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Abstract

In this problem, Alice and Bob, are provided X' and X3' that are IID px, x,. Alice and Bob
can communicate to Charles over (noiseless) links of rate R; and Ry, respectively. Their goal is to
enable Charles generate samples Y™ such that the triple (X7, X2, Y™) has a PMF that is close, in total
variation, to [ [px,x,y- In addition, the three parties may posses shared common randomness at rate
C. We address the problem of characterizing the set of rate triples (Ry, R, C) for which the above
goal can be accomplished. We build on our recent findings and propose a new coding scheme based
on coset codes. We analyze its information-theoretic performance and derive a new inner bound. We
identify examples for which the derived inner bound is analytically proven to contain rate triples that
are not achievable via any known unstructured code based coding techniques. Our findings build on a
variant of soft-covering which generalizes its applicability to the algebraic structured code ensembles.

This adds to the advancement of the use structured codes in network information theory.

I. INTRODUCTION

The task of generating correlated randomness at different terminals in a network finds its applications in
several communication and computing paradigms. This task is also fundamental to several cryptographic
protocols. In this article, we provide a new information-theoretic coding framework for generating such
correlated randomness in network scenarios.

We consider the scenario which was originally studied by authors in [1], as depicted in Fig 1. Three
distributed parties, say Alice, Bob and Charles, have to generate samples that are independent and
identically distributed (IID) with a target probability mass function (PMF) px, x,y. Alice and Bob are

provided with samples that are IID according to px, x, - the marginal of the target PMF px, x,y. They



have access to unlimited private randomness and share noiseless communication links of rates R;, Ry
with Charles. In addition, the three parties share common randomness at rate C. The authors in [1]
provided a set of sufficient conditions, i.e., an achievable rate region for such a scenario. However, can
this rate-region be improved? This article answers the above question in the affirmative.

It is well established that traditional coding techniques using unstructured codes do not achieve
optimality for the several multi-terminal scenarios. For instance, the work by Koérner-Marton [2] demon-
strated this sub-optimality for a classical distributed lossless compression problem with symmetric binary
sources using random linear codes. We harness analogous gains for the problem of generating correlated
randomness at distributed parties. Specifically, we propose a coding scheme based on coset codes, analyze
its information-theoretic performance and thereby derive a new inner bound (see Thm. 1). We identify
an example for which the derived inner bound is analytically proven to contain rate triples that are not
achievable in the earlier known results [1]. While the derived inner bound does not subsume the one
characterized in [], one can adopt the technique in [3, Sec. VII] - also demonstrated in a related context
[4] - to derive an inner bound that subsumes the inner bounds derived in [1] and Thm. 1.

The problem of generating correlated randomness can be traced back to Wyner [5], whose work
discovered the important technical tool, called the soft covering. This tool has found its application in
diverse fields including cryptography and quantum information theory. The work in [1] further refined
this tool by introducing a joint-typicality based application. As we illustrate in the sequel, this work adds
another dimension to our current understanding of soft covering, what we term as the change of measure
soft covering.

A renewed interest in soft covering led Cuff [6], [7] to consider a point-to-point (PTP) version of
the scenario depicted in Fig. 1, wherein Bob (or X5) is absent. A side-information based scenario was
subsequently studied in [8] and a converse provided in [1]. In [1] we studied the above scenario using
unstructured coding techniques. A similar sequence of problems were also studied in the quantum setting
[9]-[11].

While all of the above works leverage the unstructured IID random codes, it has been proven that
algebraic structured codes provide gains in network communication involving distributed encoders [4],
[12]-[17]. Motivated by this, we consider the distributed correlation synthesis problem depicted in Fig. 1
and present a new achievable rate-region using structured coding techniques. We highlight two main
challenges in this endeavour. The first challenge is to be able to achieve rates corresponding to non-uniform
distributions. In particular, codewords within a random linear code has uniform empirical distributions.
This requires us to enlarge our codes to be able to identify codeword with the desired single-letter

distribution. We address this challenge by using a random shifts of cosets of a linear code as our
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Fig. 1. Source Coding for Synthesizing Correlated Randomness

code, henceforth referred to as Unionized Coset Codes (UCCs) [16]. The second challenge concerns
the statistical dependence among codewords of a coset code. In contrast to IID codes, the codewords
of a UCC are only pairwise independent [18]. This prevents us from using the Chernoff concentration

bound. We therefore develop novel techniques for our information theoretic study.

II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement standard information theory notation with the following. For a PMF px, we let p'y =
[ [, px. For an integer n > 1, [n ] 2 {1,---,n}. The total variation between PMFs px and ¢x defined
over X is denoted [px — gx|1 = 3 Dcx [Px(2) — gx(x)]. F, is used to denote a finite field of size p
with addition @®.

Building on this, we address the network scenario (Fig. 1) for which we state the problem below. In

the following, we let X = (X1, X2),2" = (27, 25).

Definition 1. Given a PMF px, x,y on X} x X3 x Y, a rate triple (R, Ra, C) is achievable, if Ve>0 and
sufficiently large n, there exists 2"C randomized encoder pairs E](.“ ) A —> [0;]:je[2],pe [2nC],
and a corresponding collection of 2" randomized decoders D) : [©] x [@3] — Y™ for u € [2"C]
such that p%y — pxry» ) <€ 2log,©; < R +€: j € [2], where

pxrye (") = D, 279 Y phy (2 y")

He 2”0] (ml,mz)e
[©:1]%[©:]

PS\Z)‘XH (1 Ix?)pg\%x; (mz!x?)p%whm (y"|m1, m2)

pg\%xn Jj € [2], p$2| v, are the PMFs induced by the two randomized encoders and decoder
respectively, corresponding to common randomness message p. We let R4(pxy) denote the set of

achievable rate triples.



