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Linear Coding for AWGN channels with Noisy
Output Feedback via Dynamic Programming
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Abstract

The optimal coding scheme for communicating a Gaussian message over an Additive White Gaussian noise
(AWGN) channel with AWGN output feedback, with a limited number of transmissions, is unknown. Even if
we restrict the scope of the coding scheme to linear schemes, still, deriving the optimal coding scheme is a
challenging task. The state-of-the-art linear scheme for channels with noisy feedback is by Chance and Love,
where the coefficients of the linear scheme are numerically optimized based on unique observations [2]. In this
paper, we introduce a new class of linear coding schemes, which we call sequential linear schemes, for this channel
by introducing a linear state process at the transmitter. We then derive the optimal scheme within this class in a
closed-form by formulating a novel Dynamic Programming (DP). We empirically show that our scheme outperforms
the state-of-the-art linear scheme in [2] for noisy feedback and coincides with the Shalkwijk-Kailath scheme for
noiseless feedback. This problem is an instance of decentralized control without any common information and to
the best of our knowledge the first such scenario where we can derive analytical solutions using a DP. Finally,
we show that in communicating message bits instead of a Gaussian message, a learning-based approach further
improves the reliability of sequential linear schemes.

I. INTRODUCTION

The study of channels with output feedback was initiated by Shannon [3], where he shows that the
feedback of the output does not increase the capacity of point to point AWGN channels and any discrete
memoryless channels. Despite such negative results, feedback is shown to improve the reliability in the
finite blocklength regime [4]–[7]. For channels with noiseless output feedback, Horstein studied binary
symmetric channel (BSC) channel and presented a scheme that achieves capacity [4]. Schalkwijk and
Kailath in [5], [6] studied AWGN channel and proposed an optimal linear coding scheme that achieves
capacity and a doubly exponential error exponent [5]. Both Horstein and Schalkwijk-Kailath (SK) schemes
were later generalized by Shayevitz and Feder by proposing a posterior matching scheme [7] for an
arbitrary discrete memoryless channel where the encoder transmits the generalized inverse of the capacity-
achieving input Cummulative Distribution Function (CDF) at every transmission.

For channels with noisy output feedback, on the other hand, far less is known. The celebrated SK scheme
does not readily generalize to noisy feedback channels [7]. Chance and Love proposed a linear scheme
that significantly outperforms the SK scheme for AWGN channels with AWGN noisy feedback [2]. They
also introduced a concatenated coding scheme where their linear scheme is used as an inner code and the
forward error-correcting code is used as an outer code. Nevertheless, whether the Chance and Love (CL)
scheme is optimal has remained unknown over the last decade. We make progress on this long-standing
open problem; we derive a linear coding scheme that outperforms the CL scheme for channels with noisy
output feedback.

While we focus on AWGN channels with AWGN noisy output feedback, we note that there are various
other models for channels with feedback. In [8], Martins and Weissman consider a channel where the
feedback is affected by quantization noise or an additive bounded noise and provide a scheme that performs
close to capacity. In [9], Burnashev and Yamamoto consider a BSC as both forward as well as the feedback
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channel and show that for some positive crossover probability of the feedback channel, the achievable error
exponent outperforms that of the no-feedback case. This result was further refined in [10] and extended by
Xiang and Kim to show that the error exponent of channels with feedback is strictly higher compared to
channels with no feedback if the noise variance of the feedback channel is sufficiently small [11]. The error
exponents for channels with noisy feedback for different power constraint assumptions on the feedback
channel are derived by Kim and Weissman [12]. For channels with active feedback, where the receiver is
allowed to actively encode its outputs, Ben-Yishai and Shayevitz introduce the Modulo-SK scheme which
is shown to improve the reliability upon the SK scheme by posing the problem as a joint source-channel
coding with side information and solving it using an interactive modulo-lattice solution [13].

In general, communication with noiseless feedback can be posed as a multi-user decentralized stochastic
control problem [14] with common information at the transmitter and the receiver. In general, there is
a conceptual framework to solve such problems within the framework of dynamic programming [15].
However, when there is no common information among the decision-makers, there is no such framework
available, mainly because in such problems each player needs to put a belief on other players’ private
information, and a belief on their beliefs ad infinitum. This is referred to as the infinite regress of higher-
order beliefs in both control and economics literature. Point-to-point channel with noisy feedback is one
such decentralized control problem without any common information and has thus lacked any mathematical
framework to study this problem. However, recently, in [16], Vasal presented a sequential decomposition
methodology to decompose a general discrete memoryless point-to-point channel with noisy feedback by
providing a notion of the state of this channel based on an auxiliary controller at the transmitter.

