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Abstract—In this paper, we characterize the average Ham-
ming weight distribution of subsequences of maximum-length
sequences (m-sequences). In particular, we consider all possible
m-sequences of dimension k and find the average number of
subsequences of length n that have a Hamming weight t. To
do so, we first characterize the Hamming weight distribution
of the average dual code and use the MacWilliams identity to
find the average Hamming weight distribution of subsequences
of m-sequences. We further find a lower bound on the minimum
Hamming weight of the subsequences and show that there always
exists a primitive polynomial to generate an m-sequence to meet
this bound. We show via simulations that when a proper primitive
polynomial is chosen, subsequences of the m-sequence can form
a good rateless code that can meet the normal-approximation
benchmark.

Index Terms—Rateless codes, Gilbert-Varshamov bound,
linear-feedback shift-register, finite field.

I. INTRODUCTION

A maximum-length linear sequence (m-sequence) is a bi-

nary sequence which satisfies the linear recurrence that is

characterized by a binary primitive polynomial of degree k,

p(x) =
∑k

i=0 pix
i for p0 = pk = 1, which is referred to as

the connection polynomial. In particular, an m-sequence, cn,

can be generated by
∑k

i=0 picn−i = 0, where all operations

are over GF(2). This recurrence relation generates an infinite

sequence which is uniquely determined by p(x). Some of

the properties of these sequences have been studied for short

subsequences, whose length is less than k. In particular,

all bits in a short subsequence (of length less than k) are

independent and the sum of these bits follows a (nearly)

binomial distribution. For subsequences of lengths greater than

k, the bits are related by the recurrence relation. Therefore,

the distribution of the sum of successive bits of subsequences

usually deviates from the binomial distribution [1].

In this paper, we consider all non-zero subsequences of

length n of an m-sequence generated with p(x). These subse-

quences and the all-zero vector of length n form a binary linear

code of dimension k. We refer to this code as the Primitive

Rateless (PR) code. When n = 2k − 1, this code is equivalent

to the dual of the binary Hamming code of codeword length

2k−1 and message length 2k−k−1 with generator polynomial

p(x). Furthermore, for an arbitrary length n ≥ k, the code is

the dual of the shortened Hamming code (n, n − k), where

all codewords corresponding to polynomials of degree greater

than or equal to n are deleted from the original Hamming code

[1]. In other words, the dual of a PR code of dimension k and

length n is a polynomial code with generator polynomial p(x).

Note that m-sequences with connection polynomials p(x) and

xkp(1/x) are backward version of each other and hence have

identical subsequence statistics [2]. Therefore, their equivalent

PR codes have the same Hamming weight distributions.

Authors in [1] tried to characterize the deviation of the

Hamming weight distribution of the n-tuples of an m-sequence

from the truncated binomial distribution. An expression for

the distribution was provided in [3, Eq. 38], which however

depends on the primitive polynomial used to generate the

m-sequence and is computationally complex for large k.

Authors in [4] provided a bound for the Hamming weight of

subsequences of an m-sequence. Finding the Hamming weight

distribution of subsequences still remains a challenge and most

existing approaches are computationally complex.

In this paper, we will analyze the average Hamming weight

distribution of subsequence of length n of all φ(2k − 1)/k m-

sequences of dimension k, where φ(.) is the Euler’s totient

function [4]. For this we first characterize the average Ham-

ming weight of all dual codes (which are polynomial codes).

We then use the MacWilliams Identity [5] to characterize the

average Hamming weight of PR codes. We also derive a lower

bound on the minimum Hamming weight of PR codes and

show that for any k and n ≥ 2k there exists a PR code that can

meet the bound, which is identical to the Gilbert-Varshamov

bound [6] for large k and n. Moreover, when a proper primitive

polynomial is chosen, the Hamming weight distribution of the

PR code closely follows the truncated binomial distribution.

Simulation results show that PR codes with properly chosen

primitive polynomials can achieve the normal-approximation

bound [7]. We show that under maximum-likelihood (ML)

decoding, PR codes outperforms standard Reed-Muller (RM)

codes [8] for k = 3 to k = 11 at block lengths n = 20

and n = 32. We also show that using an ordered statistics

decoder [9], PR codes outperform Polar and low-density parity

check (LDPC) codes with practical decoders [8, 10], recently

standardized for the fifth generation (5G) mobile standard.