Theorem | provides a new characterization of R;(pxy) based on coset codes, for the above described
problem statement. This characterization provides a new inner bound to the achievable rate-region. An
essential aspect of our work is the identification of a PMF px, x,y for which the coding scheme described

in [1], [19] is strictly sub-optimal.

III. DISTRIBUTED SOFT COVERING USING ALGEBRAIC STRUCTURED RANDOM CODES
A. Change of Measure Soft Covering

Before presenting the main result of the paper, we develop the necessary tools and provide a lemma
which is crucial for the upcoming results. This lemma extends the cloud mixing result of [7] with a

mismatched codebook generation process. The lemma is as follows.

Lemma 1. Consider a PMF pxy on X x )Y, and let R be a finite non-negative integer. Additionally,
assume that there exists some set X containing the set X, with pxy (z,y) = 0 for all x € X\X. Suppose
gx is any PMF on the set X such that the PMF px is absolutely continuous with respect to the qx.
Let a random code C £ {X"(m) : m € [2"B]} be defined as a collection of codewords chosen pairwise
independently from the set X according to the PMF q%. Then we have for R > Hy(X) — H,(Y|X) =
I,(X;Y) — Hy(X) + Hy(X),
gnR
JEQCEC[ Z ‘ Z ];X ZZ>17YX(3/ | X" (m ))|] =0
yreyn m=1

Proof. The proof follows similar analysis as the proof of [20, Lemma 19] as hence is omitted.

B. Main Result

Our main result is the characterization of Rs(pxy) which is the inner bound to R4(pxy). In the

following, we let X = (X1, Xo), W = (W1, Wa),z = (z1,22) and w = (w1, w2).

Theorem 1. Given a PMF px, x,y, let P(px, x,y) denote the collection of all PMFs pow,w,xy defined

on Qx Wy x Wy x X x ) such that (i) pxy (z,y) = Z(q@)egxprMy(q,w, z,y) forall (z,y) € X%,
(ii)) W1 — QX1 — QXo — Wo and X — QW —Y are Markov chains, (iii) [W| < < AL

Further, let 3(powxy) denote the set of rates and common randomness triple (R1, Ra, C) that satisfy
Ry = I(X1; Wi |[Wa, Q) + I(Wh @ Wa; Wa|Q)
Ry = I(Xo; Wa|W1, Q) + I(W) @ Wa; W1|Q)

Ri+C = I(X;Wh W, Q) + I(Y; W1 | X, Q) + I(W1 @ Wa; W2|Q)



Ry + C = I(X;Wa|W1,Q) + I(Y; Wa| X, Q) + I(W1 @ Wa; W1|Q)

Ry + Ry + C = I(X; W1 |[Wo, Q) + I(X; Wa|[W1,Q) + I(W1 @ Wo; Wi |Q) + I(W1 @ Wa; Wh|Q),
(1)

where the above information theoretic terms are evaluated with respect to the PMF pow,w,xy. Let

Rs(pxy) A Closure U Bpowxy) 2)

PowxyEP(Px; x,v)

We have

Rs(pxy) € Ra(pxy)-

In other words, the rate triple (Ry, Ra,C) € (U )B(pQMy)) is achievable.

pQWXYEP(leXQY

Note that the rate-region obtained in Theorem 2 of [19] contains the constraint Ry + Ry + C >
I(X1XoY; Wi Ws5|Q). Hence when 2H (W1 @ Ws|Q) < H(W1, W5|Q), the above theorem gives a lower
sum rate constraint. As a result, the rate-region above contains points that are not contained within the

rate-region provided in [19]. To illustrate this fact further, consider the following example.

Example 1. Let X; and X, be a pair of binary symmetric correlated sources with P(Xo = 1|X; =
0) = p, for some p € (0,0.5). Let Y = X; ® X2 ® Q, where P(Q = 1) = ¢, for some ¢ € (0,0.5).
Consider ¢ = p = 0.1 for a numerical evaluation. Let us first consider the inner bound R, (px y) to the
rate region R(px,y) given in [1], developed using unstructured code ensemble. Due to symmetry in the
example, it turns out that the search over the auxiliary random variables for minimization reduces to a
single-parameter minimization which can be computed through derivative techniques. The computation
details are not provided for the sake of brevity. In particular, the minimum value of R; + Ro + C can be
computed to be 1.3965. Next let us consider the new inner bound R4(px y) developed using structured
code ensemble (Theorem 1). The minimum value of R; + Ry + C' can be computed to be 0.9596.

The results can also be verified for the special case of ¢ = 0 which we provide in the following. Using

the arguments given in proof of Proposition 1 of [2], one can show that
Ru(px,y) = {(R1, R2,C) : Ry = hy(p), R2 = hy(p),
Ry + Ry > 1+ hy(p),C = 0}

Next let us consider the new inner bound R,(px y) developed using structured code ensemble (Theorem

1). By choosing W7 = X; and Wy = X5, we see that the following triple of rates is achievable:

{(Rl,RQ,C) TRy = hb(p),RQ = hb(p),C = 0}.



In fact, one can show that this is optimal using the side information argument. If X5 is sent losslessly,

then from the converse argument in the side information case, we see that R; > H (X32|X1) = hy(p).