In this paper, we consider an AWGN channel with AWGN noisy output feedback and extend the notion
of the state mentioned above to propose a DP algorithm that solves for the coefficients of a linear encoding
scheme in closed-form. More specifically we introduce a class of linear schemes, called sequential linear
schemes, and derive the optimal solution within this class for AWGN channels with noisy and noiseless
feedback. For channels with noiseless feedback, we recover the SK scheme as the optimal scheme in our
framework as a special case. Note that SK scheme was inspired by Robbin’s scheme and was used in
AWGN channel based on human intuition and there was no analytical framework to derive the celebrated
SK scheme. For AWGN channels with noisy feedback, surprisingly, we show that our sequential linear
coding scheme strictly outperforms the CL scheme. Our main contributions are as follows:

• We introduce a family of sequential linear schemes that are naturally equipped with a recursive optimal
decoder, i.e., Kalman linear Minimum Mean-squared error (MMSE) filter, for AWGN channels with
noisy output feedback (Section III). We derive the closed-form solution for the optimal sequential
linear code via dynamic programming under a constant peak power constraint. To do so, we introduce
a novel Markov decision process (MDP) framework that uses variances in the estimation at the
transmitter and receiver as states (Section IV).

• We characterize the MMSE that the optimal schemes achieve as a function of the number of transmis-
sions in a closed-form solution. We observe that the MMSE approximately drops exponentially for
noiseless feedback while the drop in variance is polynomial for noisy feedback settings (Section V).

• We extend the results to a total power constraint. We provide a dynamic program to compute a
linear scheme with the optimal power allocations for each of the transmissions for both noiseless and
noisy feedback settings. We show that our scheme outperforms the state-of-the-art scheme for noisy
feedback channels (Section VI).

• We evaluate the performance of our proposed sequential linear coding schemes for communicating
message bits over AWGN channels with noisy output feedback. We conclude that for codes with
finite constellation, the sequential linear coding scheme derived using the DP is sub-optimal. We
develop a learning-based approach that improves the performance of sequential linear schemes for
such cases (Section VII).
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II. PROBLEM SETUP AND PRIOR WORK

We consider AWGN channels with noisy output feedback, where the transmitter aims to communicate
a message W ∼ N (0, σ2

w) to the receiver over T rounds of communications. As depicted in Fig. 1, the
forward communication channel is modeled as an AWGN channel,

yt = xt + nt,

where xt denotes the transmitted symbol, and Nt ∼ N (0, σ2
f ) denotes the additive Gaussian noise for

t = 0, 1, · · · , T . Each forward transmission is followed by an output feedback, where the transmitter
receives

ỹt = yt + ñt,

where Ñt ∼ N (0, σ2
b ) denotes the additive Gaussian noise in the feedback channel.

Fig. 1: AWGN channel with noisy output feedback

The encoding process is inherently causal. For every transmission except the initial transmission, the
output feedback ỹt = {ỹ0 · · · ỹt} is used to frame the next transmission symbol as

xt = φenc
t

(
w, ỹt−1

)
for t ∈ [1, T ], where the transmission power is constrained either in the peak power or total power.
For the peak power constraint, we let E[X2

t ] ≤ P ∀ t ∈ [0, T ]. For the total power constraint, we let
E[
∑T

t=0X
2
t ] ≤ (T + 1)P . The decoding process, on the other hand, does not need to be causal; after

T+1 rounds of transmissions, the decoder generates an estimated message ŵT based on the entire received
sequence yT = (y0, · · · , yT ) as

ŵT = ψdec(yT ).

Hence, designing a coding scheme for channels that utilizes output feedback involves jointly designing
multiple encoding functions {φenc

t (·)} for t ∈ [1, T ] and ψdec(·) that minimize the MMSE defined as

E
[(
W − ŴT

)2]
.

Designing a coding scheme for channels with feedback is challenging due to (a) the necessity to
optimize the encoder and decoder jointly and (b) the high dimensional encoding space. Thus, literature
has focused on linear coding schemes, for which the transmitted symbol is a linear function of the message
and the output feedback, formally defined in Definition 1 and in [2]. Linear schemes allow theoretical
analysis and efficient implementation; they are naturally equipped with an optimal decoder, i.e., the linear
MMSE estimator, assuming that the message w is Gaussian, which eases the design of linear schemes.

Definition 1 (Linear schemes). A sequence of schemes is called linear if the encoding function can be
expressed as

φenc
t

(
w, ỹt−1

)
= atw +

t−1∑
j=0

bt,j ỹj
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for some at, bt,0, · · · , bt,t−1 ∈ R for every t ∈ [0, T ].