The rest of the paper is organized as follows. In Section II,

we characterize the Hamming weight distribution of the dual

of the PR code and then find the average Hamming weight

distribution of PR codes. We also characterize the minimum

Hamming weight of PR codes. In Section III, we study the

performance of PR codes at short and moderate block lengths.

Finally, Section IV concludes the paper.
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II. HAMMING WEIGHT DISTRIBUTION OF PR CODES

Authors in [1] showed that subsequences of an m-sequence

generated by using p(x) as the connection polynomial, form

a linear block code (we refer to it as the PR code) whose

dual code is a polynomial code with generator polynomial

xkp(1/x). The Hamming weight distribution of subsequences

of m-sequences was also studied and some results were

provided [1–3], which are however complex to be effectively

used. Accordingly, only a little is known about the properties

of so-called PR codes.

A. Average Hamming weight distribution

Our analysis here is based on the average Hamming weight

distribution of subsequences of all m-sequences of dimension

k. Let Pk = {p(x) : p(x) is primitive and deg(p) = k} denote

the set of all binary primitive polynomials of degree k, where

deg(p) denotes the maximum degree of p(x). It is clear that

|Pk| = φ
(

2k − 1
)

/k, where φ(.) is the Euler’s totient function.

Let A(i)(x) denote the Hamming weight distribution of a

PR code of length n bits generated using pi(x) ∈ Pk as the

connection polynomial. It is given by

A(i)(x) =

n
∑

j=1

A
(i)
j xj , (1)

where A
(i)
j denote the number of subsequences or codewords

of Hamming weight j. The average Hamming weight distri-

bution of all PR codes of dimension k is then defined as

Ā(x) =
1

|Pk|

|Pk|
∑

i=1

A(i)(x). (2)

We denote the Hamming weight distribution of the dual

code with generator polynomial pj(x) ∈ Pk, by B(j)(x).

Accordingly the average Hamming weight of all dual codes is

given by:

B̄(x) =
1

|Pk|

|Pk|
∑

j=1

B(j)(x). (3)

It is important to note that m-sequences with connection

polynomials p(x) and xkp(1/x) are backward version of each

other and hence have identical subsequence statistics [2].

Using the MacWilliams identity, we can write:

A
(i)
j =

1

2n−k

n
∑

t=0

B
(i)
t Kj(t), (4)

where

Kj(t) =

j
∑

ℓ=0

(−1)ℓ
(

t

ℓ

)(

n− t

j − ℓ

)

(5)

is the Krawtchouk polynomial [11], for t an integer, 0 ≤ t ≤

n. Using (4), we can easily show the following equivalence

between the average Hamming weights:

Āj =
1

2n−k

n
∑

t=0

B̄tKj(t), (6)

where Āj = 1
|Pk|

∑|Pk|
i=1 A

(i)
j and B̄j = 1

|Pk|

∑|Pk|
i=1 B

(i)
j . It

is important to note that the minimum Hamming weight of

any polynomial code with a primitive generator polynomial

is larger than or equal to 3 [12], when the codeword length

is sufficiently large, i.e., B
(i)
1 = B

(i)
2 = 0 for any pi(x) ∈ Pk.

Accordingly, one can show that a PR code of dimension k and

block length n has the average Hamming weight equals to n
2

and the variance of the Hamming weights is σ2
n = n

4 .

In what follows, we first characterize B̄(x) and then using

(6) we will approximate Ā(x). As stated before, B(i)(x) is

the Hamming weight distribution of a polynomial code with

generator polynomial pi(x) ∈ Pk. That is each codeword of

such a polynomial code is a product of pi(x). Authors in [13–

15] characterized the number of t-nomial (having constant

term 1) multiples with degree up to 2k − 2 of a primitive

polynomial of degree k, denoted by Nk,t, which is given by

Nk,t =

(

2k − 2

t− 2

)

−Nk,t−1 − t−1
t−2

(

2k − t+ 1
)

Nk,t−2

t− 1
, (7)

where Nk,2 = Nk,1 = 0. It was further shown in [13] that the

distribution of t-nomial multiples of degree less than or equal

to 2k − 2 is very close to the distribution of all distinct (t− 1)

tuples from 1 to 2k − 2. Under this assumption, referred to

as Random Estimate in [13], the probability that a randomly

chosen t-nomial of degree at most 2k − 2 is a multiple of a

primitive polynomial is given by Nk,t/

(

2k − 2

t− 1

)

[13–15].