IV. PROOF OF DISTRIBUTED SOFT COVERING USING ALGEBRAIC STRUCTURED RANDOM CODES

The coding strategy used here is based on Unionized Coset Codes, defined in Definition (2). The
structure in these codes provides a method to exploit the structure present in the stochastic processing
applied by decoder, i.e., Py, 11,. Using this technique, we aim to strictly reduce the rate constraints
compared to the ones obtained in Theorem 1 of [1].

Let i € [2"“] denote the common randomness shared amidst all terminals. The first encoder uses a
part of the entire common randomness available to it, say C bits out of the C' bits, which is denoted
by ui € [2”01]. Similarly, let o € [27C2] denote the common randomness used by the second encoder.

(1)

Our goal is to prove the existence of PMFs pM Xy (mala}) @ 2f € AP my € [O1], 1 € [27],

P, g (mal2h) = a8 € X3 ma € [Oa], p2 € [27°], pynjns, ar, (¥ [ma,ma) =y € V", (m1,ma) €

[©1] x [O2] such that

1 pX
2% 52 PXY " y") Z Z g\ZIIXn (ml,afl)Pg\ZQ?Xn (me|zy )P%IM(yﬂm) SE
anyn 2"0 ma
Me ] m2€€[® ]]
log O
8T <R te:jel2, 3)

n

for sufficiently large n. Fix a block length n > 0, a positive integer N and a finite field IF,,. Further, let W3
and W» be random variables defined on the alphabets YV and W, respectively, where W, = Ws = ),
and let Z 2 W1 @ Ws. In building the code, we use the Unionized Coset Codes (UCCs) [16] defined as
below. These codes involve two layers of codes (i) a coarse code and (ii) a fine code. The coarse code
is a coset of the linear code and the fine code is the union of several cosets of the linear code.

For a fixed k x n matrix G € F’;X" with £k <n, and a 1 x n vector B € IE‘;;, define the coset code as
C(G,B) & {z" : 2" = a*G + B, for some a* € FI;}

In other words, C(G, B) is a shift of the row space of the matrix G. The row space of G is a linear

code. If the rank of G is k, then there are pk codewords in the coset code.

Definition 2. An (n, k,[,p) UCC is a pair (G, h) consisting of a k x n matrix G € F’;X”, and a mapping
h: Fé — 7. In the context of UCC, define the composite code as C = Uz‘eIF; C(G, h(7)).

For every pu 2 (u1, p2), consider two UCCs (G,hg‘“)) and (G,hg”)), each with parameters (n, k,
l1,p) and (n,k,la,p), respectively. Note that, for every u € [N], the generator matrix G remains the

same.



For each (1, pu2), the generator matrix G along with the function 2{" and hL* generates pF*h and
pk*le codewords, respectively. Each of these codewords are characterized by a triple (a;, m;, i), where
a; € IF’; and m; € IF;; corresponds to the coarse code and the fine code indices, respectively, for i € [2].
Let wy(aj, m1, 1) and wa(ag, ma, o) denote the codewords associated with Alice and Bob, generated
using the above procedure, respectively, where wi (a1, m1, ul) = a1G + h(” 1)( ), and wa(ag, ma, u2) a
axG + h{*? ().

Consider the collections ¢; = (cg‘“) 1< pp < 279) where cg‘“) = (wi(ly,m1): 1<l < 2”R1) and

co = (c&“l) 1< py < 27¢1) where cg’“) = (wa(lg, o) : 1 < lp < 2”R2). For this collection, we let

>

3 n n
(1) pW1|X1(w1 ‘161)
EL1|XI” (al’m1|x?) 2 pn onS; (1 + ,7) ﬂ{wl(al,muul)=w?}>

wi €Ty (Wala)

>

2 np%2|xz(w3|$3)
ph—2z = 20

(p2) n
E l: > (a2’m2|$2) 2”52(1 + ?7) 1{W2(a27mzvll2)=w§}' )

wieTs(Walzd)
The definition of Eg‘ &ﬂ and EgL 2\;(” can be thought of as encoding rules that do not exploit the additional

rebate obtained by using binning techniques, specifically in a distributed setup.

A. Binning of Random Encoders

We next proceed to binning the above constructed collection of random encoders. Since, UCC is already
a union of several cosets, we associate a bin to each coset, and place all the codewords of a coset in
the same bin. For each i € Fi and j € Fiz, let %) (i) £ C(G, h{"(i)) and B (j) & C(G, hY™ ()

denote the i*" and the j** bins, respectively. Formally, we define the following PMFs.

P (mafa) = 4 1= s(-“i)(x?) if m; = 0 and s (27)e [0, 1],
Z L \X” (ai,m;lzy) if m; # 0 and sf“ )(x?)e [0, 1],

aleF

for all 2! € Th(X;), s (a7) defined as s/ (27) & ¥, (o 3, cots B[, (ai, mil}) and i € [2]. For

ot ¢ T5(X1), we let pifi |y, (mafaf) = 1{m1 —o0}-

With this definition note that, Z S0P A’Zi‘)Xl (mi]x?) = 1 for all u; € [2"“"] and 2} € A7 and
similarly, Y20 p{itl, (mala) = 1 for all iy € [2°C2] and a € X

Also, note that the effect of introducing binning (by defining the above PMFs) is in reducing the
communication rates from (S, S2) to (R, R2), where R; = %’logp,i € {1,2}. Now, we move on to

describing the decoder.



