
inequality a ≥ c0b holds for some positive constants c0. We write a � b when a . b and a & b hold
simultaneously.

We denote the set of possible values for the permutation matrix Π\ as Pn. For an arbitrary
permutation matrix Π, we associate it with the operator π(·) which transforms index i to π(i). We
define the Hamming distance dH(·, ·) between two permutation matrices Π1 and Π2 as dH (Π1,Π2) ,∑n
i=1 1 (π1(i) 6= π2(i)). The support set supp(β\) is defined as the set of indices of non-zero entries

(i.e., supp(β\) , {i : β\i 6= 0}). The signal-to-noise-ratio (SNR) is defined as ‖β\‖22/σ2.

2 Problem Statement
We start by giving a formal restatement of our problem. Consider the sensing relation

y = Π\Xβ\ +w, (1)

where y ∈ Rn is the sensing result, Π\ ∈ Rn×n denotes the permutation matrix, i.e., ∑i Π
\
ij =∑

j Π\
ij = 1, Π\

ij ∈ {0, 1}, X ∈ Rn×p is the sensing matrix, with its entries to be i.i.d. standard
normal random variable, namely, Xij ∈ N(0, 1), β\ ∈ Rp represents the k-sparse signals, i.e.,
‖β\‖0 ≤ k, and w ∈ Rn denotes the Gaussian noise following N(0, σ2I).

Compared with the previous work as in Zhang et al. (2019); Slawski et al. (2020); Pananjady et al.
(2018) that requires n ≥ 2p, our work focuses on the regime where n ≤ p. By exploiting the sparsity
of the signals β\, we will show that n = Ω (k log p)� p samples will be sufficient for the recovery of
the permutation matrix. A graphical illustration of this paper’s organization is presented in Figure 1.

Inachievability
results

Achievability
results

Exact Recovery
Theorem 1

Approximate Recovery
Theorem 2

ML Estimator Practical Estimator

Noiseless Case
Theorem 3

Noisy Case
Theorem 4

Permutation Recovery
Theorem 5

Support Set Detection
Corollary 1

Figure 1: A diagram illustration for the roadmap of the main results to be presented in this paper.
Upper panel: inachievability results; Lower panel: achievability results.

3 Statistical Lower Bounds
This paper focuses on recovering both the permutation matrix Π\ and the support set supp(β\),
which are affected by both the sample number n and SNR. In this section, we will separately discuss
their roles and establish the corresponding statistical lower bounds.
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3.1 Lower bound on sample number n

To free us from the impact of SNR, we consider the oracle scenario with Π\ being known and limit
ourselves to the small noise case, i.e., w u 0. Then, our problem reduces to the classical setting of
CS (Donoho, 2006; Candes et al., 2006; Candès et al., 2006), where n & k log p is required for the
Gaussian X (cf. P. 507, Example 15.18 in Wainwright (2019)). This order applies to our case as well
since it is hopeless to recover supp(β\) provided we fail even in the oracle scenario with known Π\.

3.2 Lower bound on SNR
This subsection studies the mini-max lower bound for the SNR. The main result is the following.

Theorem 1. We have

inf
Π̂,β̂

sup
Π\,β\

EX,w1
[
(Π\, supp(β\)) 6= (Π̂, supp(β̂))

]
≥ 1

2 , (2)

if n log (1 + SNR) + 2 ≤ log
(
|Pn|

(p
k

))
, where EX,w(·) is taken w.r.t X and w, and the infimum is

over all possible estimators Π̂ and β̂.

To better understand Theorem 1, we spell out the constants and only focus on the orders. Without
any prior information about Π\, we can assume it to distribute uniformly among the set Pn. Then,
we have |Pn| = logn! and can rewrite the SNR requirement in (2) as

log (1 + SNR) . logn+ k log (p/k)
n

. (3)

Compared with Pananjady et al. (2018) which requires log(SNR) � logn and n = Ω(p) for correct
permutation recovery, our bound only has a slight increase of SNR requirement in (3) since n & k log p.
Such an increase of required signal length is outweighed by the significant reduction of sample
number, which is from Ω(p) to Ω(k log p). In addition, we believe that this theorem can be safely
relaxed to the scenario where Xij is an i.i.d. sub-gaussian random variable with zero mean and unit
variance.

The rigorous proof of Theorem 1 is in Section A.1. Here we only present an intuitive explanation,
which comes from coding theory (Cover and Thomas, 2012). The basic idea is to recast the problem
of recovering (Π\, supp(β\)) as a decoding problem (Pananjady et al., 2018; Zhang et al., 2019).
First, we encode (Π\, supp(β\)) into the codeword Π\Xβ\. Then, we pass it through the additive
Gaussian channel (Cover and Thomas, 2012) and observe y = Π\Xβ\ +w. Our goal is to decode
(Π\, supp(β\)) from the received signal y. An illustration is available in Figure 2.

Figure 2: Interpretation of Theorem 1 from the viewpoint of coding theory.
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Different from Pananjady et al. (2018), we cannot assume β\ to be given a prior as this will
lead to absence of sparsity number in the SNR requirement. Instead, we assume β\ to be a binary
vector, namely, β\ ∈ {0, 1}n. A bonus of this assumption is that supp(β\) contains the same amount
of information as β, in other words, there is no extra information (e.g., the specific values of the
non-zero entries) required for encoding (Π\, supp(β\)) into Π\Xβ\. On one hand, the code rate
Rate is computed as

Rate ,
log

((p
k

)
n!
)

n
& (1 + 1/2n) logn+ k log(p/k)

n
.

Meanwhile, the channel capacity is approximately

Capacity ,
1
2 log

(
1 + ‖Π

\Xβ\‖22
nσ2

)
≈ 1

2 log
(

1 + ‖β
\‖22
σ2

)
.

According to Cover and Thomas (2012), we require the code rate is no greater than the channel
capacity, i.e., Rate < Capacity, to ensure correct recovery, which naturally yields the SNR requirement
in (2).

In addition, we notice that the exact recovery may be unnecessary in certain applications.
Following a similar approach, we obtain an analogous lower bound for the approximate recovery,
namely, dH(Π̂,Π\) + dH(supp(β\), supp(β̂)) ≥ D, where D ≥ 0 is some positive integer. A formal
statement is given as follows.

Theorem 2. Provided that n log(1 + SNR) + log 4 ≤ log ζ, we conclude

inf
Π̂,β̂

sup
Π\,β\

EX,w1
[
dH(Π̂,Π\) + dH(supp(β\), supp(β̂)) ≥ D

]
≥ 1

2 ,

where ζ is defined as

ζ ,
p!

(k!)2[(p− k)!]2 ·

 D∑
i=1

(D−i)∧k∑
j=1

1
(n− i)!(k − j)!(p− k − j)!(j!)2

−1

. (4)

Remark 1. Due to the complicated form of ζ in (4), we only calculate one special case, i.e., D = 0,
to illustrate its behavior. Notice that D = 0 corresponds to the exact recovery, which restore the
setting to Theorem 1. Parameter ζ under this case is written as n!

(p
k

)
, which exhibits the same order

as in Theorem 1.

In this section, we have established the lower bounds, which remain valid regardless of the
estimators being used. In the next section, we will confirm their tightness.

4 The Maximum Likelihood Estimator
We will show that the lower bounds in Section 3 can be matched with the differences only up to
some multiplicative constants, to be more specific, (i) sample number n can be picked as n � k log p;
and (ii) SNR can be set as log SNR � logn+ k log(ep/k)

n .
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4.1 A warm-up example: the noiseless case

First, we study the role of sample number n. To free it from the impact of SNR, we consider the
noiseless case, where SNR is infinite. Assuming the sparsity number k is given in advance, we will
recover (Π\,β\) via the maximal likelihood (ML) estimator reading as

(Π̂ML, β̂ML) = argmin Π∈Pn
‖β‖0≤k

‖y −ΠXβ‖2. (5)

Then we have the following theorem:

Theorem 3. Consider the noiseless case where w = 0. Given that n & k log p, we have
P((Π̂ML, β̂ML) 6= (Π\, β\)) . n−2.

Proof outline. We divide the analysis of the reconstruction error (Π̂ML, β̂ML) 6= (Π\, supp(β\))
into three categories: (i)

{
Π\ = Π̂ML, β

\ 6= β̂ML
}
; (ii)

{
Π\ 6= Π̂ML, β

\ = β̂ML
}
; and (iii){

Π\ 6= Π̂ML, β
\ 6= β̂ML

}
. Iterating over all possible pairs (Π, supp(β)), we will show the above 3

types of errors rarely happen. The detailed proof is deferred to Subsection B.2.