The expected number of t-nomial multiples having de-

gree equals to c, for c ≥ max(k, t − 1) is then given by

Nk,t

(

c− 1

t− 2

)

/

(

2k − 2

t− 1

)

. This follows from the fact that there

are exactly

(

c− 1

t− 2

)

many t-nomials of degree c. It is also

clear that when a t-nomial r(x) = 1 + xi1 + · · · + xit−2 + xc

is a multiple of p(x), then xir(x) for 0 ≤ i ≤ n − c − 1 is

also a multiple of p(x) and has weight t. There are n − c of

such multiples, where max{k, t − 1} ≤ c ≤ n − 1. Therefore,

the expected number of weight t polynomials of maximum

degree n − 1, which are multiples of a primitive polynomial,

is given by

B̄t ≈
Nk,t

(

2k − 2

t− 1

)

n−1
∑

c=max{k,t−1}

(

c− 1

t− 2

)

(n− c)

(a)
≈

1

2k − t

n−1
∑

c=max{k,t−1}

(

c− 1

t− 2

)

(n− c), 3 ≤ t ≤ n. (8)

where step (a) is due to (t− 1)Nk,t ≈

(

2k − 2

t− 2

)

[13].

Fig. 1 shows the average weight distribution of the dual

of PR codes for different values of k and n. As can be seen

(8) provides a tight approximation of the average Hamming

weight of dual codes. There is a small gap when k is small,

which is mainly due to the fact that the number of primitive
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Fig. 1. The average weight distribution of dual codes, B̄t. Solid and dashed
curves show the exact and approximate weight distributions (8), respectively.

TABLE I
THE KLD OF THE EXACT WEIGHT DISTRIBUTION OF THE AVERAGE DUAL

CODE AND THE APPROXIMATION (8).

k = 5, n = 12 k = 8, n = 20 k = 10, n = 25 k = 15, n = 31

8.3 × 10−3 6.17 × 10−4 3.09 × 10−5 1.93 × 10−6

polynomials is also small when k is small, therefore there are

only a few dual codes and Random Estimate assumption is

not accurate [13].

To better characterize the approximation in (8), we use the

Kullback-Leibler Divergence (KLD) to measure the distance

between the exact weight distribution of the dual code and

the approximation (8), which are listed in Table I. As can be

seen, when k and n go large, the approximation becomes more

accurate.

We now use the MacWilliams Identity (6) to find the

average Hamming weight of PR codes. For the simplicity of

notations, we define D
(k)
n,t :=

∑n−1
c=max{k,t−1}

(

c− 1

t− 2

)

(n − c).

By substituting (8) into (6), we will have

Āj ≈
1

2n−k

n
∑

t=0

D
(k)
n,t

2k − t
Kj(t)

(a)
≈ 2−n

n
∑

t=0

D
(k)
n,tKj(t), (9)

where step (a) follows from t ≤ n ≪ 2k. Fig. 2 shows

the average Hamming weight distribution of PR codes when

k = 10 and k = 15. As can be seen, (9) provides a tight

approximation for the average Hamming weight distribution.

The KLD of the average Hamming weight and approximation

(9) is shown in Table II. It is important to note that the

Hamming weight distribution is centered around n/2 with

variance n/4. One can easily prove this for any PR code as

its dual code has a minimum Hamming weight of at least 3

[12]. We can also show that A
(i)
1 = A

(i)
2 = 0 for any PR code

when n ≥ 2k. We omit the proof due to limited space.

B. The average minimum weight of PR code ensembles

To characterize a bound for the minimum Hamming weight

of PR codes, we first provide the following lemma.

Lemma 1. Let C1 and C2 denote two PR codes that are gener-

ated with primitive polynomials p1(x) and p2(x), respectively,
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Fig. 2. The average weight distribution of dual codes, Āt. Solid and dashed
curves show the exact and approximate weight distributions (9), respectively.

TABLE II
THE KLD OF THE EXACT WEIGHT DISTRIBUTION OF PR CODES AND THE

APPROXIMATION (9)

k = 10, n = 25 k = 10, n = 45 k = 15, n = 60 k = 15, n = 100

1.8 × 10−3 3.8 × 10−3 5.41 × 10−5 9.47 × 10−5

where p1(x) 6= p2(x) and n ≥ 2k. Then, these codes do not

have any non-zero codeword in common, i.e., C1
⋂

C2 = {0}.