B. Decoder mapping

We create a decoder that takes as an input a pair of bin numbers and produces a sequence W™ € ;.
More precisely, we define a mapping £ for 1 2 (ju1, ji2), acting on the messages (m, my) as follows.
On observing x and the classical indices (mq, mg) € ]Fé; X IF;; communicated by the encoder, the decoder
constructs D(“) S{aeFk:aG + ni) (i) + B3 (5) € 75(")(2)}, and £ (my, mo)

A aG + h(#l)( ) + h(uz)( ) if Dz(,ujth) = {a} s

wyy otherwise |,
where § = pd and wg is an additional sequence added to F. Further, f (1) (m1,mg) = w{ for i =0
or j = 0. The decoder then performs a stochastic processing of the output and chooses 4™ according to

PMF p%z(y"|f(“) (my, mg)). This implies the PMF p§/H|)M A, () is given by
(1)

Y agan, Clmasma) = py ("1 f ) (ma, m)). (6)

We now begin our analysis of the total variation term given in (3).

C. Analysis of Total Variation

Our goal is to prove the existence of a collections c;, co for which (3) holds. We do this via random
coding. Specifically, we prove that E[ K] < e, where the expectation is over the ensemble of codebooks.
The PMF induced on the ensemble of codebooks is as specified below. The codewords of the random
codebook CZ.(” i) (Wi(as, mi, i) = a; € IF";, ,m; € IFL) for each p; € [2"C¢] are only pairwise independent
[16] and distributed with PMF P(W;(a;, m;, pt;) = w}') = % for each i € [2].

Step 1: Error caused by not covering

We begin by splitting K into two terms using the triangle inequality as K < S + S, where
(p1) n

pX )p]\/[ Xn(m1|$1)

A 2

S = Z pXY 7y Z Z 2n 01|+Cz) pg\ljﬂ)xg (mZ‘-Tgl)pgjg‘M(yn|m) )

xm,yn H1sM42 my >0,
mao >0

] P (")
A X X :
SAVIS N A mlapl e (ol 0 )|
x™y" | H1sH2 my =0Umoe=0

Note that S captures the error induced by not covering p'y,-. For the term corresponding to S, we prove

the following result by developing the following lemma below followed by a proposition.

Lemma 2. For the above defined notations, for i € {1,2}, if S; = I(X;; W;) + .,, then the following
holds true

;QZZp&,@?)P([ DI al,mm;@)] > 1) < e, (7)
Hi xd

cFk
ale]Fp m; EF



Proof. The proof is provided in Appendix A-A. 0

Proposition 1. There exist functions eg(9), and 65(0), such that for all sufficiently small § and sufficiently
large n, we have E[S] < €5(0), if S1 > I(X1; W1)—H(W1) +logp+0g and Sy > 1(Xo; W) —H (Wa)+
logp + dg, where €5,05 ™\, 0 as § \ 0.

Proof. The proof is provided in Appendix B-A O

Now we move on to removing from S the error that is induced due to binning.
Step 2: Error caused by binning
Note that S can be simplified using the definitions of P{*") (-}, P¥2)_ (.|-), and p\*) = (y"|m) as

M| X7 M| X7 Y| M
P (™)
A X 1 2
SE N W@y = 2 X D D guierroy B (wf e B (e |o)

z"yn K1sH2 mi >0, gy €FF wa,w2€Fy
m2>0 as EFk

]]'{W1(a1,m1,,ul):w?}]]'{W2(a2,TYL27N2):w;1}pg|Z(yn‘f(u) (m17 m2)) ’

where EI(/V“)\ X"( ™|x?) is defined as

‘0

i A p .
Eéé‘n)\xw ) = mp%i‘)(i(w?|x?)ﬂ{w;‘€T5(Wi‘x’f’)}]]'{si“i)(x:z)gly forie {1,2} .
Further by defining fy( '’ and Cz(u’zlz) as

A e (ar,mi ) = i = Y)Y L teemgp)—wyy  and

my>0 aleIF’;

2) A
Cfﬁé) 2 [{wa(ag, ma, p2) = w3t = D D Ly (agimaia)—ws}- ®)
mz>0 ayelFk
we bound S using triangle inequality as S < S; + S5, where

S & Z Pxy (2", y") Z 2 m C(W

my" Ktz wi wy Ry

Eéé‘;}xf, (i) By (WS [25)05 7 (4" [} @ wh)),

RDNDHDNDIED) 2ncl+02 ) o (w2 B o (w3 |23)

Y™ Haspe2 m1>0:a1€F ’LU1 7w2
mo>0 as EFk

]l{wl(alymlzﬂl):w?}1{“2(a27m2a#2):w? pﬁn’\Z(ynhU? S wg) _pg|Z(yn|f(u) (mlva))"

To bound the term corresponding to S3, we provide the following proposition.



Proposition 2 (Mutual Packing). There exist €g,(0), such that for all sufficiently small 6 and sufficiently
large n, we have E [S2] < €g,(0), if S1 — Ry <logp— H(Z), or equivalently, So — Ry < logp— H(Z),
where €g, N\, 0 as 0 N\ 0.

Proof. The proof is provided in Appendix B-B. O

Now, we move on to analyzing the term corresponding to 5.
Step 3: Term concerning Alice’s encoding
In this step, we separately analyze the action of the two encoders in approximating the product distribution

p”XY(J. For that, we split S; as S1 < Q1 + @2, where

D)

2’”’ 7yn

Py (@™, ") ZMZ > pk@ G ER  whal)

1wt wy eFy

Pivp xy (W2 23)py) 2 (y" W] + w3))|,

Q22 ),

m"l 7y

ey > el B (o ko)

M1 wiwy €Fy

CQ(UMQ E(Mz)

(Pl g (w3108) = CU B oy (wB105) ) i (" i +a03) .

