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On Multi-Channel Huffman Codes for

Asymmetric-Alphabet Channels

Hoover H. F. Yin, Xishi Wang, Ka Hei Ng, Russell W. F. Lai, Lucien K. L. Ng, and Jack P. K. Ma

Abstract—Zero-error single-channel source coding has been
studied extensively over the past decades. Its natural multi-
channel generalization is however not well investigated. While
the special case with multiple symmetric-alphabet channels was
studied a decade ago, codes in such setting have no advantage
over single-channel codes in data compression, making them
worthless in most applications. With essentially no development
since the last decade, in this paper, we break the stalemate by
showing that it is possible to beat single-channel source codes in
terms of compression assuming asymmetric-alphabet channels.
We present the multi-channel analog of several classical results
in single-channel source coding, such as that a multi-channel
Huffman code is an optimal tree-decodable code. We also show
some evidences that finding an efficient construction of multi-
channel Huffman codes may be hard. Nevertheless, we propose

a suboptimal code construction whose redundancy is guaranteed
to be no larger than that of an optimal single-channel source
code.

I. INTRODUCTION

Zero-error source coding is one of the oldest branches in

information theory. In a traditional (single-channel) source

coding problem, a transmitter wishes to send an information

source to a receiver with zero error through an error-free

channel. To better utilize the channel, it is desirable to encode

the information source in such a way that minimizes the

number of symbols transmitted through the channel while

ensuring correct decoding. In technical terms, the goal is to

minimize the expected codeword length of a source code for an

information source. Given an arbitrary information source, the

well-known Huffman procedure [1] can produce an optimal1

code known as a Huffman code. On the other hand, the

entropy bound shows that the information theoretical lower

bound of the expected codeword length of a source code is

the entropy of the source information. Despite the optimality

of the Huffman code, it does not achieve the entropy bound

in general.

As a natural generalization, zero-error multi-channel source

coding was proposed in [2] where each source symbol is

mapped to a codeword which spreads across multiple channels.

This problem is more complicated than its single-channel
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1In this paper, the optimality we considered is for symbol-by-symbol coding
with known probability masses of an information source.
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Fig. 1: A 2-channel zero-error communication system where the two channels
use a binary and a ternary alphabets respectively.
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Fig. 2: Examples of optimal (2, 3)-ary codes achieving the entropy bound.

counterpart, as the sequence of received symbols in individual

channels are not necessary uniquely decodable, even though

the overall source code is uniquely decodable. In [2], only

the case where all channels use the same alphabet size,

i.e., symmetric-alphabet channels, was investigated. Among

many other results, [2] showed that a multi-channel code

(for symmetric-alphabet channels) can be equated to a single-

channel code, so that the existing tools of source coding

can be applied to analyze the multi-channel code. However,

this implies that such a multi-channel code cannot improve

the compression ability. It is thus natural to ask: What if at

least one channel has an alphabet size different from that of

another channel, i.e., we have asymmetric-alphabet channels?

Are there any new opportunities and challenges under this

extended setting?

A. Motivating Examples

Our starting point is the observation that, in some cases,

a multi-channel code with asymmetric alphabets achieves

a better compression ability than an optimal single-channel

code. Specifically, we consider the network in Fig. 1 and

compare the expected codeword (description) length2 of an

optimal (2, 3)-ary tree-decodable code3, the binary Huffman

code, and the ternary Huffman code for the information

sources with probability masses {1/6, 1/6, 1/3, 1/3} and

{1/6, 1/6, 1/6, 1/2} respectively in the following examples.

For convenience, we use the information unit nat (base e, the

Euler’s number) throughout this paper.

Example 1. In Fig. 2a, the codeword lengths for the 1/6
and 1/3 masses are (ln 2 + ln 3) nats and ln 3 nats respec-

2The description length of a codeword is the number of information unit
(e.g., nat) required to represent this codeword.

3A multi-channel prefix-free code might not have a decoding tree. We defer
the detailed discussion regarding this issue to Section II-D.
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TABLE I
EXPECTED CODEWORD LENGTHS OF OPTIMAL CODES IN NATS

(2, 3)-ary 2-ary 3-ary

Fig. 2a 1.32966134885 1.38629436112 1.46481638489
Fig. 2b 1.24245332489 1.27076983103 1.46481638489

tively. The expected codeword length of the (2, 3)-ary code is

(13 ln 2 + ln 3) nats, which is the entropy of the information

source. The expected codeword length of the corresponding

binary and ternary Huffman codes are 2 ln 2 nats and 4
3 ln 3

nats respectively.

Example 2. In Fig. 2b, the codeword lengths for the 1/6 and

1/2 masses are (ln 2 + ln 3) nats and ln 2 nats respectively.

The expected codeword length is (ln 2+ 1
2 ln 3) nats, which is

the entropy of the information source. The expected codeword

length of the corresponding binary and ternary Huffman codes

are 11
6 ln 2 nats and 4

3 ln 3 nats respectively.

We summarize the above two examples and give the numer-

ical values of the expected codeword length in Table I. We can

see that the expected codeword length when both channels are

in used is shorter than the other two single-channel cases, i.e.,

the optimal multi-channel source code outperforms the optimal

single-channel source codes.