Proof: The lemma follows from the fact that all se-

quences generated by a LFSR with primitive connection poly-

nomial p(x) has linear complexity k. Moreover, the minimal-

polynomial1 of the subsequence of length n ≥ 2k is unique

[16]. Therefore, a non-zero codeword of length n ≥ 2k cannot

be generated by two different LFSRs with different primitive

connection polynomials. This completes the proof.

We use Lemma 1 to derive a bound for the average

minimum Hamming weight of PR code ensembles. Let us

define dmin as follows

dmin = max
d







d

∣

∣

∣

∣

∣

∣

d
∑

j=3

Āj ≤ 1







. (10)

We therefore have

dmin
∑

j=3

|Pk|
∑

i=1

A
(i)
j ≤ |Pk|, (11)

which means that the total number of length-n subsequences

with Hamming weight less than or equal to dmin of all m-

sequences of dimension k is less than |Pk|. According to

Lemma 1, the sets of non-zero subsequences of length n of any

two m-sequences of dimension k are disjoint, when n ≥ 2k,

therefore, there should be at least one primitive polynomial

that generates an m-sequence whose subsequences of length

n has a minimum Hamming weight larger than or equal to

dmin. We observed that when k and n are sufficiently large, this

bounds is identical to the minimum Hamming weight obtained

from the Gilbert-Varshamov bound [6] for given k and n.

1The minimal polynomial of sequence c is the characteristic polynomial
of the shortest LFSR capable of producing c. The length of such a LFSR is
referred to as the linear complexity of c [16].



TABLE III
WEIGHT DISTRIBUTIONS OF PR CODES AND RM CODES [8]. THE PRIMITIVE POLYNOMIAL FOR PR CODE WITH k = 4 AND k = 11 ARE

p(x) = 1 + x+ x4 AND p(x) = 1 + x2 + x3 + x4 + x5 + x8 + x11 , RESPECTIVELY.

N k Code Weight Enumerator Polynomial

20 4 RM [8] 3x8 + 8x10 + 3x12 + x20

PR 2x9 + 4x10 + 6x11 + 3x12

32 4 RM [8] 14x16 + x32

PR 3x16 + 8x17 + 4x18

20 11 RM [8] 10x4 + 170x6 + 485x8 + 716x10 + 485x12 + 170x14 + 10x16 + x20

PR 8x4 +29x5 +73x6 +171x7 + 249x8 +306x9 +362x10 +326x11 + 254x12 +161x13 +61x14 +31x15 +16x16

32 11 RM [8] 64x10 + 240x12 + 448x14 + 542x16 + 448x18 + 240x20 + 64x22 + x32

PR 2x9 +40x10 +54x11 +154x12 +136x13 +250x14 +256x15 +289x16 +258x17 +172x18 + 214x19 + 98x20 +
84x21 + 18x22 + 20x23 + 2x24
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Fig. 3. The minimum Hamming weight of PR codes versus the block length.
The primitive polynomial for k = 4, k = 8, and k = 16, are respectively,
p(x) = 1 + x+ x4, p(x) = 1 + x2 + x3 + x5 + x8, and p(x) = 1 + x+
x4 + x6 + x8 + x9 + x11 + x13 + x16.

Fig. 3 shows the minimum Hamming weight of PR codes

at different block lengths. As can be seen, the bound (10)

provides a relatively accurate approximation of the minimum

Hamming weight. It is important to note that for each k, we

have used the same primitive polynomial for all block lengths

n. One can an optimal primitive polynomials at each block

length to achieve a higher minimum Hamming weight.

III. RESULTS AND DISCUSSION

We first consider very short message lengths and compare

PR codes with the standard Reed-Muller (RM) codes [8].

These codes have been standardized for the 5G enhanced mo-

bile broadband (eMBB) control channel for message lengths

3 ≤ k ≤ 11. Table III shows the Hamming weight distribution

of RM and PR codes at block lengths 20 and 32, when k = 4

and k = 11. As can be seen, the PR code with a properly

chosen primitive polynomial have a lower number low-weight

codewords, mainly due to its binomial-like weight distribution.