With this partition, the terms within the trace norm of @) differ only in the action of Alice’s encoder.
And similarly, the terms within the norm of ()5 differ only in the action of Bob’s encoder. Showing that
these two terms are small forms a major portion of the achievability proof.

Analysis of ()1: To prove ()1 is small, we characterize the rate constraints which ensure that an upper
bound to ()1 can be made to vanish in an expected sense. In addition, this upper bound becomes useful
in obtaining a single-letter characterization for the rate needed to make the term corresponding to Qo

vanish. For this, we define J as

JAa
oS

Py (& 07) = e 2 Pk (@ B (o)

M1 wi

Py xg (W2 |23)Dy 7 (" |wi + wy)|.

By again using triangle inequality we obtain J < J; + Jo, where

VEEDY

s AT
2” yWa 7yn

Pxw,y (z",y") 2n(11 Z ZPX ’Yl(ulil ‘(//;;)|X? (wi']a7)

1wy

prVLVgl|X; (wg\xg)p§|z(y”‘w? + wy)

10



BE N | Sk (B whled) — B, (wileD)

" wy,y" H1 wY

Pivyixy (W2 [22)py) 7 (" Wi + wy)

where E(Wull)‘ X1(|) is defined as

V2

1 A p
EI(AI;T)|X{L (wifay) = nSi (1 + n)p%l‘Xl (W1 21) Lwpery (Walap)}- ©)

To prove the term corresponding to J; is small, consider the following proposition.

Proposition 3. There exist €5,(0), 37, () such that for all sufficiently small 6 and sufficiently large n, we
have E [J1] < ey, if S1+C1 = I(Wi; X0 XoZWs) +logp— H(W1) + 0, where €5,,6;, \, 0 as § \, 0.

Proof. The proof is provided in Appendix B-C. O

Now, consider the term corresponding to J>. This can be simplified as

pa) ()
Tz = 2nchZPX (ZW Eypxp (W |“"Tf)> Lo @p)>1)
P M

znq;ZPx ZVM)EVI%IX" ‘“"?)] L @p)>1)
Qna;lex vau’“? By o (wi]a?) — [Zv(’“ B (w |x7f)]|
< e ST A GE | Tl B 015D
+ g DR T B e ~ | o Bl |

<H0+H1 -|—€”,

for

>

Hy

1
27101 Z; ;p%(xn)ﬂ{sgu1)(x?)>l}
T M

1
M 8 2"01;; pni(i 2n51 1 —|—77 2 2 2 pX1W1 $1,w1)ﬂ{wl(a1,m1,p1)—w?}

wy m1>0 a,€Fk

where we use E [Zw (’il)E(W”ii Xp (wﬂx?)] < 1 in defining Hy and H; is obtained by adding the

sequences wi ¢ 7:5 ( 1) within the summation. Now, we can provide an upper bound on Hj; and

11



H; using the Lemmas 2 and 1, respectively, as E[Hy + Hi| < ey if S1 = I(X1; W) + dp. There-
fore, since ()1 < J, hence (J1, can be made arbitrarily small for sufficiently large n, if S; + C; >
I(Wy; X1 XoYWy) — H(W7) + logp + 65 . Now we move on to bounding Qs.

Step 4: Analysis of Bob’s encoding

Step 3 ensured that the random variables X; XoY W5 are close to a product PMF in total variation. In this
step, we approximate the PMF of random variables X7 X2Y using the Bob’s encoding rule and bound

the theorem corresponding to (2. We proceed with the following proposition.

Proposition 4. There exist functions eq,(0) and 9q,(9), such that for all sufficiently small 6 and
sufficiently large n, we have E[Q2] < €q,, if S1+ C1 = I(W1; X1 XoY Wa) — H(Wh) +logp + d¢, and
So + Coy = I(Wo; X1 X2Y) — H(W2) +logp + 6g,, where €q,,dg, \, 0 as 6 \, 0.
Proof. The proof is provided in Appendix B-D. O
Hence, in bounding the terms corresponding to ()1 and ()2, we have obtained the following constraints:
S1+Cy = I(Wy; X1 XoYWs) — H(Wh) + log p,
Sy + Cy = I(Wa; X1 X0Y) — H(Ws3) + log p. (10)

By doing an exact symmetric analysis, but by replacing the first encoder by a product distribution instead

of the second encoder in 57, we obtain the following constraints
S1+Cy = I(Wy; X1 XoY) — H(Wq) + logp,
Sy + Co = [(Wo; X1 XoYW1) — H(W2) + logp. (11)
By time sharing between the above rates (10) and (11), one can obtain the following rate constraints
S1+C1=I(Wy; X1 XoY) — H(Wy) + logp,
Sy +C2 = I[(We; X1 X2Y) — H(W2) + log p,

S14+S2+C1+Co = I(W1Wo; X1 XoY)—H (Wi, Wa)+2log p.

D. Rate Constraints

To sum-up, we showed that the (3) holds for sufficiently large n and with probability sufficiently close
to 1, if the following bounds holds while incorporating the time sharing random variable () taking values

over the finite set O!:

S1 = I(X1; W1h|Q) — H(W1|Q) + log p,

ISince @, the time sharing random variable is employed in the standard way we omit its discussion here.