We notice that Theorem 3 directly recovers a sparse signal β\, which contains more information
than its support set supp(β\). Moreover, we observe that the sample number requirement in
Theorem 3 is well aligned with the lower bound presented in Subsection 3.1 and can hence confirm
its tightness.

4.2 The noisy case

This subsection investigates the noisy case. To correctly recover the support set supp(β\), we need
an additional assumption on non-zero entries’ smallest magnitudes. Otherwise, even in the classical
setting without any permutation, small sensing noise can lead to incorrect support set detection.
The formal statement reads as follows.

Theorem 4. Provided that

(i) n & k log p,

(ii) log SNR & logn+ k
n log( epk )

(iii) mini∈supp(β\) |β
\
i |

2/σ2 & 1,

we have P((Π̂ML, supp(β̂ML)) 6= (Π\, supp(β\)) . n−2 + e−ck log p.

Compared with the result pertaining to the noiseless case (i.e., Theorem 3), Theorem 4 requires
non-zero entries’ magnitudes to be at least some positive constants. Apart from this constraint,
our bound matches the minimax lower bound in Theorem 1 up to some multiplicative constants,
specifically, n & k log p and log SNR & logn+ k log p/n.

Remark 2. With a slight modification of the ML estimator, we can significantly relax the third
assumption in the above theorem, i.e., mini∈supp(β\) |β

\
i |

2/σ2 & 1. Notice that the correct permutation
recovery only requires the first two assumptions in Theorem 4. Hence, we can first reconstruct
the permutation matrix Π\ with the ML estimator. Afterwards, we restore the shuffled sparse
recovery problem to its classical setting and invoke the previous works to detect the support set
supp(β\). With the above modifications, we can improve the assumption mini∈supp(β\) |β

\
i |

2/σ2 & 1 to
mini∈supp(β\) |β

\
i |

2/σ2 & log p/n.
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We would like to emphasize that the ML estimator only serves to confirm the tightness of
Theorem 1. It is unpractical due to its high computational cost: it needs to iterate (i) all possible
k-sparse subsets, which consists of

(p
k

)
cases; and (ii) all possible permutation matrices Π, which

consists n! cases. The next section will present a computational-friendly estimator.

5 Practical Estimator
This section proposes a practical estimator to combat the high computational cost associated with
the ML estimator, which consists of two stages: permutation recovery and support set detection. A
formal statement is in Algorithm 1.

5.1 Permutation Recovery

We note that the major difficulty in the permutation recovery stems from the missing value of
signal β\. One natural solution is to restore the permutation with an approximate value of β\. To
begin with, we impose a parsimonious assumption on the number of permuted rows, or equivalently,
only a small proportion of rows are permuted. Then, we adopt a denoising viewpoint and treat(
I−Π\

)
Xβ\ as a sparse outlier to be removed. Inspired by Nguyen and Tran (2013) and Slawski

and Ben-David (2019), we can estimate the signal β\ as

(Ξ̃, β̃) = argminΞ,β
1

2n
∥∥y −Xβ −

√
n ·Ξ

∥∥2
2 + λΞ‖Ξ‖1 + λβ‖β‖1.

Afterwards, we reconstruct the permutation matrix Π\ via the following linear assignment problem
(LAP), which reads as

Π̂ = argmaxΠ〈y, ΠXβ̃〉,

where β̂ is the solution of (6). Then, we conclude

Theorem 5. We set λβ and λΞ in (6) as c0σ
√

log p/n and c1σ
√

logn/n, respectively. Assuming that
(i) n & k log p, (ii) h . n

logn , and (iii)

SNR &
n2(1+ε)(n− 1)2

4π

[√
lognp

k
√

log p
n
∨ h

√
logn
n

+ 2 log(n1+ε(n− 1))
]2
,

we conclude that (7) can yield the ground truth with probability exceeding 1 − 2n−ε, i.e., P(Π̂ =
Π\) ≥ 1− 2n−ε.

First, we discuss the SNR requirement. From the above theorem, we conclude that the correct
permutation matrix can be obtained provided that log SNR & logn, which matches the mini-max
lower bound in Theorem 1 up to some multiplicative constant. Then, we consider the maximum
allowed number of permuted rows, i.e., h . n

logn . Compared with the optimal order O(n), we
experience a loss of logarithmic term. This is consistent with our parsimonious assumption on the
number of permuted rows, i.e., h� n. Moreover, we discuss the minimum required sample number
n, which is of the order Ω(k log p). Notice that this is the same as the mini-max bound discussed in
Subsection 3.1.
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5.2 Support Set Detection

Once we have the correct permutation matrix Π\, we can restore (1) to the classical model and
detect the support set supp(β\) with the Lasso estimator, which is written as

β̂Lasso = argminβ
1

2n
∥∥Π̂>y −Xβ

∥∥2
2 + λLasso(n)‖β‖1,

where Π̂ denotes the solution of (7). Then, we detect the support set supp(β\) by selecting the
entries with the first k-largest magnitude. With the standard results concerning the sign consistency
of Lasso estimator, e.g., Lounici (2008), we can show the support set can be detected with high
probability under the settings of Theorem 5.

Corollary 1. Under the settings of Theorem 5, we pick λLasso(n) in (8) as cσ
√

log p/n. Provided
that min

β\i 6=0(|β\i |2/σ2) & log p
n , we have sign(thres(β̂; k)) = sign(β\) hold with probability 1− o(1),

where thres(·; k) selects the entries with the first k-largest magnitude and is defined in (9).

This corollary suggests that the support set supp(β\) can be detected with high probability.
Compared with Theorem 5, Corollary 1 has one additional assumption on the smallest magnitude
of the non-zero entries in β\, e.g., min

β\i 6=0(|β\i |2/σ2) & log p/n. Notice that this assumption is quite
standard (Lounici, 2008; Zhao and Yu, 2006; Wainwright, 2009) in studying the property of sign
consistency.

Remark 3. In Zhang and Li (2021), we need

min
β\i 6=0
|β\i | & (1 + k

√
log p/n)

√
log p/n ·

(
‖β\‖2

√
h logn ∨ σ

)
.

Meanwhile, our estimator improves this requirement to

min
β\i 6=0
|β\i | & σ

√
log p
n

.

Compared with Zhang and Li (2021), our estimator has a significant improvement. First, our
assumption on min

β\i 6=0 |β
\
i | is free from the total energy ‖β\‖2. Even after we factor out the impact

of ‖β\‖2, (Zhang and Li, 2021) still requires min
β\i 6=0 |β

\
i | &

σ(k log p)
n while our estimator reduces the

requirement to min
β\i 6=0 |β

\
i | & σ

√
log p/n.

In the end, we will briefly discuss the potential methods of recovering (Π\, supp(β\)). Notice
that Algorithm 1 only consists of one step of permutation recovery and support set detection. One
natural way for the performance improvement is to iteratively perform the permutation recovery
and the support set detection. In addition, we find that Ξ̃ in (6) is largely ignored. Since it contains
information about (I−Π\)Xβ\, in other words, it has information about the permutation matrix,
we can use it to refine the reconstructed permutation.
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Algorithm 1 Permuted-Lasso Estimator.
• Input: observation y, sensing matrix X, and sparsity number k.
• Stage I: Permutation Recovery. We pick λβ and λΞ as c0σ

√
log p/n and c1σ

√
logn/n. We

restore the correspondence information as

(Ξ̃, β̃) = argminΞ,β
1

2n
∥∥y −Xβ −

√
n ·Ξ

∥∥2
2 + λΞ‖Ξ‖1 + λβ‖β‖1; (6)

Π̂ = argmaxΠ〈y,ΠXβ̃〉. (7)

• Stage II: Support Set Detection. With the permutation matrix Π̂ in (7), we pick
λLasso(n) in (8) as c3σ

√
log p/n and detect the support set by first (i) computing β̂Lasso as

β̂Lasso = argminβ
1

2n
∥∥Π̂>y −Xβ

∥∥2
2 + λLasso(n)‖β‖1, (8)

and then (ii) performing hard-thresholding to β̂Lasso, which is

(thres(β̂Lasso; k))i ,
{

(β̂Lasso)i, if |(β̂Lasso)i| is among the k-largest absolute entries;
0, otherwise.

(9)

• Output: we return (Π̂, thres(β̂Lasso; k)).