B. Our Contributions

Given the above examples, it is natural to ask if a multi-

channel generalization of the Huffman procedure systemati-

cally produces an optimal code. We give a partial affirmative

answer to the above question. In particular, we formulate

the generalized Huffman procedure and show that it indeed

produces an optimal tree-decodable code. The generalized

Huffman procedure follows the same idea of iteratively merg-

ing the smallest probability masses into bigger ones, until

reaching probability 1. However, unlike the single-channel

case, there is more than one choice of the number of masses

to be merged in each iteration. This results in an exponential

number of potential merge sequences, and only choosing a

“correct” merging step in every iteration results in an optimal

code. It is therefore unclear how the generalized Huffman

procedure can be computed in polynomial time.

Towards designing an algorithm which computes or ap-

proximates the generalized Huffman procedure in polynomial

time, we devise and investigate several heuristics for pruning

the merging steps. We first investigate pruning by some

natural measures such as (our multi-channel generalization

of) local redundancy, expected codeword length, and entropy.

Unfortunately none of these simplistic strategies can guarantee

the production of an optimal code.

One of our results is the following pruning strategy based

on iterative executions of the (single-channel) Huffman proce-

dure: For a multiset of probability masses either given initially

or produced by the previous iteration, we run the Huffman

procedure on these masses with respect to the alphabet size

of each channel. Let q be the alphabet size of the resulting

Huffman code with the smallest expected length. We merge

the q smallest probability masses into one and proceed to the

next round.

Since all single-channel Huffman codes are included as

potential choices of the above minimizing procedure, the

resulting code guarantees a compression ability no worse than

any of the optimal single-channel codes. While we are unable

to show that this heuristic produces an optimal tree-decodable

code, we have yet to find a counterexample either. We leave

it as an open problem to prove the (sub)optimality of the

resulting code. We remark that even if the heuristic produces

an optimal tree-decodable code, it is unclear if the code is

also an optimal prefix code except for the 2-channel case. It is

also unclear if an optimal prefix code is an optimal uniquely

decodable code.

C. Paper Organization

We first introduce the background of multi-channel source

coding in Section II. Then, we present some generalizations

of some well-known results for single-channel source cod-

ing in Section III and the multi-channel Huffman procedure

for asymmetric-alphabet channels in Section IV. We show

some evidence that an efficient construction of multi-channel

Huffman codes is not trivial and propose a suboptimal code

construction in Section V. Lastly, we conclude the paper and

propose some future directions in Section VI.

II. BACKGROUND

Unless otherwise specified, we use the notation defined in

this section throughout this paper. For n ∈ Z
+, define [n] =

{1, 2, . . . , n}.

A. Multi-Channel Source Coding

The definition of a multi-channel source code was proposed

in [2] for symmetric-alphabet channels and extended in [3] for

asymmetric-alphabet channels. Consider an n-channel system

where the ith channel uses an alphabet Zi of size qi, i ∈ [n].
Without loss of generality, we assume q1 ≤ q2 ≤ . . . ≤ qn
in this paper. Let Z be the alphabet of the information source

Z . Denote by ǫ the empty string. Define Z0
i = {ǫ} and Zj

i =
{wv : w ∈ Zj−1

i , v ∈ Zi} for j ∈ Z
+. That is, Zj

i contains all

the strings of length j over the alphabet Zi. The set of all the

strings of countable length over the alphabet Zi is denoted by

Z∗
i =

⋃∞
j=0 Z

j
i . Every element in

∏n
i=1 Z

∗
i is called a word.

Definition 1 (Multi-Channel Source Codes). A (q1, . . . , qn)-
ary source code Q for the information source Z is a mapping

from Z to
∏n

i=1 Z
∗
i .

For any source symbol z ∈ Z , the ordered n-tuple Q(z)
is the codeword for z. The ith component of the codeword is

transmitted through the ith channel. When we transmit more

than one codeword, the codewords are concatenated channel-

wise, i.e., the boundaries of the codewords are not explicit.

Definition 2 (Uniquely Decodable Codes). If the finite se-

quences of codewords of any two distinct finite sequences of

source symbols are different, then the source code is called a

uniquely decodable code.



Definition 3 (Multi-Channel Prefix-Free Codes). Two words

are prefix free (to each other) if there exists at least one channel

i such that the ith component of the two words are prefix free.

A (q1, . . . , qn)-ary prefix-free code is a (q1, . . . , qn)-ary source

code such that every pair of codewords are prefix free.

By convention, a prefix-free code is also called a prefix code.

Any codeword of a uniquely decodable multi-channel source

code can be decoded without referring to the symbols of any

future codewords if and only if the code is a multi-channel

prefix code [2], [3].

B. Single-Channel Representation

As a channel does not interfere the symbols in another

channel, we can express a multi-channel word as a single-

channel word with a dynamic alphabet. For example, let

Z1 = {0, 1} and Z2 = {a, b, c}. A 2-channel word (01, bca)
can be expressed as either 01bca, 0b1ca, 0bc1a, 0bca1, b01ca,

b0c1a, b0ca1, bc01a, bc0a1, or bca01. Note that Z1 and Z2

have different letter costs.

However, this single-channel representation is different from

a single-channel word with unequal letter cost, a concept

proposed in [4]. For example, in a single-channel code with

unequal letter cost for the alphabet {0, 1, a, b, c}, the words

0 and a are prefix-free. However, the 2-channel words (0, ǫ)
and (ǫ, a) are not prefix-free although their single-channel

representations are 0 and a respectively.

When the alphabet sizes of the channels are the same,

we can see that the single-channel representation of a multi-

channel code can be reduced to a single-channel code with

equal letter cost. That is why the compression ability cannot

be enhanced in the setting proposed in [2].