12



Sy = 1(Xg; W2|Q) — H(W2|Q) + logp,
S1+C = I(X1 XoY; WA |Q) — H(WA|Q) + log p,
Sy + Co = I(X1X2Y; Wa|Q) — H(W2|Q) +log p,
S14 Sa+ C1+ Cy = I(W1We; X1 X0Y|Q) — H(W1,W2|Q) + 2log p,
Sy — Ry =Sy — Ry <logp— H(W; ®W3|Q),
0< R <851, 0<Ry<5y,

Ci+Ce<C, C=0 12)

Lastly, we complete the proof of the theorem using the following lemma.

Lemma 3. Let R denote the set of all (Ry, R, C) for which there exists (S1,S2) such that the septuple
(R1, R2,C, S1, S92, Cy, Cs) satisfies the inequalities in (12). Let, Ro denote the set of all triples (R1, Ro,

C) that satisfies the inequalities in (1) given in the statement of the theorem. Then, Ri = Ro.

Proof. This follows from Fourier-Motzkin elimination [21]. ]

APPENDIX A
PROOF OF LEMMAS
A. Proof of Lemma 2

Let K denote the left hand side of (7). Further, for the purpose of this proof, we skip the subscript ¢
Bounding the a-typical sequences of x™ from the summation gives K = K; + €x, where
2y B Aer([ D8 ] 1)
zreT™M (X) a€Fk meF!

and ex 2 Zznéﬁn)(x)p}(x"). Note that ex(d) N\, 0 as 0 N\, 0. With that, it remains to show the K;

can be made arbitrarily small in expected sense. Toward that, define

(1) A a1
Z (a,m) = (ITanXW 25w ) L (a,mp)= wi Lne ™ (Wienyyr Lo 2nsz Z

m>0 aelFk

Observe the following upper and lower bounds on E[Z:E,’i)].

E[zW] = P Pl (27, W) — < 2X (13)
=T P S
(w) 1 n n o ,.n p&(l‘ )2n6w

BlZe) = oy 2 Phw( o) > = (14)

wreTy " (Wlam)
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where the inequalities above uses the typicality arguments and d,,(0) N\, 0 as 0 N\, 0. Using these bounds,

we perform the following simplification.

IF’([ >y Eg@("(a,mm”)] > 1) - IP(Z;%) > p}(x”)> < P(Ziﬁf) > (1+ n)E[ZQi’]) (15)

K ]
acFy meF},

where the inequality above uses the inequality from (13). Further, we have

|

where the first inequality follows from Markov Inequality, and the second uses (i) the Jensen’s inequality

E|Z%W — E[ZW)]

xTm

(14+n)4/Var (Z(“)>

< —
nE[Z%)] 270w px (27)

(16)

ZW gz > nE[Zi’?]) <

for square-root function and (ii) the bound from (14). Combining the inequalities (15) and (16) using

union bound, we obtain

A7)

(u)
] 1 V‘““( ) _ (1 +n)\/Q—n(S+H(X\W)+H(W)—6”)
> x
n2="0u . (2) n2="0up' (xm)

([ 3 3 elttomtr

aelFk meF,
where the last inequality follows by simplifying Var (Zg(cﬁ)) similar to the one in [20, Lemma 19] to

obtain
1

(1) —n(S+H(X|W)+H(W)—6§"
VCL?“ (ZI’VL)<2 (+ ( ‘ )+ ( ) )(1_’_7?7)2

Substituting the simplification of (17) in K; completes the proof.

APPENDIX B

PROOF OF PROPOSITIONS

A. Proof of Proposition 1

We bound S as S < 51 + 52 + 53, where

5 £ Z 2 Z on cl+cz Mll)xn(O’xl)pg\ﬁ){"(mﬂxg)p%\Mle(ynm’mQ)
Y™ H1sH2 me>0
Sy 2 Z Z Z on( cl+cz) Mil)X"(mllwl)pg\ZQI)X"(O’x?)pw\M PACALCRD)

™, y™ K142 me>0

J. A 1) 2) (w) n
SS = Z Z Z 2n C1+CQ ]\de (0| 1) ]\Z|X (0|x2)p)g Y| M, Mz(y |070)

z,y" K142 mo>0

Analysis of S: Consider the following simplification with regards to S;.

P " Pip x (0121) " () n
Z Z — 2TL Cl"l‘Cz Z pMﬂX m2|:1:2) ZPY"‘M1M2(y |07m2)
y7l

x™ 1,2 map>0
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P, @)pip . (0l27)
i) (0fan

= ZZ o3
M1
Ly

Pk, (z7 PMl\x )
< 2 2nCi (H{SY‘“(QJ’?)SU + ﬂ{sﬁ*‘”(ax?)x}) tex
x’fET( )(X ) M1

= gu + 912 + €x,

where we define ex, (d) 21— anefﬂ")(x )PSL( (x’f) and

& A 2 2 le (p1)
Sll = 2%01 Slu (‘T?)):ﬂ‘{sgul)(z?)<l}’
2771‘67—(")()( ) M1

PX,
Z Z );nC {4V (zp)>1}

apeTy™M (X)) M

>

S12
Now, we bound each of the above terms. For the term corresponding to 511, consider the following.

(a)

Suis< Y Zp);;ol -3 Y B (anmlad)

zreT M (X,) P a1€F} 1, eFlt

b) P (Wl ™)
Wi X\ %11

- Z Z TLC1 le xl 2"51 Z Z Z 1(11+ 7]) ]l{WI(al’ml“ul):w?