6 Simulations
This section presents the numerical results, where the permutation matrix Π\ and the support
set supp(β\) are reconstructed via Algorithm 1. The regularizer coefficients, i.e., λβ, λΞ, and
λLasso(n), are all picked as 2.0. First, we consider the Gaussian setting, where each entry Xij are
i.i.d. standard normal random variables, i.e., N(0, 1). Moreover, we extend it to the setting of
sub-gaussian distributions, where Xij are i.i.d. sub-gaussian random variables, to be more specific,
Xij are uniformly distributed within the region [−1, 1], namely, Xij

i.i.d∼ Unif[−1, 1].
We evaluate the performance in terms of the ratio log SNR/logn, which is widely used in the study

of permuted linear regression. We only plot the correct rate for the permutation recovery, since the
support set detection in (8) and (9) seldom makes any mistake, even with a wrong permutation
matrix Π̂ returned in (7).

6.1 Impact of sparsity number

This subsection studies the impact of sparsity number k. We fix the signal length p and the permuted
row number h as 500 and 20, respectively. We let the sample number n ∈ {180, 200, 220} and vary
the sparsity number k within the set {5, 10, 20}. The numerical results are put in Figure 3.

Discussion. First, we discuss the Gaussian setting. From the curves in Figure 3, we confirm the
correctness of Theorem 5, which suggests that the correct permutation matrix can be obtained once
log SNR & logn. In addition, we notice that the correct permutation reconstruction requires a larger
SNR with an increasing sparsity number k. For example, we can obtain the ground-truth permutation
matrix with log SNR = 5.5 logn when (n, p, h, k) = (180, 500, 20, 5). When the sparsity number k
increases to 20, the requirement for the correct permutation recovery increases to log SNR > 6 logn.
Similar phenomena can be observed for other settings as well. Second, we discuss the uniform

10
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Figure 3: Simulated permutation recovery rate P(Π̂ = Π\) with n = {180, 200, 220}, p = 500,
h = 20, and k = {5, 10, 20}, w.r.t. log SNR/logn. (Left Panel) We have Xij be i.i.d. normal random
variables, i.e., Xij

i.i.d∼ N(0, 1); (Right Panel) We have Xij be i.i.d. sub-gaussian random variables,
to be more specific, Xij

i.i.d∼ Unif[−1, 1].

distribution setting. Numerical results show a similar behavior as that of the Gaussian setting and
suggest that our estimator in Algorithm 1 can work beyond the setting in Theorem 5.
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Figure 4: Simulated permutation recovery rate P(Π̂ = Π\) with n = {120, 150, 180}, p = 600, k = 5,
and h = {5, 10, 15, 20}, w.r.t. log SNR/logn. (Left Panel) We have Xij be i.i.d. normal random
variables, i.e., Xij

i.i.d∼ N(0, 1); (Right Panel) We have Xij be i.i.d. sub-gaussian random variables,
to be more specific, Xij

i.i.d∼ Unif[−1, 1].

6.2 Impact of permuted row number

We investigate the impact of the permuted row number h on the simulated permutation recovery
rate P(Π̂ = Π\). We fix the signal length p and sparsity number k as 600 and 5, respectively. We
let the sample number n = {120, 150, 180} and set the permuted row number h ∈ {5, 10, 15, 20}.
The experiment results are presented in Figure 4.

12



Discussion. We notice that the permutation recovery becomes more difficult, in other words,
requires a larger SNR, with an increasing number of permuted rows. Under the Gaussian setting
(n, p, h, k) = (120, 600, 5, 5), we can obtain the ground-truth Π\ when log SNR ≈ 5 logn. When h
increases to 20, the requirement on SNR is strengthened to log SNR > 6 logn. We believe that this
conclusion should hold universally. However, numerical experiments do suggest that the performance
difference becomes less distinguishable with a higher n/p ratio.

7 Conclusion
We have studied sparse recovery with shuffled labels. First, we establish the statistical lower bounds
for both the sample number n and SNR. For the sample number n, by exploiting the sparsity of
signals, we manage to reduce the required sample number from n ≥ 2p to the order of Ω(k log p).
For SNR, we have a marginal increase from log SNR & logn to log SNR & logn+ k/n log( epk ). Then,
we present an exhaustive-search based estimator to confirm the tightness of the above bounds.
Afterwards, we propose a practical estimator and show they can yield the correct (Π\, supp(β\))
under mild conditions. Simulations confirm our theorems and suggest that large sparsity number
and Hamming distance require more samples and stronger signal energy for correct reconstruction
of (Π\, supp(β\)).
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Appendices
A Proof of Statistical Lower Bound

A.1 Proof of Theorem 1

Proof. To begin with, we assume β\ ∈ {0, 1}p and place a uniform distribution prior on Π\ and
supp(β\). Then, we notice the relation

sup
Π\,β\

EX,w1
[
(Π\, supp(β\)) 6= (Π̂, supp(β̂))

]
≥ PX,w,Π\,supp(β\)

[
(Π\, supp(β\)) 6= (Π̂, supp(β̂))

]
, ϑ, (10)

where EX,w(·) denotes the expectation w.r.t. X and w, and PX,w,Π\,supp(β\) puts uniform prior on
Π\ and supp(β\) as well. Since (10) holds universally, we can safely add infΠ̂,β̂

to the left-hand
side in (10) and complete the proof. In the following context, we lower bound the error probability
by adapting the techniques used in proving the Fano’s inequality in Theorem 2.10.1 in Cover and
Thomas (2012).

Denote H(·) as the entropy, while I(·; ·) as the mutual information. With the Fano’s method
as illustrated in Cover and Thomas (2012), we would like to lower bound the error probability
P((Π\, supp(β\)) 6= (Π̂, supp(β̂))) as

H(Π\, supp(β\)) = H
(
Π\, supp(β\) | X

)
= H

(
Π\, supp(β\) | X, Π̂, supp(β̂)

)
+ I(Π\, supp(β\); Π̂, supp(β\) | X)

1©
≤ H

(
Π\, supp(β\)|Π̂, supp(β̂)

)
+ I(Π\, supp(β\); Π̂, supp(β̂)|X)

2©
≤ H

(
Π\, supp(β\) | Π̂, supp(β̂)

)
+ I

(
Π\, supp(β\);y | X

)
3©
≤ 1 + log

(
|Pn| ×

(
p

k

))
ϑ+ I

(
Π\, supp(β\);y|X

)
, (11)

where 1© is because of the property such that conditioning reduces entropy (Cover and Thomas,
2012, Eq. (2.157)), 2© is due to the fact (Π\, supp(β\)) → y → (Π̂, supp(β̂)) forms a Markov
chain and the data-processing inequality (Cover and Thomas, 2012, Theorem 2.8.1); and 3© is a
direct consequence of Fano’s inequality (Cover and Thomas, 2012, Theorem 2.10.1). Exploiting the
independence between Π\ and β\, we have

H(Π\, supp(β\)) = H(Π\) + H(supp(β\)) = log |Pn|+ log
(
p

k

)
.

Combing (11) with Lemma 1 then complete the proof.
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A.2 Proof of Theorem 2

Proof. We assume Π\ is uniformly distributed over the set Pn, which corresponds to the case where no
prior knowledge about Π\ is unavailable. First, we define E , 1

{
dH(Π̂,Π\)+dH

(
supp(β\), supp(β̂)

)
≥

D
}
, which indicates the failure of approximate recovery of Π\. We give a roadmap before going into

the details

• Step I: We consider the conditional entropy H(E ,Π\, supp(β\)| Π̂, supp(β̂),y,X) and prove

H(E ,Π\, supp(β\) | Π̂, supp(β̂),y,X) = H(Π\, supp(β\) | y,X).

• Step II: We show that

H(E ,Π\, supp(β\) | Π̂, supp(β̂),y,X) ≤ log 2 + H(Π\, supp(β\))− P(E = 0) log ζ,

where ζ is defined in (4).

• Step III: Combining the above two steps together, we upper-bound P(E = 0) as

P (E = 0) ≤
log 2 + I

(
Π\, supp(β\);y,X

)
log ζ

1©=
log 2 + I

(
Π\, supp(β\);y | X

)
log ζ ,

where 1© is because (Π\, supp(β\)) and y are independent given X. Invoking Lemma 1, we
complete the proof.

Then we present the computational details.