C. Kraft Inequality and Entropy Bound

Let n and m be the number of channels and number of

codewords respectively. Denote by H(·) the entropy measured

in nats. All results can be trivially generalized to use other

bases of logarithm.

The length of the jth codeword in the ith channel is denoted

by ℓji . The length tuple of the jth codeword is (ℓj1, . . . , ℓ
j
n).

The (description) length of the codeword, defined by ℓj :=
∑

i ℓ
j
i ln qi, is the number of nats required to represent it.

Define ℓmax
i := maxmj=1 ℓ

j
i .

The multi-channel analog to Kraft inequality and entropy

bound were proposed in [2] for symmetric-alphabet channels.

They were extended for asymmetric-alphabet channels in the

conference paper [3] but their proofs were separated in the

preprint [5]. For the sake of completeness, we reproduce the

proofs in this paper.

Theorem 1 (Kraft Inequality [3]). If Q is uniquely decodable,

then the length tuples of its codewords satisfy

m
∑

j=1

n
∏

i=1

q
−ℓj

i

i ≤ 1. (1)

Proof: We use a similar technique as in [6]. Let N be an

arbitrary positive integer. Consider





m
∑

j=1

n
∏

i=1

q
−ℓj

i

i





N

=

m
∑

j1=1

m
∑

j2=1

. . .

m
∑

jN=1

(

n
∏

i=1

q
−

∑N
k=1

ℓ
jk
i

i

)

=

Nℓmax
1

∑

k1=1

Nℓmax
2

∑

k2=1

. . .

Nℓmax
n

∑

kn=1

Ak1,k2,...,kn

n
∏

i=1

q−ki

i , (2)

where Ak1,k2,...,kn
is the coefficient of

∏n
i=1 q

−ki

i in

(
∑m

j=1

∏n
i=1 q

−ℓj
i

i )N .

Note that Ak1,k2,...,kn
gives the total number of sequences

of N codewords with a total length of ki symbols in the ith
channel for all i = 1, 2, . . . , n. Since the code is uniquely de-

codable, these code sequences must be distinct. So, the number

Ak1,k2,...,kn
must be no more than the total number of distinct

sequences where there are ki symbols in the ith channel for

all i = 1, 2, . . . , n. That is, we have Ak1,k2,...,kn
≤
∏n

i=1 q
ki

i .

By substituting this inequality into (2), we get

m
∑

j=1

n
∏

i=1

q
−ℓj

i

i ≤





Nℓmax
1

∑

k1=1

Nℓmax
2
∑

k2=1

. . .

Nℓmax
n

∑

kn=1

1





1/N

.

Since this inequality holds for any N , we let N → ∞ and

obtain our desired Kraft inequality.

Theorem 2 (Entropy Bound [3]). Let Q be a uniquely decod-

able code for a source random variable Z with probability

{p1, p2, . . . , pm} and entropy H(Z). Then,

m
∑

j=1

pj

n
∑

i=1

ℓji ln qi ≥ H(Z), (3)

where the equality holds if and only if
∑n

i=1 ℓ
j
i ln qi = − ln pj .

Proof: Here we use a standard technique. Consider

m
∑

j=1

pj

n
∑

i=1

ln q
ℓj
i

i −H(Z)

=

m
∑

j=1

pj ln

(

pj

n
∏

i=1

q
ℓj
i

i

)

≥

m
∑

j=1

pj



1−

(

pj

n
∏

i=1

q
ℓj
i

i

)−1


 (4)

=



1−

m
∑

j=1

n
∏

i=1

q
−ℓji
i



 ≥ 0, (5)

where (4) follows the inequality ln a ≥ 1−1/a for any a > 0,

and (5) follows the multi-channel Kraft inequality.

The equality in (4) holds if and only if pj
∏n

i=1 q
ℓj
i

i = 1 for

all j, or equivalently,
∑n

i=1 ln q
ℓj
i

i = − ln pj for all j. Under

this condition, we have
∑m

j=1

∏n
i=1 q

−ℓj
i

i =
∑m

j=1 pj = 1. So,

the equality in (5) also holds, which means that the bound is

tight.



The single-channel Kraft inequality gives a necessary and

sufficient condition for the existence of a single-channel

uniquely decodable code. However in the multi-channel ana-

log, the sufficiency does not hold in general. The reason can be

easily seen from the rectangle packing formulation for prefix

codes in [3]: The Kraft inequality only states that the sum

of areas of blocks (codewords) is no larger than the area of

the container (all possible words). The geometry of the blocks

(the packability of the blocks in the container) is not captured.

On the other hand, the interpretation of the entropy bound

is consistent with the traditional version that the expected

codeword (description) length is no less than the entropy.

D. Multi-Channel Tree-Decodable Codes

A single-channel prefix code can be represented by a

decoding tree. Each branch of an internal node (including the

root node) corresponds to a symbol in the alphabet. When we

decode a codeword, we traverse the tree from the root node.

We read the symbols in the codeword one by one. For each

symbol, we traverse through the corresponding branch. We can

decode a codeword once we reach a leaf of the tree.

When it comes to the multi-channel case, each internal node

is assigned to a channel. An internal node belongs to class i
if it is assigned to the ith channel, and is only allowed to have

at most qi children. The generalized depth of a leaf is defined

as the length of the codeword that the leaf corresponds to. See

Figs. 2a and 2b as examples of a multi-channel decoding tree.