1.7167'(">( ) alele mleFi)l ’LU1 €T5(W1|fl' )
(©) p wh. x )

W: X 1 » V1

< 2 2 n6’1 le $1 2”51 Z Z Z e H{W1(017m17ul):w?}

areT{M (X)) P a1 €FY m eRit Wi

pglel(w?’x?)
DI e sl+cl 2 2 2 Ty Hmamp=ery (8)
areT{™ (Xy) M a1€F} m eFlt wi¢Ts(Walzt)

where (a) follows by bounding the indicator by 1 and using the definition of s&“ ) (+), (b) uses the definition
of Eg‘ &ﬂ (a1,m1|z}) as defined in Definition (4), the inequality (c) follows from triangle inequality.
Taking expectation on (18) over the first encoders codebook generation, we obtain

E(El SH 2nC ZE(El Z le xl 2n51 Z 2 ZPWIXIMI7301)]1{"’1(‘1177"17#1):10?}

x"ET(")(Xl) a1€FY m, eFlt Wi
pWIXl(w{laljlz) 1
zreTM (Xy) aleFk mieFyt wigTs(Wilzy)

For the first term in (19), we use Lemma (1) and obtain E[Sn] < €g,, if S1 < I(Xq; W) — HWh) +

logp + 6 g,,- As for the second term we can use typicality arguments and bound it as

pnl l(wn’xn) 1
2 22n (S1+Ch) 2 Z 2 %ﬁ

zreTM (Xy) a1 €F} m, eFt wieTs(Walay)
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T ,u)’I'L7 xn

zreTM (X)) wieTs(Wilzt) (1+m)
where ¢ £ ZI 7™ Xl)Zw # Ty (W) P, x (015 27)
Finally, we have the term corresponding to 512. For this, we use Lemma 2 and hence obtain E[S'u] <
€g,, il So < I(X1;W1) — H(Wq) +logp + dg
Analysis of Sy: Due to the symmetry in S; and Sy, the analysis of S, follows very similar arguments
at that of S; and therefore we obtain E[SQ] <eg, if Sy = [(Xo; Wa) — H(W3) + logp + (552.

Analysis of S3 : Follows by merging the above analysis of S; and Ss.

B. Proof of Proposition 2

Recalling S2, we have

SEDIDNDID DY 2 ) ) B (wla)

" B1,M2 my>0, aleIF wi ,wy €Fp
m2>0 as E]Fk

ﬂ{‘h (alymlyul):w?}l{WZ(a27m27ﬂ2):w?} Z pgg\Z(yn‘w? S wg)_pg}\Z(yn‘f(u) (m17m2))
m

<2) ) > >, 2n(Cl+Cz) Jn(T ) (1 1 )2l WX (wi'|27) Py, | x, (w2 |22)

xm p1,M2 my>0, ale]Fk wi,wy €Fy
mo>0 as E]Fk

Lpwrers(wilar ) Lwres Wilar)y L (arma ) =wp } L (az,ma ) =wp } Lwr @wg mama )
where we define 1(,n@uwz m, m.} @S
L ey 2 1{3(0%,8) : @G + A () + b (ma), " € T (Wa @ Wa), " # w"}.

Using this we obtain,

SQ] < 22 Z Z Z Z 2n(C1+C2) AL S1+52)(1 + n)prl‘Xl (wl |l‘1 )pW2|X2 (w2 |1E2)

xm p1,M2 my >0, aleF wi,wy €Fy
mo>0 as E]Fk

Liwpers(wila)y LwreTs(Wiler)} L (arma o) =wp} L (ag.ma gio)=wp} L wp @uwg ma ma)

Note that, we have

E []l{w;‘@wg,ml yma} ]l{Wl (a1,ma,p)=wt} 1 {w2 (027m2,ﬂ2):w?}]

111, .
< Z Z — <2 (H (Wl@W2)+5z)p3 k7 21)

a#a 171"67:;(71) (W1 @W>)
W AW Pwy
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where 6,(6) N\, 0 as 6 \, 0. This gives

22 Z Z Z & 2n(51+52)<1 n 77)2 JUWl|X1 (wf ‘iUl)pW2|X2 (wy|x3)

x™ my1>0, aleFk wy,ws EIF"
m2>U ., G]F’“

< on[(S1—R1)—(log pH(W:@W2) s, )]

)

where dg,(d) \, 0 as § \, 0.

C. Proof of Proposition 3

Substituting the definition of E‘(/V )| Xy (]") and yr

Ji= ),

", wy,Y"

(1) 4 J1, we obtain

7’L
Pxw,y (2", y") 2nCl I mp%\xl(w?lw?)

K1 wi my>0a,€Fk

Liwpers Wi ler)} L (arma ) =07 P | x, (W2 [22) Py 2 (4" [0 + wy)

- >

" wy,y"

P%WJ (=", y")

1
(1 +77 2n S1+Cl) Z Z Z Z pXWY z" w Y )ﬂ{wl(al,ml p1)=wp}

Ha wy eT(;(W1|x”) my>0 a1€Fk

< Ju + Jig,

A
Jll - Z pn&WéY(&n’yn) (1 +17 QTL S1+Cl) ZZ Z pXWY 1’ M Y )]l{wl(al,ml,#l) i}

1wl my>0
(lle]Fk

1
mt 3 s N N T et e

"Wy yn n¢7‘(")( )m1>0 a,€F¥

As for the term J;;, we use Lemma | and obtain the following bound on E[J11] as, E[J11] < €, if
S1+Cy = I(Wy; X1 XoZWsy) +logp — H(Wq) + 4,

For the term Ji2, applying expectation gives

1
IE[J12]<(1+) > D Prwy(@huy") <.
Vo e (W)

where € (0) N\, 0 as 0 N\, 0.
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D. Proof of Proposition 4