Nevertheless, there has been limited success in deriving the optimal linear schemes for AWGN channels
with output feedback. For AWGN channels with noiseless feedback, the celebrated SK scheme is shown to
be optimal among all linear schemes [17]. For AWGN channels with noisy output feedback, on the other
hand, the optimal linear coding scheme is still unknown [2]. In the following, we review the known results
on the linear coding for AWGN channels with output feedback. We begin by reviewing the Schalkwijk and
Kailath [18], which is the optimal linear coding scheme for channels with noiseless output feedback [18]
(Section II-A). We then review the best known linear coding scheme for channels with noisy feedback by
Chance and Love [2] (Section II-B).

A. Prior work on noiseless feedback: Optimal linear scheme by Schalkwijk and Kailath
SK scheme introduced by Schalkwijk and Kailath in [18] is a linear coding scheme for channels with

noiseless feedback (i.e., ỹt = yt) that is shown to be optimal [19]. In the SK scheme, as illustrated in
Algorithm 1, the encoder transmits its raw message w in the first transmission. Afterwards, the encoder
computes the error between w and the receiver’s MMSE estimate ŵt := E[W |yt] and transmits the error
(with a scaling to satisfy the power constraint), i.e., xt+1 ∝ (w − ŵt).

Algorithm 1: Schalkwijk-Kailath scheme
Input: w
Output: Final Estimate ŵT = E[W |y0, · · · , yT ]
Encoder:
Initialize u0 = w and γ0 =

√
P/E[W 2]

x0 = γ0u0
Decoder:
y0 = x0 + n0

for t = 0, · · · , T do
Encoder;
ut+1 = ut − E[Ut|yt]
xt+1 = γt+1ut+1, where γt+1 =

√
P/E[U2

t+1]
Decoder:
yt+1 = xt+1 + nt+1

end
Decoder: ŵT =

∑T
t=0 E[Ut|yt].

Extending the SK scheme to channels with noisy output feedback, however, is not straightforward since
the encoder is not aware of the received values yt and thus cannot compute the receiver’s MMSE estimate
ŵt = E[W |yt].

B. Prior work on noisy feedback: linear coding scheme by Chance and Love
For AWGN channels with output feedback, Chance and Love in [2] introduce a concatenated coding

scheme, which consists of a linear code as the inner code concatenated with an error-correcting code
as the outer code. In the following, we describe the methodology proposed in [2] to optimize the linear
encoding scheme for noisy feedback. The authors begin with the most general assumption of the linear
feedback scheme given as

x = F (n + ñ) + gw,

where w is the message, g ∈ RT is a unit-norm vector, F is a T × T lower triangular encoding matrix,
ñ + n is the combined T × 1 noise vector, and x is the final T × 1 vector to be transmitted. At the
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receiver, a combination vector q ∈ RT is used to extract the message ŵT out of all the received symbols
y expressed as

ŵT = qTy.

In order to find the optimal set of parameters F, g, and q, one could represent the received Signal to
Noise Ratio (SNR) in terms of these parameters and then find F, g, and q that maximizes the received
SNR. This optimization, however, is intractable. To mitigate this challenge, Chance and Love first show
that for a given F and g, the optimal vector q can be obtained in a closed form, which leaves two
variables F and g to optimize. However, simultaneous optimization of the remaining two variables is still
intractable; they propose an iterative approach wherein one variable is optimized, keeping the other fixed
and vice versa.

In [2], they provide a concatenated code with an inner and an outer code. The inner code is the linear
coding scheme using the optimized variables F, g and q. Nevertheless, the CL scheme we refer to in this
paper does not include the concatenation (as the concatenation can be applied to any inner coding scheme).
The CL scheme is shown to significantly outperform the SK scheme for AWGN channels with noisy output
feedback and coincides with the SK scheme for AWGN channels with noiseless output feedback, which
shows that a tailored coding scheme for channels with noisy output feedback does provide an additional
reliability gain. They showcase an improvement of nearly 10 dB of received SNR compared to the SK
scheme for certain settings [2].

Two very interesting questions, following Chance and Love’s work, are (a) whether the CL scheme is
optimal within the class of linear schemes and (b) whether one could derive a closed-form linear code. The
CL scheme includes an iterative update of the matrices F and q and thus does not provide a closed-form
expression. In the rest of the paper, we provide an answer to both questions. We derive a linear coding
scheme with a closed-form expression that strictly generalizes the CL scheme, i.e., the proposed scheme
is equal to or strictly more reliable than the CL scheme. As we elaborate on in the following section, our
scheme is inspired by the CL scheme, which has a sequential structure.