A codeword can be decoded by traversing the tree. Suppose

the current node being traversed is of class i, we read a

symbol from the ith channel of the codeword and traverse

to the corresponding branch. Clearly decoding is sequential,

i.e., without referring to the symbols of any future codewords.

A code which has a decoding tree is called a tree-decodable

code. The decoding tree of an optimal tree-decodable code is

called an optimal decoding tree. Note that a tree-decodable

code can have more than one decoding tree.

A tree-decodable code is a prefix code [2]. It is because for

any two distinct leaves in a decoding tree, the codewords are

not prefix of each other on the channel their lowest common

ancestor corresponds to. The converse is not true in general

for n > 2 channels. For each channel, if there is a codeword

of a prefix code having an empty string in this channel, then

we cannot draw a decoding tree for the code. Below is an

example given in [2].

Example 3. Consider a binary 3-channel source code, i.e.,

q1 = q2 = q3 = 2. The codewords {(0, 0, ǫ), (1, ǫ, 0), (ǫ, 1, 1)}
form a prefix code which is not tree-decodable.

The 2-channel setting is special in the sense that there

cannot exist a codeword having an empty string in the first

channel, and another codeword having an empty string in the

second channel, since they are not prefix-free. With a more

careful argument, we have the following theorem.

Theorem 3. Any 2-channel prefix code is tree-decodable.

Proof: We first argue that, for any 2-channel prefix code

with at least two codewords, there exists at least one channel

i ∈ {1, 2} such that for all codewords the ith component is

not an empty string. We call such channel i always non-empty.

Suppose not, then there exist codewords (c1, ǫ) and (ǫ, c2) for

some strings c1, c2. Since ǫ is a prefix of both c1 and c2, they

are not prefix-free.

Next, given a 2-channel prefix code, we construct a decod-

ing tree as follows. If the code has only one codeword, then we

construct a tree with a single node associated to this codeword.

Otherwise, suppose there are at least 2 codewords. By the

argument above, there exists an always non-empty channel i.
Let the root node be of class i. We partition the codewords

depending on the first symbol of the codewords in the ith
channel into the chunks P1, . . . , Pqi . For each chunk Pj , we

remove the first symbol of the codewords in the ith channel.

This results in a sub-code P̃j .

We argue that P̃j is prefix-free for all j. Suppose not, let

(c1, c2) and (c′1, c
′
2) be codewords in P̃j which are not prefix-

free. Without loss of generality, suppose channel 1 was used

for partitioning. Then before the truncation the codewords

were (a‖c1, c2) and (a‖c′1, c
′
2) for some symbol a. Clearly,

since (c1, c2) and (c′1, c
′
2) are not prefix-free, (a‖c1, c2) and

(a‖c′1, c
′
2) are also not prefix-free. This contradicts to the

assumption that we start with a prefix code.

Since each P̃j is prefix-free, we can run the above procedure

on P̃j recursively and link the resulting root node to the root

node constructed above with the jth edge. This results in a

decoding tree.

III. GENERAL RESULTS ON MULTI-CHANNEL SOURCE

CODES

Towards a better general understanding of multi-channel

source codes, we state a collection of elementary results

regarding multi-channel source / tree-decodable codes which

were not explicitly stated before. These results could help

defining, analyzing, and approximating the multi-channel

Huffman procedure in the remaining sections. These results

are not necessary for understanding the multi-channel Huffman

procedure, and can be skipped if the reader desires.

A. Multi-Channel is No Worse than Single-Channel

Definition 4. The trivial n-channel extension of a single-

channel source code expends each codeword into a n-tuple

where all the new components are empty strings.

Example 4. If the channel used by a single-channel source

code is the 2nd channel of a 3-channel system, then the trivial

3-channel extension of the code is to substitute every codeword

c into (ǫ, c, ǫ).

We first state the following trivial but important result by

viewing qi-ary source codes as special cases of (q1, . . . , qn)-
ary source codes, which suggests the worthiness of studying

multi-channel source codes.

Theorem 4. The expected codeword length of an optimal

(q1, . . . , qn)-ary source code is no worse than that of an

optimal qi-ary source code for all i ∈ [n].



Proof: The trivial multi-channel extension of an optimal

single-channel source code is a multi-channel source code.

Note that the length of every codeword is conserved, so the

expected codeword length of an optimal multi-channel source

code is no worse than the one of the above trivial multi-channel

extension.

B. Source Coding Theorem for Symbol Codes

Let LHuff be the expected codeword length of an optimal

q-ary single-channel uniquely decodable code. One of the

classical results by Shannon [7] which is known as the source

coding theorem for symbol codes is that H(Z) ≤ LHuff <
H(Z) + ln q. That is, we can use no more than ln q nats

from the entropy to represent an optimal code. The following

theorem, which is a natural multi-channel analog, extends a

similar idea that we can use no more than ln q1 nats (recall

that q1 = minni=1 qi) from the entropy to represent an optimal

code.

Theorem 5 (Source Coding Theorem for Symbol Codes).

Let Lopt be the expected codeword length of an optimal

(q1, . . . , qn)-ary uniquely decodable code. Then, H(Z) ≤
Lopt < H(Z) + ln q1.

Proof: The first inequality is the entropy bound. For the

second inequality, we construct an optimal single-channel qi-
ary uniquely decodable code for the ith channel. Let LHuffi qi-
its be its expected codeword length. We have Lopt ≤ LHuffi <
H(Z)+ln qi, where the first inequality is by Theorem 4. As we

know that Lopt ≤ LHuffi for all i, we have Lopt < H(Z)+ln qi
for all i, i.e., we have Lopt < H(Z) + ln q1.