Step I. We expand H(E ,Π\, supp(β\) | Π̂, supp(β̂),y,X) via the chain rule (Cover and Thomas,
2012, Theorem 2.5.1) as

H(E ,Π\, supp(β\) | Π̂, supp(β̂),y,X)
= H(Π\, supp(β\) | Π̂, supp(β̂),y,X) + H(E | Π\, supp(β\), Π̂, supp(β̂),y,X)
= H(Π\, supp(β\) | y,X),

where in the last equation we have used that 1© E is deterministic conditional on Π\, supp(β\), Π̂,y,X,
and 2© (Π\,β\) and (Π̂, β̂) are independent given X and y.

Step II. Define B
[(

Π\,β\
)

; D
]
as

B
[(

Π\,β\
)

; D
]
,

(Π\, supp(β\))
∣∣∣∣∣

dH(Π̂,Π\) = i,

dH(supp(β\), supp(β̂)) = j,

s.t. i+ j ≤ D


which denotes the set of all possible pairs (Π\, supp(β\)) given E = 0. Easily we can verify that its
cardinality can be upper bounded by

∣∣∣B [(Π\,β\
)

; D
]∣∣∣ ≤ D∑

i=1

(D−i)∧k∑
j=1

(
n

i

)
i! ·
(
k

j

)(
p− k
j

)
.
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Then we expand H(E ,Π∗| Π̂,y,X) as

H
(
E ,Π\, supp(β\) | Π̂, supp(β̂),y,X

)
= H(E|Π̂, supp(β̂),y,X) + H(Π\, supp(β\)|E , Π̂, supp(β̂),y,X)
2©
≤ log 2 + H

(
Π\, supp(β\) | E , Π̂, supp(β̂),y,X

)
3©
≤ log 2 + P (E = 1) H(Π\, supp(β\)|E = 1, Π̂, supp(β̂)) + P (E = 0) H(Π\, supp(β\)|E = 0, Π̂, supp(β̂))

4©
≤ log 2 + [1− P (E = 0)] H(Π\, supp(β\)) + P (E = 0) log

 D∑
i=1

(D−i)∧k∑
j=1

n!
(n− i)!

(
k

j

)(
p− k
j

)
5©= log 2 + H(Π\, supp(β\))− P (E = 0) log ζ,

where in 2© we use the fact that E is binary and hence H(E|·) ≤ log 2, in 3© we use the property
that conditioning reduces entropy (Cover and Thomas, 2012, Equation (2.157)), in 4© we use the
property

H
(
Π\, supp(β\)|E = 0, Π̂, supp(β̂)

)
≤ log

∣∣∣B [(Π\,β\
)

; D
]∣∣∣ ,

and in 5© we use the fact that H(Π\, supp(β\)) = log
(
n! ·

(p
k

))
.

A.3 Supporting lemmas for Section 3

Lemma 1. Assume that β\ ∈ {0, 1}p. we have

I
(
Π\, supp(β\);y|X

)
≤ n

2 log (1 + SNR) ,

where I(·; ·) denotes the mutual information.

Proof. Denote h(·) as the differential entropy. We have

I
(
Π\, supp(β\);y | X

) 1©= EX,w,Π\,supp(β\)

[
h (y|X = x)− h

(
y|Π\, supp(β\),X = x

)]
2©
≤ EX

1
2 log det

(
Ew,Π\ | X=xyy

>
)
− n

2 log σ2

3©
≤ 1

2 log det
[
EX,Π\(σ2In×n + Π\Xβ\ β\>X>Π\>)

]
− n

2 log σ2

4©= n

2 log
(
σ2 + ‖β\‖22

)
− n

2 log σ2 = n

2 log(1 + SNR),

where 1© is because of the definition of conditional mutual information; 2© is due to the prop-
erty (Cover and Thomas, 2012, Theorem 8.6.5)

h(Z) ≤ 1
2 log detCov(Z) ≤ 1

2 log detE
(
ZZ>

)
,

for a random variable Z with finite covariance matrix Cov(Z), and h(y|Π\, supp(β\),X = x) = h(w)
as β\’s information is fully encoded in supp(β\); in 3© we use the concavity of log det(·), i.e.,
E log det(·) ≤ log detE(·); and in 4© we have

EX,Π\

(
Π\Xβ\ β\>X>Π\>

)
= ‖β\‖22 · In×n.
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B Analysis of ML estimator
This section analyzes the ML estimator.

B.1 Notation definition

We denote supp(β\) and supp(β) as T and S, respectively. In addition, we define T1, T2, and T3 as
T1 , T \ S, T2 , T

⋂
S, and T3 , S \ T , respectively. An illustration is available in Figure 5. In

! " #$%% &

' " #$%%(&)

*! *" *#

Figure 5: Illustration of T1, T2, and T3: T1 , T \ S, T2 , T
⋂
S, and T3 , S \ T , respectively.

addition, we define the following events before we proceed.

E1 ,
{
Π\ = Π̂, β\ 6= β̂

}
;

E2 ,
{
Π\ 6= Π̂, β\ = β̂

}
;

E3 ,
{
Π\ 6= Π̂, β\ 6= β̂

}
;

E4(δ; Π, S) ,
{∥∥∥P⊥ΠXS

y
∥∥∥2

2
−
∥∥∥P⊥ΠXS

w
∥∥∥2

2
< 2δ

}
;

E5(δ; Π, S) ,
{∣∣∣∣∥∥∥P⊥Π\XT

w
∥∥∥2

2
−
∥∥∥P⊥ΠXS

w
∥∥∥2

2

∣∣∣∣ ≥ δ} ;

E6(t;h) ,
{∥∥∥P⊥ΠXS

Π\XTβ
\
T

∥∥∥2

2
≥ t‖β\T ‖

2
2, ∀ S,Π s.t. dH(I,Π) = h

}
;

E7(δ; Π, S) ,
{∣∣∣∣∥∥∥P⊥Π\XT

w
∥∥∥2

2
− E

∥∥∥P⊥Π\XT
w
∥∥∥2

2

∣∣∣∣ ≥ δ

2

}
;

E8(δ; Π, S) ,
{∣∣∣∣∥∥∥P⊥ΠXS

w
∥∥∥2

2
− E

∥∥∥P⊥ΠXS
w
∥∥∥2

2

∣∣∣∣ ≥ δ

2

}
.

B.2 Proof of Theorem 3

We prove a more specific version of Theorem 3, which is

Theorem. Consider the noiseless case, i.e., w = 0. Suppose n = Ω(k log p), we have P((Π̂ML, β̂ML) 6=
(Π\, β\)) . n−2.

Proof. We upper bound the error probability P(Π̂ML 6= Π\) can be decomposed as ∑3
`=1 E1(E`),

whose definitions are stated in Subsection B.1.

Bounding E1(E1). Conditional on E1, easily we can prove that T1 is not empty, since otherwise
we have XTβ

\
T = XT β̂, which leads to contradiction. Given the support set S, we can write βS as

(X>SXS)−1X>SXTβ
\
T . Then we have

XTβ
\
T = XSβS = PXSXTβ

\
T ,
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which implies XTβ
\
T lies within the linear space spanned by the columns of XS . Then we obtain

P⊥XS
(XTβ

\
T ) = P⊥XS

(XT1β
\
T1

) = 0 and can upper-bound E1(E1) as
(p
k

)
· P(‖P⊥XS

(XT1β
\
T1

)‖2 = 0).
Recalling the definition of T1, we conclude XT1 to be independent of XS . Then, with the rotational
invariance of Gaussian distribution, we can rewrite P(‖P⊥XS

(XT1β
\
T1

)‖2 = 0) as P(
∥∥∥P⊥XS

z
∥∥∥

2
‖β\T1

‖2 =

0) = P(
∥∥∥P⊥XS

z
∥∥∥

2
= 0), where z ∈ Rn is a Gaussian random variable satisfying z ∼ N(0, In×n).

In the following proof, we will view z as a fixed vector as it is independent of XS . Afterwards,
we can upper-bound E1(E1) as

E1(E1) ≤
(
p

k

)
P
(∥∥∥P⊥XS

z
∥∥∥

2
≤ γ‖z‖2

) 1©
≤
(
ep

k

)k
exp

[
n− k
n

(
1− γ2 + log γ2

)] 2©
≤ n−2,

where in 1© we use
(p
k

)
≤ (ep/k)k and (Dasgupta and Gupta, 2003, Lemma 2.2(a)), and in 2© we pick

γ as kk√
en2(ep)k .