III. SEQUENTIAL LINEAR SCHEMES

In this section, we introduce a new family of linear schemes, namely sequential linear schemes defined
in Definition 2, and depicted in Fig. 2. We prove that the family of these sequential schemes, although a
strict subset of linear schemes, strictly generalizes the SK and CL schemes (Remarks 2 and 3). We then
show that for the class of sequential linear schemes, a recursive Kalman filter can be used as an optimal
estimator at the receiver (Section III-A), which is an essential precursor toward deriving the optimal
sequential linear schemes.

Definition 2 (Sequential linear schemes). A sequence of schemes is called sequentially linear if the
encoder maintains a state ut ∈ R which is updated based on the most recent feedback ỹt in a linear
manner as

ut+1 = ut + ctỹt (1)

for some ct ∈ R and transmits a scaled version of ut+1 as

xt+1 = γt+1ut+1, (2)

to satisfy the power constraint E[X2
t ] ≤ P , for t ∈ [0, T ] under the peak power constraint or to satisfy

the power constraint
∑t=T

t=0 E[X2
t ] ≤ (T + 1)P under the total power constraint.

For the convenience of notation, we let φt (·) denote the sequential linear encoding operation at time t
parameterized by (γt+1, ct), i.e.,

xt+1 = φt (ut, ỹt) = γt+1(ut + ctỹt). (3)
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Fig. 2: Sequential linear encoder for channels with noisy output feedback: The encoder state is updated as ut+1 = btut + ctỹt as in (1) and
a scaled version of ut is sent as xt = γtut

Remark 1 (Not all linear schemes are sequential). As we restrict the state ut to be a scalar, sequential
linear schemes are a strict subset of linear schemes. In other words, not all linear schemes are sequential.
On the other hand, if we allow ut to be a vector of length T , i.e., ut ∈ RT , where T denotes the length
of total transmissions, then sequential linear schemes include the entire class of linear schemes.

While the restriction on the dimension of ut makes the sequential linear schemes a strict subset of
linear schemes, in the following, we show that both the SK scheme and the CL scheme belong to the
family of sequential linear schemes.

Remark 2 (SK scheme is sequentially linear). SK scheme falls into the family of sequential linear
schemes. Let ut denote the estimation error, i.e., ut = w − ŵt. Then it follows that ut+1 = ut + ctỹt,
where ct = −E[UtỸt]/E[Ỹ 2

t ] and xt+1 = γt+1ut+1, where γt+1 is chosen to satisfy the power constraint
E[X2

t+1] ≤ P for every t ∈ [0, T ]. (See Appendix IX-A for detailed proof.)

Remark 3 (CL scheme is sequentially linear). CL scheme starts with the general form of linear
schemes, but the conjectured optimal linear schemes fall into the family of sequential linear encoding.
(See Appendix IX-B for detailed proof.)

A. Linear MMSE Estimation
In this section, we show that (a) sequential linear schemes are naturally equipped with an efficient and

recursive MMSE estimator, namely, the Kalman filter, and (b) the MMSE can be represented as a function
of the parameters of the encoding scheme. In other words, for any choice of {ct, γt}Tt=1 in the sequential
linear encoding scheme, we can represent the MMSE as a function of {ct, γt}Tt=1. Kalman filter provides
a recursive MMSE estimation of a state variable when the state variable follows a state-space equation,
and the observation variable can be written as a sum of the observation variable and the noise.

In order to derive the recursive Kalman estimator for sequential linear schemes, we begin with the
observation that the encoder’s state ut satisfies the linear state space equation in (1) and yt is a scaled
version of ut plus the Gaussian noise. Under these conditions, the Kalman filter allows one to recursively
update the estimation of the state ut given a series of observations yt. Nevertheless, this alone is insufficient
to estimate the message w given yt. In order to derive a recursive estimation of w given yt, we let
pt =

[
w ut

]T denote the pair of the message w and the encoder state ut as shown below.

Lemma 1 (Kalman Filter as Decoder). Let us define the Kalman state variable pt =
[
w ut

]T , where
w is the message and ut is the encoder state defined in the sequential linear encoding scheme at the
transmitter from Fig. 2. Then, pt and yt satisfy the following

pt+1 = Atpt +Gtzt, yt = Ctpt + nt, (4)
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where the matrices At, Gt, Ct are deduced from the equations representing the forward and the feedback
transmission as

At =

[
1 0
0 1 + γtct

]
, Gt =

[
0 0
ct ct

]
, Ct =

[
0 γt

]
,

and the vectors zt =
[
nt ñt

]
and forward Gaussian noise nt represent the noises in the state update and

the observations, respectively.