It is also not hard to show that the above upper bound is

tight, which is stated in the following theorem.

Theorem 6. H(Z)+ ln q1 is the tightest upper bound on Lopt

which depends only on H(Z).

Proof: Consider a multiset of probability masses P =
{1 − (q1 − 1)/k} ⊎ (

⊎q1−1
i=1 {1/k}) where k ≥ q1. Note that

|P | = q1 and
∑

x∈P x = 1. The optimal n-channel code is

the trivial n-channel extension of the optimal q1-ary single-

channel code. The codeword length is 1 q1-it, i.e., ln q1 nats.

By taking k → ∞, we have H(Z) → 0 so that Lopt →
H(Z) + ln q1.

C. Local Redundancy of Tree-Decodable Codes

The concept of local redundancy was introduced in [8],

which is a tool for understanding the redundancy of a tree-

decodable code. An internal node is a non-leaf node in a

decoding tree. In the decoding tree of a single-channel q-ary

source code, the local redundancy of an internal node k is

defined by rk = sk(ln q−hk) where sk and hk are the reach-

ing probability and the entropy of the conditional branching

probabilities respectively of node k. An interpretation is that

we use ln q nats to represent the branches of node k due to

the restriction of the alphabet size, i.e., there are at most q
branches in a q-ary source code. However, minimally it can

be done by hk nats. So, ln q−hk is the amount of nats wasted

at node k.

In the decoding tree of a multi-channel tree-decodable code,

an internal node corresponds to a channel. Let αk be the

alphabet size of the channel node k corresponds to. The

number of branches of node k is αk. We use lnαk nats

to represent the αk branches at node k but minimally it

can be done by hk nats. Therefore, we have the following

straightforward extension of local redundancy.

Definition 5. The local redundancy rk of an internal node k
is rk := sk(lnαk − hk) nats.

Denote by I the index set of the internal nodes. Let L be the

expected codeword length of a multi-channel tree-decodable

code measured in nats. We can show that H(Z) =
∑

k∈I skhk

by a conditional entropy argument. On the other hand, we can

show that L =
∑

k∈I sk lnαk by a weighted bookkeeping

argument. Then, by considering the difference L−H(Z), we

arrive at a multi-channel generalization of the local redundancy

theorem.

Lemma 1. H(Z) =
∑

k∈I skhk.

Proof: Let d be the height of the decoding tree. An

outcome of Z can be represented by a path from the root

node to a leaf node of the decoding tree. Let Si be the

random variable for the node having depth i which leads

to the outcome of Z . If the outcome of Z is reached, then

the random variables for the larger depths are deterministic,

i.e., they have zero entropy. Then, Z = (S0, S1, . . . Sd) and

S0 → S1 → . . . → Sd forms a Markov chain. As S0 must be

the root node, we have H(S0) = 0. Let Ii be the index set

of the internal nodes having depth i. We have H(Si|Si−1) =
∑

k∈Ii−1
Pr(Si−1 = k)H(Si|Si−1 = k) =

∑

k∈Ii−1
skhk.

Hence, H(Z) =
∑d

i=0 H(Si|Si−1) =
∑

k∈I skhk.

Lemma 2. L =
∑

k∈I sk lnαk.

Proof: Each internal node k uses lnαk nats to represent

the αk branches, which means that the node adds lnαk nats to

the codeword length of each leaf. That is, the node increases

the expected codeword length by sk lnαk nats. The proof is

done by summing up all the increments made by the internal

nodes.

Theorem 7 (Local Redundancy Theorem). The redundancy of

a multi-channel tree-decodable code is L−H(Z) =
∑

k∈I rk
nats.

Proof: By Lemmas 1 and 2, we have L − H(Z) =
∑

k∈I sk(lnαk − hk) =
∑

k∈I rk.

IV. MULTI-CHANNEL HUFFMAN PROCEDURE

Let {p1, p2, . . . , pm} be the probability distribution of the

source random variable Z . Without loss of generality, assume

that p1 ≤ p2 ≤ . . . ≤ pm. It is well-known that the Huffman

procedure [1] allows us to efficiently construct an optimal

q-ary single-channel source code, called a q-ary Huffman

code, for the information source Z [9]. Every iteration of the



procedure selects the smallest q probability masses and merges

them into one mass, i.e., the smallest q probability masses are

removed from the multiset and then their sum is added back

to the multiset. The codeword lengths for the selected masses

are increased by ln q nat. Every merge reduces the size of

the multiset by q − 1. In order to merge all the probability

masses into one single mass, we need to inject 0 ≤ w < q−1
dummy symbols to the information source, i.e., inject w dummy

masses with zero probability into the multiset, before we start

the procedure. The value of w is the smallest non-negative

integer such that m+ w ≡ 1 (mod q − 1), i.e.,

w = [q − 1− ((m− 1) mod (q − 1))] mod (q − 1).

We call the leaves in the decoding tree which are assigned to

dummy symbols the dummy leaves.

The core idea of the Huffman procedure is that the smaller

the probability mass the longer the codeword length, so we can

assign codewords of shorter lengths to those source symbols

which are more likely to appear. This idea is also valid in the

multi-channel case. A traditional proof, e.g., [10, Lem. 4.15],

can be used to prove the following lemma.

Lemma 3. In an optimal multi-channel uniquely decodable

code, codewords with shorter lengths are assigned to larger

probabilities.