Bounding E1 (E2). Event E2 suggests that there exists another permutation matrix Π̂ 6= Π\ such
that Π̂XTβ

\
T = Π\XTβ

\
T . Then, we can equate E1(E2) with P(‖(Π̂ −Π\)z‖2 = 0, ∃ Π̂ 6= Π\),

where z ∼ N(0, In×n). This leads to

E1(E2) ≤ P(‖(Π̂−Π\)z‖2 = 0, ∃ Π̂ 6= Π\) ≤
∑
h≥2

(
n

h

)
h! · P(‖(I−Π)z‖2 = 0, s.t. dH(I,Π) = h).

With Lemma 5, we have

E1(E2) ≤
∑
h≥2

(
n

h

)
h!P(‖(I−Π)z‖2 ≤

4
en20 , s.t. dH(I,Π) = h)

3©
≤ 6

∑
h≥2

nh · exp
[
h

10
(

log
(
2/(ehn20)

)
− 2/(ehn20) + 1

)] 4©
≤ 6

∑
h≥2

n−h ≤ 6
n(n− 1) ,

where 3© is because n!/(n−h)! ≤ nh, and 4© is due to exp
[
h
10
(

log
(
2/(ehn20)

)
− 2/(ehn20) + 1

)]
≤ n−2h.

Bounding E1(E3). Adopting the similar argument as in bounding E1(E1), for a fixed permutation
matrix Π and support set S, we have

β̂ = β̂S = (ΠXS)† Π\XTβ
\
T .

Based on the optimality of the objective function in (5), we conclude that

Π\XTβ
\
T = ΠXSβ̂ = PΠXSΠ\XTβ

\
T ,

which suggests Π\XTβ
\
T lies within the linear space spanned by the columns in ΠXS . Following

a similar procedure as in bounding E1(E1), we have E1(E3) ≤ 8
n(n−1) . Combining the discussions

thereof then completes the proof.
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B.3 Proof of Theorem 4

Proof. The proof consists of two stages

• Stage I. The permutation matrix can be obtained with high probability;

• Stage II. Given the correct permutation, we can detect the support set with high probability.

The proof of Stage I is in Lemma 2 while the proof of Stage II is in Lemma 3.

B.4 Supporting lemmas for Section 4

Lemma 2. Assume n = Ω
(
k log

( ep
k

))
, and

log(SNR) ≥ [128 logn+ 64k/n · log (ep/k)] ∨
[
34 logn+ 2 log(4e6)

]
∨
[
148 logn+ 4 log(2e6)

]
, (12)

we conclude that P(Π̂ML 6= Π\) ≤ 13
n(n−1) .

Proof. Fixing the support set S and permutation matrix Π, we have minsupp(β̂)=S ‖y −ΠXβ‖2 be

expressed as
∥∥∥P⊥ΠXS

y
∥∥∥

2
. Here we only study the permutation reconstruction error (i.e., Π̂ 6= Π\)

and define error event E as

E ,
{
∃ (Π, S) s.t. Π 6= Π\,

∥∥∥P⊥ΠXS
y
∥∥∥

2
≤
∥∥∥P⊥Π\XT

y
∥∥∥

2

}
.

Then we would like to show E holds with probability close to zero.
First, we would like to show E ⊆ ∪Π,SE4(δ; Π, S) ∪ E5(δ; Π, S). This is because

⋂
Π,S

[
E4(δ; Π, S)

⋂
E5(δ; Π, S)

]
=
{
∀ (Π, S) s.t. Π 6= Π\,

∥∥∥P⊥ΠXS
y
∥∥∥2

2
−
∥∥∥P⊥ΠXS

w
∥∥∥2

2
≥ 2δ,

∣∣∣∣∥∥∥P⊥Π\XT
w
∥∥∥2

2
−
∥∥∥P⊥ΠXS

w
∥∥∥2

2

∣∣∣∣ < δ

}
⊆
{
∀ (Π, S) s.t.Π 6= Π\,

∥∥∥P⊥ΠXS
y
∥∥∥2

2
−
∥∥∥P⊥Π\XT

w
∥∥∥2

2
≥ δ

}
⊆ E .

Then we can bound E1(E) as

E1(E) ≤
∑
h≥2

(
n

h

)
h!
[∑
S

(ζ1 + ζ2) + ζ3

]
, (13)

where ζ1, ζ2, and ζ3 are defined as

ζ1 , E1
(
E4 (δ; Π, S)

⋂
E6(th;h)

∣∣ dH(I,Π) = h
)
;

ζ2 , E1
(
E5 (δ; Π, S)

⋂
E6(th;h)

∣∣ dH(I,Π) = h
)
;

ζ3 , E1
(
E6(th;h)

)
.
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The following analysis can be roughly divided into 2 steps

• Step I. Setting δ =
∥∥P⊥

ΠXS
Π\XTβ

\
T

∥∥2

2/4, we separately bound ζ1, ζ2, and ζ3.

• Step II. We pick th as (n·log SNR)/SNR and show P(Π̂ 6= Π\) ≤ 13/n(n−1) provided assumption
(12) holds.

Step I. Picking δ as
∥∥P⊥

ΠXS
Π\XTβ

\
T

∥∥2

2/4, we have

ζ1 = EX,w1

[〈
P⊥ΠXS

Π\XTβ
\
T ,w

〉
≤ −

∥∥∥P⊥
ΠXS

Π\XTβ
\
T

∥∥∥2

2
/4 ∩ E6(th;h)

]
1©
≤ EX1

[
Φ
(
−
∥∥∥P⊥

ΠXS
Π\XTβ

\
T

∥∥∥2

2
/4σ
∥∥∥P⊥

ΠXS
Π\XTβ

\
T

∥∥∥
2

)⋂
E6(th;h)

]
2©
≤ EΦ

(
−
√
th‖β\T ‖2/4σ

) 3©
≤ exp

(
−th‖β\T ‖2

2/32σ2
)

= exp (−th·SNR/32) ,

where in 1© we condition on X and have 2〈P⊥ΠXS
Π\XTβ

\
T ,w〉 to be a Gaussian random variable

with zero mean and 4σ2‖P⊥ΠXS
Π\XTβ

\
T ‖22 variance, i.e., N(0, 4σ2‖P⊥ΠXS

Π\XTβ
\
T ‖22), Φ(·) denotes

the CDF for the standard normal distribution, 2© is because of event E6(th;h), and 3© is due to the
tail bound Φ(−x) ≤ e−x2/2, x ≥ 0 (c.f. Proposition 2.12 in Vershynin (2018)).

For ζ2, we notice the relation such that Ew,X‖P⊥Π\XT
w‖22 = Ew,X‖P⊥ΠXS

w‖22 = (n− k)σ2 and
perform the decomposition

E5(δ; Π, S) ⊆ E7(δ; Π, S)
⋃
E8(δ; Π, S).

This leads to

ζ2 ≤ E1(E7(δ; Π, S)
⋂
E6(th;h)) + E1(E8(δ; Π, S)

⋂
E6(th;h)).

Exploiting the independence between X andw, we can condition on X view ‖P⊥
Π\XT

w‖2
2/σ2 (‖P⊥

ΠXS
w‖2

2/σ2

resp.) as χ2 random variable with freedom n− k. Plugging δ into the tail bound for χ2 as in Wain-
wright (2019, Example 2.11, P. 29), we conclude

ζ2 ≤ 4 exp
[
−
(
th · SNR

64 ∧ t2h · SNR2

512(n− k)

)]
.

Ultimately, we invoke Lemma 4 and bound ζ3 as

ζ3 ≤ 2n−2h + 6 exp
[
h

10

(
log

(
4e6n16h/nth

h

)
− 4e6n16h/nth

h
+ 1

)]
,

where th < h/(4e6n16h/n).

Step II. Let th be (n·log SNR)/SNR, we will show ζ` (1 ≤ ` ≤ 3) all shrink to zero with the assumption
(12). For ζ1, we use the assumption log(SNR) ≥ 128 logn+ 64k log( epk )/n ≥ 128h logn/n + 64k log( ep

k
)/n in

(12) and have ζ1 ≤ exp (−th·SNR/32) ≤ n−2h (k/ep)k.
Then we turn to ζ2. If th·SNR

64 ∧ t2h·SNR2

512(n−k) = th·SNR
64 , we can apply the same strategy to bound ζ2.