We begin by applying triangle inequality on ()3 to obtain Q2 < F} + Fb, where

ney e Y O PR NREL) i)

" Hisp2 wiwy €Fy

(Pl (w3128) = U By (w3 108) ) (0" 0 @ w03)

)

Fgéz

) go(pn) n|..n
2” Cl"rCz Z Z ’ywl EVS |X ( 1|$1)

Hib2 wiwy Ry

CU (Bl (wh1a) — Bl (w8 128)) Y 2 (" 0} @ )|,

2

where EI(/{,LQZ)‘ Xy (+|-) is defined as

Ve

(NZ) A p
By xs (wylzg) = mp%ﬂ)@ (03 |25) L fwgers(walap))

Considering the term corresponding to F}, we bound it using triangle inequality applied by adding and

subtracting the following terms within its modulus:

@) D, @)y, x, WP, x, (W5 25)pY 4 (" [w] @ wh)
wf,w;e]Fg
C(N2
(di 2n022 Z px(z PW1|X1(“)1‘ 1)Wﬂ{}mxz(wg\xg)p%z(y”\w?f@w?)

M2 wi,wy Ry
n ~(12)
(i) 5 Clwz NN g Eégiﬂxn(w%“)m i, x, (W5 125)p% 7 (4" |[wi @ wh)

M2 witwy e]F

This gives the following bound F} < Fi1 + Fis + Fi3 + F14, where

Fu2 ) |\zer VU B (W) — Bl g (w0 2])) By (0" 0] @ )
2 1 | 1| 1 ‘
xm,yn M1 wiwh eIF"
A
Fiz2 Y| Y pk@)pi,x, (i) (P, (w3 ]28)
™ y" | wi,wyery
pn (p2)
w7l
_mp%Q\XQ (w3|5€3)> pﬁz(y”!w’f @D wy)
A
Fa® ) gD 2 Pk (B, (1)
™y H2 wi,wyefn
(p2)
1 (Ml) (p1) n|,.n C 7 N T\ T nl|, . n n
~gner 23wy Bwpxp (wilaY) mpmm(wz\xz)pnz@ [wi @ wy)
M1
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n -(12)

(1) (p) P Suwy
Fiy & Z eI ID M Y O et e (o) sy )
N17H2 wr E]F" n¢7’(n)( W)

Pl s (03 |28 £ (" [} @ )

We start by analyzing Fj1. Note that F; is exactly similar to the term ()1 and hence using the same rate
constraints as ()1, this term can be bounded. Next consider the term corresponding to Fj2. Substituting

the definition of ijgf) gives

V2

p
Fip = Z pngy@nvyn)—m Z Z ﬂ{wQ (ag,ma,p2)= wz}pXWZ (m w2,y)

xnyn w GF m2>0
GQE]F

Lemma | gives us functions €f,,(d),0r,,(0) such that if
S1 =2 I(Wy; X1X5Y) — H(Wa) +logp + 6p,,,

then E[Fm] €Fy» where €Fyy (5), 5F12 ((5) N\, 0 as ) N\ 0.
Now, we move on to considering in the term corresponding to Fi3. Taking expectation with respect to

G, hg“l) and hém) gives

E[Fi3] = Egn, Z

YD W L "(P?lel(w?lx?)

M2 wi,wy Ry

(p12)
D) i P"Cuy
R 2%“ "B g (] rx?>)Eh2G [M({‘; n)] PRy, x, (W3 |2 2 (4" o @w3>]

el ¥ e (pcvl.xxwmx?)

M2 wi,wy Ry

1
- E §
L+ @M

1 1 1
— e 2, >E652Xn<wﬂx?>)p’&vz|xz (whla3)p} (4" | @w@)]
M1

:E[u—in)]’

where the above equalities follows from the fact that hg“ ) and hg“ V) were generated independently and
from using the definition of J as stated earlier. Therefore, using the same analysis and rate constraints
as J, we can bound the term F}3. Finally, we remain with the term Fy4. Applying expectation on Fi4
gives

(1

)] (p2)
h1 |:7fw p’l’b n
v (p1) Wy
2 ), k() on(Cr+Cs) EWF'|X?(W?|x?)2nSz(1 +n)ngz\X2(w3’x3)
Hi,M2 WY E]F"

wj E’T(") (W )

E[Fi4] <Egp, |

xm
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Z -
xn

P, x, (w2 |x3)
1+ 2182 (1 4 ] 2| Xz
g (1+n) (1+n)

n -(12)
p wi|T
Z Z SL( Wl‘Xl( 1| I)E[ p
T (W)

+7722 Z A
zn

g pW | X, (wy|zy) < €
wigT ™ (W2)

Cwo

where €/, (0) N\, 0 as § \, 0. This completes the analysis for the term corresponding to F}. Finally we
remain with the analysis of the term F3. Simplifying F> gives

2n(cl+cg > 2Pk ( > B W31|Xn( ?Wf))
Paspe g wyeF?y
> G (Bitilx

,wn E]Fn

- 2n02 Z pr < Z lexlﬂ(mlll‘?)>
M2 x™ mi1>0

>y (B g (whlat) — B
wy €Fy

Wil (w3laD)) |
1 7

CU (Bl (whlah) — Bl (ws 1)) |
M2 ™ 5 €Fp
= 527

(wn|$72z) _ E(Hz)

el (wslaD) |

where the last inequality above follows by using (Zm1>0 Pan xyp (malzy) 1 and the last equality

follows by recalling the definition of So. Therefore, using the constraints obtained in the analysis of So,
we complete the proof of the proposition
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