Proof: Suppose in an optimal code we have codeword

lengths ℓa > ℓb for the probabilities pa > pb respectively. By

exchanging the codewords assigned to these two probabilities,

the expected codeword length of the code is changed by

(paℓ
b + pbℓ

a) − (paℓ
a + pbℓ

b) < 0, which contradicts to the

optimality of the code.

When we adopt the Huffman procedure to a multi-channel

source code, we have to decide how many probability masses

we should merge with the constraint that the number of

probability masses to be selected is qi for some i ∈ [n]. Note

that the procedure can only produce tree-decodable codes.

Definition 6. A merge sequence is a finite sequence where

the ith term is the number of probability masses (including

dummy masses) to be merged by the Huffman procedure in

the ith iteration.

When we want to merge a certain number of masses in

an iteration but there is more than one channel that can be

used, i.e., they have the same alphabet size, we can arbitrarily

choose a channel as the expected length is not affected and

the code is still a prefix code.

The merge sequences for Figs. 2a and 2b are (2, 3) and

(3, 2) respectively. We can see that it is not necessary to merge

a smaller or larger number of masses in an iteration. The

wrong decision may produce a code which is not optimal.

If a merge sequence (m1,m2, . . .) is given, then the

number of dummy symbols w can be implicitly derived by

w =
∑

i(mi − 1) + 1 − m. When the merge sequence is

undetermined, however, it is unclear that how many dummy

symbols are needed exactly. Nevertheless, we are able to derive

an upper bound of the number of required dummy symbols.

For some specific values of (q1, . . . , qn), e.g., (q1, q2) = (2, 3),
the upper bound forces w to be 0.

We now state two intermediate lemmas regarding the

dummy leaves in an optimal decoding tree, followed by the

theorem about the upper bound on the number of required

dummy symbols.

Lemma 4. There exists an optimal decoding tree where the

siblings of a dummy leaf are also leaves.

Proof: Consider an optimal decoding tree. If the siblings

of a dummy leaf are also leaves, then we are done. Otherwise,

suppose there exists a dummy leaf such that one of its siblings

is an internal node. Suppose there exists a non-dummy leaf

in the sub-tree under this internal node. Then swapping the

dummy leaf with this non-dummy leaf reduces the expected

length of the corresponding code. Since we start with an

optimal tree, this cannot happen. We can therefore assume

that the leaves of the sub-tree under this internal node are

all dummy leaves, then replacing the internal node with a

dummy leaf also gives an optimal decoding tree. By repeating

this procedure, we obtain an optimal decoding tree where the

siblings of a dummy leaf are also leaves.

Lemma 5. There exists an optimal decoding tree where all

the dummy leaves are siblings.

Proof: Consider an optimal decoding tree. Suppose the set

of all dummy leaves are siblings, then we are done. Otherwise,

suppose there exists two dummy leaves which are not siblings.

By Lemma 4, the siblings of them are all leaves respectively.

Consider one of these two dummy leaves. If all siblings of

this dummy leaf are also dummy leaves, then we can construct

another optimal decoding tree by replacing the parent of the

dummy leaf by a dummy leaf. Therefore, without loss of

generality, we can assume that some siblings of both dummy

leaves are not dummy leaves.

We next argue that these two sets of siblings all have the

same generalized depth. Suppose not, then swapping a non-

dummy leaf of higher generalized depth with a dummy leaf

of lower generalized depth reduces the expected length of the

corresponding code. Since we start with an optimal tree, this

cannot happen. We can therefore assume that the two sets of

siblings all have the same generalized depth.

Since the two sets of siblings all have the same generalized

depth, swapping leaves from the two sets do not affect the

expected length of the corresponding code. We can therefore

swap the leaves in such a way that we pack as many dummy

leaves into one set as possible. There are two possible out-

comes. Either one set is rid of dummy leaves, or one set is full

of dummy leaves. For the latter case, we can use the argument

above and replace the parent of these dummy leaves with a

dummy leaf, and repeat the subsequent arguments again. For

the former case, we can repeat the above argument until the

set of all dummy leaves are siblings.

Lemma 6. Let k ∈ {2, 3, . . . , qn} ∩ [m] be the number

of non-dummy probability masses to be merged in the first



round. Then the parent node of the k leaves associated to

the k merged masses is assigned to class i∗, where qi∗ is the

smallest among {q1, . . . , qn} such that qi∗ ≥ k. Furthermore,

the number of dummy leaves required is w = qi∗ − k.

Proof: By Lemmas 4 and 5, we know that there exists an

optimal decoding tree where all dummy leaves are siblings,

and all other siblings are non-dummy leaves. Let w be the

number of dummy leaves, and k be the number of non-dummy

leaves in this set of siblings. We argue that the parent of these

siblings is assigned to class i∗, where qi∗ is the smallest among

{q1, . . . , qn} with qi∗ ≥ k, and w = qi∗ − k. Suppose not,

then the parent is assigned to some class i with qi > qi∗ ,

and w = qi − k > qi∗ − k. By changing the class of the

parent node from i to i∗, and reducing the number of dummy

leaves from qi−k to qi∗ −k, we obtain a decoding tree whose

corresponding code has a lower expected codeword length. As

we start with an optimal decoding tree, this is impossible. We

therefore conclude that w = qi∗ − k.

Theorem 8. The number w of dummy symbols needed is

bounded by 0 ≤ w < maxi∈[n]{qi − qi−1} where q0 := 1.

Proof: Using the notation in Lemma 6, suppose i∗ > 1.