Otherwise, we need to bound ζ2 as

exp
(
− t2h · SNR2

512(n− k)

)
= exp

(
−n

2 · log2 SNR
512(n− k)

)
5©
≤ exp

(
−n · log SNR

64

)
≤ n−2h

(
k

ep

)k
, (14)

22



where in 5© we use the relation log SNR ≥ 8 and redo the above analysis. For ζ3, we first need to
check the condition th < h/(4e6n16h/n) is not violated as

log th < −16 logn− log(4e6) < log h− 16h logn/n− log(4e6).

Then we consider exp[ h10(log (4e6n16h/nth)/h− (4e6n16h/nth)/h + 1)], which reads as

exp
[
h

10

(
log

(
4e6n16h/nth

h

)
− 4e6n16h/nth

h
+ 1

)]

≤ exp
[
h

10 log
(

4e6n16h/n+1

h

)]
× exp

[
h

10

(
log log SNR

SNR − log SNR
SNR + 1

)]
6©
≤ exp

[
h

10 log
(

4e6n16h/n+1

h

)]
× exp

(
−h · log SNR

40

) 7©
≤ n−2h, (15)

where in 6© we use log z
z − 1 − log log z

z ≥ log z
4 when z ≥ 1.25, and in 7© we use the relation

log SNR ≥ 148 logn+ 4 log(2e6) in (12).
Combining (13), (14), and (15), we complete the proof as

E1(E) ≤
∑
h≥2

(
n

h

)
h! ·

[∑
S

(
5n−2h (k/ep)k

)
+ 8n−2h

]
≤ 13

∑
h≥2

n−h ≤ 13
n(n− 1) .

Lemma 3. Consider the case where the ground-truth permutation matrix Π\ is given a prior.
Provided that (i) n & k log p, and (ii) mini∈T |β\i |2/σ2 & 1, we have P(S 6= T ) ≤ c0e

−c1k log p, where
c0, c1 > 0 are some positive constants.

Proof. We assume Π\ = I w.l.o.g. Recalling the definition of our estimator in (5), we ought to have

|||P⊥XS
y|||2F ≤ |||P

⊥
XT
y|||2F = |||P⊥XT

w|||2F,

which is equivalent to

|||P⊥XS
XTβ

\
T |||

2
F + 2

〈
P⊥XS

XTβ
\
T ,w

〉
≤ |||P⊥XT

w|||2F − |||P
⊥
XS
w|||2F.

To begin with, we consider a fixed index set S and have

P
(
|||P⊥XS

y|||F ≤ |||P
⊥
XT
y|||F

)
≤ ζ1 + ζ2 + ζ3, (16)

where ζ1, ζ2, and ζ3 are defined as

ζ1 , P
(
‖P⊥XS

XT1β
\
T1
‖22 ≤ (n−k)/4‖β\T1

‖22
)
;

ζ2 , P
(
2〈P⊥XS

XTβ
\
T ,w〉 . −cσ

√
(k log p)(n− k)‖β\T1

‖2
)
;

ζ3 , P
(
|||P⊥XT

w|||2F − |||P
⊥
XS
w|||2F ≥ (n−k)/4‖β\T1

‖22 − cσ
√

(k log p)(n− k)‖β\T1
‖2
)
.

Analysis of ζ1. Recalling the fact such that P⊥XS
is the projection onto the orthogonal complement

of column space spanned by XT , we can verify P⊥XS
XTβ

\
T = P⊥XS

XT1β
\
T1
. Then, we decompose ζ1

as

ζ1 ≤ ζ1,1 + ζ1,2, (17)
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where ζ1,1 and ζ1,2 are defined as

ζ1,1 , P
(
‖P⊥XS

XT1β
\
T1
‖2 ≤

√
n−k/2‖β\T1

‖2, ‖XT1β
\
T1
‖2 ≥

√
n/2‖β\T1

‖2
)

;

ζ1,2 , P
(
‖XT1β

\
T1
‖2 ≤

√
n/2‖β\T1

‖2
)
.

For ζ1,1, we follow the same procedure as in Theorem 3. Conditional on XT1 , we view P⊥XS
as a

random projection from a linear space of dimension n to a linear space of dimension n− k, which
yields

ζ1,1 ≤ P
(
‖P⊥XS

XT1β
\
T1
‖22 ≤ (n−k)/2n‖XT1β

\
T1
‖22
) 1©
≤ exp

[
n− k

2 (log 1/2− 1/2 + 1)
]

= e−c0n, (18)

where 1© is due to Lemma 11. For ζ1,2, we exploit the fact such that ‖XT1β
\
T1
‖2

2/‖β\T1
‖2

2 is a χ2 random
variable with freedom n. Then we have

ζ1,2 ≤ exp
[
n

2 (log 1/2− 1/2 + 1)
]

= e−c1n. (19)

Analysis of ζ2. With the union bound, we have

ζ2 ≤ P
(
2〈P⊥XS

XT1β
\
T1
,w〉 . −σ

√
k log p‖P⊥XS

XTβ
\
T ‖2

)
︸ ︷︷ ︸

, ζ2,1

+ P
(
‖P⊥XS

XT1β
\
T1
‖2 ≥

√
3(n− k)‖β\T1

‖2
)

︸ ︷︷ ︸
, ζ2,2

. (20)

For ζ2,1, we exploit the independence between X and w. Conditional on X, we can view
2〈P⊥XS

XT1β
\
T1
,w〉 as a Gaussian random variable with zero mean and 4σ2‖P⊥XS

XT1β
\
T1
‖22 variance,

i.e., N
(
0, 4σ2‖P⊥XS

XT1β
\
T1
‖22
)
. Then, we have

ζ2,1 ≤ exp

−cσ2(k log p)‖P⊥XS
XT1β

\
T1
‖22

4σ2‖P⊥XS
XT1β

\
T1
‖22

 = e−ck log p. (21)

For ζ2,2, we follow a similar proof as in bounding ζ1 and have

ζ2,2 ≤ P
(
‖P⊥XS

XT1β
\
T1
‖22 ≥ 3(n− k)‖β\T1

‖22, ‖XT1β
\
T1
‖2 ≤

√
3n/2‖β\T1

‖2
)

+ P
(
‖XT1β

\
T1
‖2 ≥

√
3n/2‖β\T1

‖2
)

≤ P
(
‖P⊥XS

XT1β
\
T1
‖22 ≥

2(n− k)
n

‖XT1β
\
T1
‖22
)

+ P
(
‖XT1β

\
T1
‖2 ≥

√
3n/2‖β\T1

‖2
)
≤ 2e−c1n.

(22)

Analysis of ζ3. Due to the assumptions in Lemma 3, we can verify

(n−k)/4‖β\T1
‖22 − cσ

√
(k log p)(n− k)‖β\T1

‖2 ≥ min
i∈T
|β\i |

(
(n−k)/4 min

i∈T
|β\i | − cσ

√
(k log p)(n− k)

)
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≥ c
′
σ2
√
k log(ep/k)

[√
k log(ep/k) ∨

√
n− k

]
.

Thus, we have

ζ3 ≤ P
(
||||P⊥XT

w|||2F − |||P
⊥
XS
w|||2F| ≥ ∆

)
,

where ∆ is set as c′
σ2√k log(ep/k)

[√
k log(ep/k) ∨

√
n− k

]
. Noticing the relation E|||P⊥XT

w|||2F =
E|||P⊥XS

w|||2F, we obtain

P
(
||||P⊥XT

w|||2F − |||P
⊥
XS
w|||2F| ≥ ∆

)
≤ 2P

(
||||P⊥XT

w|||2F − E|||P⊥XT
w|||2F| ≥ ∆/2

)
.

Due to the independence between X and w, we can view |||P⊥
XT

w|||2
F/σ

2 as a χ2 random variable with
freedom n− k. Thus, we conclude

ζ3 ≤ 2P
(
||||P⊥XT

w|||2F − E|||P⊥XT
w|||2F| ≥ ∆/2

)
≤ 4 exp

(
−
(

∆
16σ2 ∧

∆2

32σ4(n− k)

))
≤ 4e−ck log p.

(23)

Combining (16), (17), (18), (19), (20), (21), (22), and (23) yields

P
(
|||P⊥XS

y|||F ≤ |||P
⊥
XT
y|||F

)
≤ c0e

−c1k log p, (24)

where the assumption n & k log p is invoked. Notice that (24) is w.r.t. a fixed index set S. In the
end, we iterate over all possible index set S 6= T and complete the proof with the union bound,
which reads as

P(S 6= T ) ≤
∑
S 6=T

P
(
|||P⊥XS

y|||F ≤ |||P
⊥
XT
y|||F

)
.