Fig. 4 and Fig. 5 show the word error rate (WER) of PR and

RM codes at different lengths and rates under the maximum-

likelihood (ML) decoding. As can be seen PR codes almost

achieve the same WER performance as RM codes. In these

figures, we also show the union bound (UB) which is derived

using the average Hamming weight distribution (9) as follows:

ǫub =
n
∑

i=dmin

i

n
ĀiQ

(

√

iγ
)

, (12)
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Fig. 4. WER performance of RM [8] and PR codes at block length n = 20
with ML decoding. The primitive polynomial for PR codes with k = 4, 6, 8,
and 10 are respectively, p(x) = 1+ x+ x4, p(x) = 1+ x+ x4 + x5 + x6,
p(x) = 1+x2+x3+x5+x8, and p(x) = 1+x+x2+x3+x5+x6+x10.
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Fig. 5. WER performance of RM [8] and PR codes at block length n =
32 with ML decoding. The primitive polynomial for PR codes with k =
3, 5, 7, 9, and 11 are respectively, p(x) = 1+ x+ x3, p(x) = 1+ x2 + x5,
p(x) = 1 + x + x3 + x6 + x7, p(x) = 1 + x + x3 + x4 + x9, and
p(x) = 1 + x2 + x3 + x4 + x5 + x8 + x11.

where γ is the signal to noise ratio (SNR), Q(.) is the standard

Q-function, dmin and Āi are obtained from (10) and (9),

respectively. As can be seen in Fig. 4 and Fig. 5, the UB

(12) is tight when the SNR is sufficiently large. The bound

is important for very short block lengths, where the normal

approximation [7] is loose.

We also consider longer message lengths and compare the

WER performance of PR codes with some well-known codes
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Fig. 6. WER performance of PR code in comparison with 5G Polar and
LDPC codes at block length n = 128 [10].

recently standardized for 5G eMBB. In particular, we consider

the 5G Polar code for the uplink control channel with 11 bits

CRC and successive cancellation list (SCL) decoding with

list size 32 [10]. We also consider 5G low density parity

check (LDPC) codes under belief propagation decoding and

maximum number of iterations is set to 200 [10]. Results

are shown in Fig. 6 for the codeword length n = 128 and

message lengths k = 32 and k = 64. For PR codes, we have

used an order-5 ordered statistics decoding (OSD) algorithm,

where sufficient and necessary conditions [9] were applied to

significantly reduce the decoding complexity. The primitive

polynomials for the PR codes with k = 32 and k = 64 are

p(x) = 1+x+x2+x5+x7+x8+x9+x11+x12++x14+x16+

x20+x22+x23+x26+x30+x32 and p(x) = 1+x+x2+x3+x4+

x6+x7+x8+x9+x10+x11+x12+x14+x15+x18+x20+x22+

x29+x30+x32+x33+x35+x38+x41+x43+x44+x45+x46+

x48+x50+x52+x53+x54+x56+x57+x58+x62+x63+x64,

respectively. As can be seen in this figure, PR codes achieves

a significantly lower WER than 5G Polar and LDPC codes.

The PR code also closely approach the UB (12) at sufficiently

high SNRs. Moreover, when k = 32 and R = 0.25, normal

approximation [7] is not accurate, however, UB (12) provides

a better approximation of the minimum achievable WER at

relatively high SNRs. We also show the Hamming weight

distribution of the PR code with k = 32 at different block

lengths in Fig. 7. As can be seen the PR code with a properly

chosen primitive polynomial has a weight distribution that can

be well approximated by (9), therefore the union bound in (12)

can well approximate the WER at relatively high SNRs.

IV. CONCLUSION

In this paper, we characterized the average Hamming weight

distribution of subsequences of m-sequences. We first found

the average Hamming weight distribution of the dual code,

which is a polynomial code with the generator polynomial

equivalent to characteristic polynomial of the m-sequence. We

the used the MacWilliams identity to find the average Ham-

ming weight distribution of subsequences of m-sequences. We

further found a lower bound on the minimum Hamming weight
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Fig. 7. The Hamming weight distribution of a PR code with k = 32.

and showed that there always exists a primitive polynomial to

generate an m-sequence to meet this bound. We showed via

simulations that when a proper primitive polynomial is chosen,

subsequences of a m-sequence forms a good rateless code that

can meet the bound on the minimum Hamming weight.
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