Note that k > qi∗−1, for otherwise qi∗−1 is smaller than qi∗

and yet k ≤ qi∗−1, violating the definition of i∗. Suppose

otherwise that i∗ = 1. Note that k > 1 for otherwise we

can replace the parent of the k = 1 node to be “merged”

by the node itself. To summarize, we have w = qi∗ − k <
qi∗ − qi∗−1 ≤ maxi∈[n]{qi − qi−1}, where q0 := 1.

We now know the range of the number of dummy symbols

we need to add but not the exact number. On the other hand,

we need to know how to merge these dummy symbols, say,

should we merge all the dummy symbols in a single iteration,

or should we merge certain number of dummy symbols for a

specific channel? The following lemma describes the structure

of a specific optimal tree-decodable code. Note that there may

be other optimal tree-decodable codes which do not meet this

structure. However from the lemma, we know that we can

merge all the dummy masses in the first iteration.

Lemma 7. There exists optimal decoding tree where all

dummy leaves and codewords assigned to a certain number

(k ∈ {2, 3, . . . , qn} ∩ [m]}) of the smallest non-dummy

probabilities are siblings.

Proof: Now we continue with the optimal decoding tree

stated in Lemma 5. Let i∗ be the class the parent node of the

codeword for p1 belongs to. This codeword must have at least

one sibling assigned to an non-zero probability or otherwise

we can remove the last symbol of the codeword in the i∗th

channel to reduce the expected codeword length. Let k− 1 be

the number of siblings of this codeword which are assigned

to non-zero probabilities, where 2 ≤ k ≤ qi∗ . Let one of

these siblings be assigned to pj where p1 ≤ p2 ≤ pj . By

Lemma 3, we have ℓ1 ≥ ℓ2 ≥ ℓj = ℓ1, i.e., ℓ1 = ℓ2 = ℓj . If

pj 6= p2, then we can swap their assigned codewords so that

the codewords for p1 and p2 are siblings without changing the

expected codeword length. We can repeat the above arguments

to show that the k smallest non-zero probabilities are siblings.

The final step is to show that when there is a dummy leaf,

then it is a sibling of the codeword of p1. It can be proved

by a similar argument that if the dummy leaves are not the

siblings of the codeword of p1, then we can swap a dummy

leaf with a non-dummy sibling of the codeword of p1 so that

the expected codeword length is either unchanged or reduced.

At last, we can use the above lemma to argue with induction

that one of the merge sequences produces an optimal decoding

tree. That is, we know that the generalized Huffman procedure

can indeed produce an optimal decoding tree, but we do not

know the exact merge sequence.

Theorem 9. There exists a merge sequence which can produce

an optimal multi-channel tree-decodable code.

Proof: Fix k ∈ {2, 3, . . . , qn} ∩ [m]. By Lemma 6, we

can determine i∗ ∈ [n], where qi∗ is the smallest among

{q1, . . . , qn} with qi∗ ≥ k, and w = qi∗ − k. When we

merge the k smallest probability masses, we obtain a reduced

multiset of probabilities {
∑k

j=1 pj, pk+1, . . . , pm}. Let L′
k be

the expected codeword length of the optimal tree-decodable

code for the reduced multiset of probabilities. Based on this

reduced tree, we can reverse the merge to obtain a tree

for the original multiset of probabilities where its expected

codeword length Lk is Lk = L′
k +

∑k
j=1 pj ln qi∗ . Note that

since L′
k is the expected codeword length of the optimal tree-

decodable code for the reduced multiset of probabilities, Lk

is optimal for the original multiset of probabilities, for this

specific k. Since the method of creating the trees conforms to

the format in Lemma 7, there must exist one k which gives

the overall optimal tree. By considering all possible k, the

expected codeword length of the optimal tree-decodable code

for the original multiset of probabilities is min
min{qn,m}
k=2 Lk.

We can apply the above arguments inductively (but fixing

k ∈ {q1, . . . , qn} ∩ [m′] in subsequent rounds where m′ is

the number of remaining masses) to all the possible reduced

multisets of probabilities to conclude that there exists a merge

sequence which can produce an optimal multi-channel tree-

decodable code.

The importance of the above result is that we do not have

to try arbitrary merges on the probabilities: we only combine

the smallest probabilities in each merge. This way, the search

space is greatly reduced.

V. APPROXIMATE MULTI-CHANNEL HUFFMAN

PROCEDURE

It is not known whether an optimal tree-decodable code is an

optimal prefix code except for the 2-channel case. If we further

restrict ourselves to optimal tree-decodable codes, the multi-

channel Huffman procedure can be applied.4 However, the

4A testing tree like the one discussed in [11] requires a source symbol to be
the specific branches of the internal nodes. Also, the cost of an internal node
is independent of the number of branches. That is, constructing an optimal
tree-decodable code is different from constructing an optimal testing tree.