(
p

k

)
· e−c1k log p ≤ (ep/k)ke−c1k log p = e−c2k log p.

Lemma 4. We have

P
(
‖P⊥ΠXS

Π\XTβ
\
T ‖

2
2 < t‖β\T ‖

2
2, ∃ Π, S s.t. dH(Π,Π\) = h

)
≤ 2n−2h + 6 exp

(
h

10

(
log

(
4e6n16h/nt

h

)
− 4e6n16h/nt

h
+ 1

))
,

where t < h/(4e6n16h/n), and h ≥ 2.

Proof. We assume Π\ = I w.l.o.g. With some simple algebraic manipulations, we have∥∥P⊥X
S
⋃

T1
Π>XTβ

\
T

∥∥2
2 =

∥∥P⊥ΠX
S
⋃

T1
XTβ

\
T

∥∥2
2 ≤

∥∥P⊥ΠXS
XTβ

\
T

∥∥2
2.

Then, we obtain

P
(
‖P⊥ΠXS

XTβ
\
T ‖

2
2 < t‖β\T ‖

2
2, ∃ Π, S s.t. dH(Π,Π\) = h

)
≤ P

(∥∥P⊥X
S
⋃

T1
Π>XTβ

\
T

∥∥2
2 ≤ t‖β

\
T ‖

2
2, ∃ Π, S s.t. dH(Π,Π\) = h

)
≤ ζ1 + ζ2, (25)
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where ζ1 and ζ2 are defined as

ζ1 , P
(∥∥∥∥P⊥X

T
⋃

T3
P⊥XT

ΠXTβ
\
T

∥∥∥∥2

2
≤ γh

∥∥∥P⊥XT
ΠXTβ

\
T

∥∥∥2

2
, dH(I,Π) = h,∃ S

)
;

ζ2 , P
(∥∥∥P⊥XT

ΠXTβ
\
T

∥∥∥2

2
≤ t

γh
‖β\T ‖

2
2, dH(I,Π) = h,∃ S

)
.

Here we set γh as 2−1e−5n−8h/n < 2e5−1
< n−2k

n−k . The following context separately bound ζ1 and ζ2.

Analysis of ζ1. When T3 = ∅, we can verify ζ1 = 0. Then we turn to the case where T3 6= ∅.
Conditional on XT , we can view P⊥X

T
⋃

T3
as a random projection from a linear space with dimension

n− k to a linear space with dimension n− |T ⋃ T3| ≥ n− 2k. Invoking Lemma 2.2 in Dasgupta and
Gupta (2003) (listed as Lemma 11), we have

ζ1
1©
≤

(
p

k

)
exp

[
n− 2k

2

(
log

(
γh(n− k)
n− 2k

)
+ 1

)] 2©
≤
(
ep

k

)k
exp

(
n

4 log
(
n− k
n− 2k

n−8h/n

2e4

))
3©
≤ n−2h,

(26)

where 1© is because of the union bound; 2© is due to
(p
k

)
≤ (ep/k)k and the definition of γh; and 3© is

because of the assumption n ≥ k log(ep/k) ≥ 4k.

Analysis of ζ2. Due to the independence between S and T , we can safely drop ∃S in ζ2. The
following analysis is a replication of the proof of Lemma 3 in Pananjady et al. (2018) with the only
difference in the parameter setting, namely, t/γh. We present it only for the sake of self-containing
without claiming any novelties.

Without loss of generality, we assume T to be the first k entries. With the union bound, we
obtain

ζ2 ≤ P
(
‖P⊥X1:kΠX1‖22 ≤ t/γh, dH(I,Π) = h

)
≤ P

( ∥∥∥P⊥X1:kP⊥X1ΠX1
∥∥∥2

2
≤ ϑh

∥∥∥P⊥X1ΠX1
∥∥∥2

2
, dH(I,Π) = h

)
︸ ︷︷ ︸

, ζ2,1

+ P
(∥∥∥P⊥X1ΠX1

∥∥∥2

2
≤ t

γhϑh
, dH(I,Π) = h

)
︸ ︷︷ ︸

, ζ2,2

,

where γh is a positive constant set as n−8h/n/(2e).
For ζ2,1, we notice the relation P⊥X1:k

= PX⊥
1
⋂

X⊥
2:k
. Condition on X1, we can view P⊥X1:k

as a
random projection from a (n− 1)-dimensional linear space to a (n− k)-dimensional linear space,
which yields

ζ2,1 ≤ exp
[
n− k

2

(
log

((n− 1)ϑh
n− k

)
− (n− 1)ϑh

n− k
+ 1

)]
≤ n−2h, (27)

where ϑh ≤ n−k
n−1 is due to Lemma 2.2 in Dasgupta and Gupta (2003) (also listed as Lemma 11).

For ζ2,2, we first perform decomposition

∥∥∥P⊥X1ΠX1
∥∥∥2

2
= ‖X1‖22 −

〈X1,ΠX1〉2

‖X1‖22

4©
≥ ‖X1‖22 − |〈X1,ΠX1〉| =

1
2
[
‖X1 −ΠX1‖22 ∧ ‖X1 + ΠX1‖22

]
,
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where in 4© we use the Cauchy inequality such that |〈X1,ΠX1〉| ≤ ‖X1‖2‖ΠX1‖2 = ‖X1‖22. When
‖X1 −ΠX1‖2 ∧ ‖X1 + ΠX1‖2 = ‖X1 −ΠX1‖2, we can directly invoke Lemma 5 to bound ζ2,2.
Following a similar procedure, we can show

ζ2,2 ≤ 6 exp
(
h

10

(
log

(
t

hγhϑh

)
− t

hγhϑh
+ 1

))
, (28)

provided that we have t < hγhϑh. The proof for ζ is hence completed by combining (25), (26), (27),
and (28).

Lemma 5. Denote h as the Hamming distance between I and Π, i.e., h , dH(I,Π). Assume
x ∈ Rn be a random vector satisfying x ∼ N (0, In×n), then we have

P
(
‖(I−Π)x‖22 ≤ ϑ

)
≤ 6 exp

[
h

10

(
log

(
ϑ

2h

)
− ϑ

2h + 1
)]

,

for ϑ ≤ 2h.

Proof. Adopting the similar proof tricks as in Pananjady et al. (2018), we separately consider the
two cases where h = 2 and h ≥ 3.

(Case I) h = 2. We assume the first two rows are switched w.l.o.g. Then we have

P
(
‖(I−Π)x‖22 ≤ ϑ

)
= P

[
(x1 − x2)2 ≤ ϑ/2

] 1©
≤ exp (−1/2 (ϑ/4− log (ϑ/4)− 1)) ,

where in 1© we use the tail bounds for the χ2 random variable (x1 − x2)2/2 with freedom 1.

(Case II) h ≥ 3. We decompose the non-zero rows of
(
Π−Π\

)
into three disjoint sets I` (1 ≤ ` ≤ 3)

such that (i) the cardinality of each set I` is lower bounded by bh/3c, i.e., |I`| = h` ≥ bh/3c; and
(ii) we have j and π(j) reside within different sets for an arbitrary index j, where π(·) denotes the
permutation map pertaining to Π.

Define Z` = ∑
j∈I`

(xj−xπ(j))2/2, which is a χ2 random variable with freedom h`. Then, we can
decompose ‖(I−Π)x‖22 = 2(Z1 + Z2 + Z3) and obtain

P
(
‖(I−Π)x‖22 ≤ ϑ

)
≤

3∑
`=1

P (Z` ≤ h`ϑ/(2h)) ≤
3∑
`=1

exp
(
−h`2

(
ϑ

2h − log
(
ϑ

2h

)
− 1

))
2©
≤ 6 exp

(
− h

10

(
ϑ

2h − log
(
ϑ

2h

)
− 1

))
,

where in 2© we use the relation hi ≥ bh/3c. The proof is completed by summarizing the above two
cases.
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C Proof of Theorem 5
First, we restate the definition of (β̂, Ξ̂), which is written as

(Ξ̂, β̂) = argminΞ,β
1

2n
∥∥y −Xβ −

√
n ·Ξ

∥∥2
2 + λΞ‖Ξ‖1 + λβ‖β‖1.

Then, we would like to prove Theorem 5.