TABLE II
PRUNE BY REDUNDANCY

merge number of remaining masses
sequence 4 3 2 1

(2,2,2,2) 0.0072895611 0.0073186993 0.0139724304 0.024088589
(2,2,3) 0.0072895611 0.0073186993 0.0337666569
(2,3,2) 0.0072895611 0.0084312615 0.0681102540
(3,2,2) 0.0113528472 0.0120340121 0.0153997900

(3,3) 0.0113528472 0.1027103422

TABLE III
PRUNE BY EXPECTED CODEWORD DESCRIPTION LENGTH

merge number of remaining masses
sequence 4 3 2 1

(2,2,2,2) 0.2280454224 0.5254055629 0.9211926030 1.6143397835
(2,2,3) 0.2280454224 0.5254055629 1.6240178515
(2,3,2) 0.2280454224 0.9652142681 1.6583614487
(3,2,2) 0.5943492482 0.9125038040 1.6056509846

(3,3) 0.5943492482 1.6929615368

procedure raises another issue that in each iteration we have

to decide how many masses are merged. Trying all possible

merge sequences produces exponential number of decoding

trees which is inefficient. Take (2, 3)-ary codes as an example,

the number of possible merge sequences for m probabilities

is the mth Fibonacci number.

One way to reduce complexity is to prune the merge

sequences according to some metric. Specifically, we start

by trying all possible choices in each iteration and keeping

track of the resulting reduced multiset sizes. Whenever we

obtain two merge subsequences producing reduced multisets

of the same size, we eliminate the under-performing one

according to some metric and continue with the remaining one.

This strategy avoids unfair comparison between multisets of

different sizes. For example, we should compare the reduced

multisets generated by the merge sequences (2, 2) and (3)
as both of them reduced the number of masses by 2. In the

following we show that using this strategy with several natural

metrics is sub-optimal.

Given the probabilities {0.13, 0.199, 0.212, 0.217, 0.242},

we apply the Huffman procedure to generate a (2, 3)-ary

tree-decodable code. Note that we are worse off choosing

the 2nd channel in the 1st iteration and merging a dummy

mass with 2 non-dummy masses, since we can instead choose

the 1st channel to merge the 2 non-dummy masses which

results in a shorter expected codeword length. Therefore in the

example here, we do not need to consider dummy masses. The

candidate optimal merge sequences are (2, 2, 2, 2), (2, 2, 3),
(2, 3, 2), (3, 2, 2), and (3, 3), while the winner is (3, 2, 2).

TABLE IV
PRUNE BY ENTROPY

merge number of remaining masses
sequence 4 3 2 1

(2,2,2,2) 1.3694953333 1.0721643310 0.6830310220 0.0000000000

(2,2,3) 1.3694953333 1.0721643310 0.0000000000

(2,3,2) 1.3694953333 0.6334681881 0.0000000000
(3,2,2) 1.0072547937 0.6897814027 0.0000000000

(3,3) 1.0072547937 0.0000000000

TABLE V
PRUNE BY EXPECTED RESULTANT CODEWORD LENGTH + ENTROPY

merge number of remaining masses
sequence 4 3 2 1

(2,2,2,2) 1.5975407557 1.5975698939 1.6042236250 1.6143397835
(2,2,3) 1.5975407557 1.5975698939 1.6240178515
(2,3,2) 1.5975407557 1.5986824562 1.6583614487
(3,2,2) 1.6016040418 1.6022852068 1.6056509846

(3,3) 1.6016040418 1.6929615368

TABLE VI
SUBOPTIMAL CODE CONSTRUCTION

merge number of remaining masses
sequence 4 3 2 1

(2,2,2,2) 1.6143397835 1.6143397835 1.6143397835 1.6143397835
(2,2,3) 1.6143397835 1.6143397835 1.6240178515
(2,3,2) 1.6143397835 1.6583614487 1.6583614487
(3,2,2) 1.6056509846 1.6056509846 1.6056509846

(3,3) 1.6056509846 1.6929615368

During the Huffman procedure, we record the redundancy

(sum of local redundancies) and the expected codeword length

of the already constructed subtree(s) in Tables II and III. We

also record the entropy of the reduced multisets of probabilities

in Table IV. Table V shows the entry-wise sum of Tables III

and IV. The values in Tables IV and V are the (lower and

upper) bounds of the expected codeword length of the not-

yet-constructed part and the expected codeword length of the

resultant code respectively (by Theorems 2 and 5). All the

values are measured in nats.

The numbers in bold are the minimums of the corresponding

columns. For each table, we compare the steps of different

merge sequences when the numbers of remaining masses are

the same. If a merge sequence does not attend the minimum

during a comparison, we prune the merge sequence away and

highlight the corresponding cells in gray. The merge sequence

with a white cell in the rightmost column is the output of the

procedure for the specific metric of the table. We can see that

none of these tables produce the optimal (3, 2, 2).
We now propose a straightforward suboptimal code con-

struction which can guarantee a redundancy no larger than

the one of a single-channel Huffman code. We follow a

similar idea used in Table V except that, instead of adding the

entropy of the reduced multiset of probabilities to the expected

codeword length of the already constructed subtree(s), we

add the smallest expected codeword length of the single-

channel Huffman codes constructed for the reduced multiset

of probabilities on different channels. This sum is the expected

codeword length of a code which can be constructed explicitly.

Note that a single-channel Huffman code falls in one of the

merge sequences, so that we can ensure the code we produce

this way has a redundancy no larger than a single-channel

Huffman code.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we showed that it is possible for a multi-

channel source code to achieve a better compression than

an optimal single-channel source code. We also presented



the multi-channel analog of some classical results in single-

channel source coding. Some future research directions on

multi-channel source coding are:

1) Is an optimal multi-channel tree-decodable code an opti-

mal prefix (or uniquely decodable) code?

2) Is there a metric with which the pruning strategy results

in an optimal multi-channel Huffman code?

3) How to extend adaptive, canonical and run-length Huff-

man codes into their multi-channel version?

4) How to restrict the expected codeword length for each

channel and to balance the usage of each channel?
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