Proof. The proof is a combination of (Nguyen and Tran, 2013) and (Slawski and Ben-David, 2019).
Define u , β̂ − β\ and v , Ξ̂ − (I−Π\)Xβ\/

√
n. In addition, we define the support set of β\ and

(I−Π\)Xβ\ as T and S, respectively. According to our definition, their cardinality is bounded by
k and h, respectively, namely, |T | ≤ k and |S| ≤ h. Before delving into the technical details, we
first illustrate the proof outline.

• Step I. According to the optimality of (6), we show

‖u‖1 ≤ 4
√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2; (29)

‖v‖1 ≤ 3
√
kλβ/λΞ‖u‖2 + 4

√
h‖v‖2. (30)

• Step II. We establish the inequality(
4
√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2

)2
. (kλβ ∨ hλΞ) ·

[
4
√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2

]
, (31)

and then obtain the upper-bound c ·kλβ for the reconstruction error 4
√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2.

• Step III. We upper-bound ‖Xu‖∞ as kσ
√

(log p)(lognp)/n and complete the proof by invoking
Lemma 10.

The technical details are presented as follows. According to the definition of (6), we have

1
2n
∣∣∣∣∣∣∣∣∣y −Xβ̂ −

√
n · Ξ̂

∣∣∣∣∣∣∣∣∣2
F

+ λβ‖β̂‖1 + λΞ‖Ξ̂‖1 ≤
1

2n
∣∣∣∣∣∣∣∣∣y −Xβ\ −

√
nΞ\

∣∣∣∣∣∣∣∣∣2
F

+ λβ
∥∥∥β\∥∥∥

1
+ λΞ

∥∥∥Ξ\
∥∥∥

1
.

With some standard algebraic manipulation, we obtain

1
2n
∣∣∣∣∣∣Xu+

√
nv
∣∣∣∣∣∣2

F ≤
〈w,Xu+

√
nv〉

n
+ λβ

(∥∥∥β\∥∥∥
1
− ‖β̂‖1

)
︸ ︷︷ ︸

, θ1

+λΞ
(∥∥∥Ξ\

∥∥∥
1
− ‖Ξ̂‖1

)
︸ ︷︷ ︸

, θ2

≤

∥∥∥X>w∥∥∥
∞

n
· ‖u‖1 + ‖w‖∞√

n
· ‖v‖1 + θ1 + θ2. (32)

For θ1, we exploit the fact ‖β\T ‖1 = ‖β\‖1 and have

θ1 = λβ(‖β\T ‖1 − ‖β̂T ‖1 − ‖β̂T c‖1) ≤ λβ(‖β\T − β̂T ‖1 − ‖β̂T c‖1) = λβ(‖uT ‖1 − ‖uT c‖1).

Similarly, we have θ2 ≤ λΞ(‖vS‖1 − ‖vSc‖1). According to Lemma 7 and Lemma 8, we have
λβ ≥ 2‖X>w‖∞

n and λΞ ≥ 2‖w‖∞√
n

. Summing the above together, we have

1
2n
∣∣∣∣∣∣Xu+

√
nv
∣∣∣∣∣∣2

F ≤
3λβ

2 ‖uT ‖1 + 3λΞ
2 ‖vS‖1 −

λβ
2 ‖uT

c‖1 −
λΞ
2 ‖vS

c‖1. (33)
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Step I. Notice that the left-hand size of (33) is non-negative, we obtain

‖u‖1 = ‖uT ‖1 + ‖uT c‖1 ≤ 4‖uT ‖1 + 3λΞ
λβ
‖vS‖1 −

λΞ
λβ
‖vSc‖1︸ ︷︷ ︸
≥0

1©
≤ 4
√
k‖uT ‖2 + 3

√
hλΞ/λβ‖vS‖2 ≤ 4

√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2,

where in 1© we exploit the fact such that uT and vS are k-sparse and h-sparse respectively. As for
(30), we follow a similar approach and finish its proof.

Step II. Without loss of generality, we assume λβ
√
k ≥ λΞ

√
h and have(

4
√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2

)2
� λ−2

β

(
λβ
√
k‖u‖2 +

√
hλΞ‖v‖2

)2
≤ k (‖u‖2 + ‖v‖2)2 . (34)

On one hand, we can invoke Lemma 9 and obtain an upper-bound for (‖u‖2 + ‖v‖2)2 reading as

1
2n
∣∣∣∣∣∣Xu+

√
nv
∣∣∣∣∣∣2

F & (‖u‖2 + ‖v‖2)2 . (35)

On the other hand, (33) yields the upper-bound for 1
2n |||Xu+

√
nv|||2F, which can be written as

1
2n
∣∣∣∣∣∣Xu+

√
nv
∣∣∣∣∣∣2

F ≤
3λβ

2 ‖uT ‖1 + 3λΞ
2 ‖vS‖1 ≤

3λβ
2
√
k‖u‖2 + 3λΞ

2
√
h‖v‖2. (36)

Combining (34), (35), and (36) then yields the relation

(
4
√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2

)2
.
k

n

∣∣∣∣∣∣Xu+
√
nv
∣∣∣∣∣∣2

F . k
(
4λβ
√
k‖u‖2 + 3λΞ

√
h‖v‖2

)
.

Dividing both sides by 4
√
k‖u‖2 + 3

√
hλΞ/λβ‖v‖2 then completes the proof of (31).

Step III. Our goal is upper-bound ‖Xu‖∞, which reads as

‖Xu‖∞ = max
i
|〈Xi,:,u〉| ≤ max

ij
|Xij | · ‖u‖1

2©
.
√

lognp
(√

k‖u‖2 +
√
hλΞ/λβ‖v‖2

)
3©
. σ

√
lognp

k
√

log p
n
∨ h

√
logn
n

 ,
where in 2© we condition on the event maxij |Xij | .

√
lognp, and in 3© we use the inequality in

(31). Provided that

SNR &
n2(1+ε)(n− 1)2

4π

[√
lognp

k
√

log p
n
∨ h

√
logn
n

+ 2 log(n1+ε(n− 1))
]2

,

we invoke Lemma 10 and complete the proof such that ground-truth permutation Π\ can be obtained
with probability exceeding 1− 2n−ε.
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C.1 Supporting Lemmas

This subsection collects the supporting lemmas and useful facts used in the proof thereof.

Lemma 6. We have max1≤i≤n,1≤j≤p |Xij | ≤ 2
√

lognp with probability exceeding 1− (np)−1.

Lemma 7. We have
∥∥∥X>w∥∥∥

∞
. σ
√
n log p with probability exceeding 1− c0p

−c1.

Lemma 8. We have ‖w‖∞ . σ
√

logn with probability 1− c0n
−c1.

Since the above results are quite standard, we list them without giving a detailed proof.

Lemma 9 (Lemma 1 In Nguyen and Tran (2013)). Consider the optimal solution (β̂, Ξ̂) to (6)
with regularizer coefficients being set as λβ � σ

√
log p/n and λΞ � σ

√
logn/n, respectively. Assuming

that n & k log p and h . n
logn , we have

1√
n

∣∣∣∣∣∣Xu+
√
nv
∣∣∣∣∣∣

F & ‖u‖2 + ‖v‖2

hold with probability at least 1− c0e
−c1n, where c0, c1 > 0 are some fixed positive constants.

Lemma 10 (Theorem 3 (Part (a)) in Slawski and Ben-David (2019)). Conditional on the event
E
β̃

such that E
β̃

,
{
‖X(β̃ − β\)‖∞ ≤ σ∆

}
, we reconstruct the permutation matrix via Π̂ =

argmaxΠ〈Y,ΠXβ̃〉. Provided that

SNR >
n2(n− 1)2

4δ2π

[
∆ + 2 log n(n− 1)

δ

]2
,

Then, we can obtain the ground-truth permutation with probability exceeding 1 − 2δ, i.e., P(Π̂ =
Π\|E

β̃
) ≥ 1− 2δ.

D Useful Facts About Probability Inequalities
For the self-containing of this paper, we list some useful facts about probability inequalities in this
section.

Lemma 11 (Lemma 2.2 In Dasgupta and Gupta (2003)). For a projection matrix Pd1→d2 which
projects a fixed vector Z ∈ Rd1 to a uniformly random subspace with dimension d2, we have

P
(
‖Pd1→d2Z‖

2
2 ≤

αd2
d1
‖Z‖22

)
≤ exp

(d2
2 (logα− α+ 1)

)
, α < 1;

P
(
‖Pd1→d2Z‖

2
2 ≥

αd2
d1
‖Z‖22

)
≤ exp

(d2
2 (logα− α+ 1)

)
, α > 1.
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