Fig. 3: Sequential linear update of the state pt where w is the message, zt = [ntñt] with nt and ñt being the forward and the feedback
noise respectively

Proof. Lemma 1 follows immediately from the definition of the sequential linear schemes in Definition 2.

Based on Lemma 1, we establish the following theorem.

Theorem 1 (MMSE estimation via Kalman filter). Let pt =
[
w ut

]T denote the pair of the message and
the tth encoder state. Let p̂t := E[Pt|yt] denote its estimate and Σt := E[(Pt − P̂t)(Pt − P̂t)T ] denote the
covariance of the corresponding error, given the observation vector yt = (y0, · · · , yt). Then the estimate
p̂t and its error covariance matrix Σt can be recursively computed via Kalman filter as

p̂t+1 = g1(p̂t, γt, γt+1, ct, yt), Σt+1 = g2(Σt, γt, γt+1, ct), (5)

where g1(·) and g2(·) are defined in (7) and (8), respectively, and γt and ct denote the encoder parameters
defined in Definition 2.

Proof. As the state variable pt and the observation variable yt follow the canonical form of equations
in (4) as shown in Lemma 1, the Kalman filter provides a recursive form of the MMSE estimate and the
corresponding MMSE error covariance matrix.

Let p̂t := E[Pt|yt] denote the MMSE estimate of pt given yt and Σt denote the corresponding error
covariance matrix defined as

Σt := E
[(
Pt − P̂t

)(
Pt − P̂t

)T]
=

[
ε2w,t ε2uw,t
ε2uw,t ε2u,t

]
, (6)

where ε2w,t := E
[(
W − Ŵt

)2]
denotes the Mean Squared Error (MSE) in estimating the message,

ε2u,t := E
[(
Ut − Ût

)2]
denotes the MMSE in estimating the encoder’s most recent state, and ε2uw,t :=

E
[(
W − Ŵt

)(
Ut − Ût

)]
denotes the covariance of the two errors. Using this canonical form and the

standard definitions for Kalman filter solutions we can express the MMSE estimate of p̂t in a recursive
form as

p̂t+1 = Atp̂t + Lt+1 (yt+1 − Ct+1Atp̂t) , (7)

where

Lt+1 =

(
AtΣtA

T
t +GtQG

T
t

)
CT
t+1

Ct+1 (AtΣtATt +GtQGT
t )CT

t+1 + σ2
f

and Q = E[ZtZ
T
t ] =

[
σ2
f 0

0 σ2
b

]
.
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Fig. 4: MDP Model and the analogy to the AWGN channel with
feedback

Parameter Symbol Value

State st
{

Σt, σ
2
u,t

}
Action at ct

Cost rt
0 t 6= T
ε2w,T t = T

Value function Vt
∑T

t=0 rt

Transition Function τt g4 (·), g5 (·)

TABLE I: Table showing the elements of the proposed MDP

Similarly, Σt follows a recursive relation given as

Σt+1 = (I − Lt+1Ct+1)
(
AtΣtA

T
t +GtQG

T
t

)
, (8)

where p̂−1 and Σ−1 are initialized as p̂−1 = 0 and Σ−1 =

[
σ2
w σ2

w

σ2
w σ2

w

]
.

The Kalman filter provides a recursive solution for the MMSE and the final MSE. In particular, ε2w,t,
the top left element of the matrix Σt, denotes the MSE in estimating w given the observed sequence yt

and is defined as ε2w,t = E
[(
W − Ŵt

)2]
. Therefore, ε2w,t+1 can be recursively computed based on Σt and

parameters γt and ct. In the next section, we propose an MDP which utilizes this recursive property in
Theorem 1 to find the optimal parameters for the encoding scheme that minimize the final MSE, ε2w,T .

IV. OPTIMAL SEQUENTIAL LINEAR SCHEMES VIA DYNAMIC PROGRAMMING

In the previous section, we showed that the MMSE can be updated sequentially as a function of the
encoder parameters {ct, γt}Tt=1. In this section, we provide a closed-form optimal solution of {ct, γt}Tt=1

that minimizes the MMSE at any time t, for a peak power constraint. We do so by formulating an MDP,
for which the parameters of the encoding scheme are modeled as an action and the corresponding MMSE
is modeled as a cost (Section IV-B), and computing the optimal action policy via dynamic programming.
(Section IV-C). We begin with an overview of the general MDP framework.

A. General MDP Framework
An MDP, in general, is described through a Markov process characterized by the tuple {st, at, τt, rt}.

An agent with the state st takes an action at at a cost rt and in the process transitions to the future state
st+1 governed by the function τt as st+1 = τt(st, at). We define the optimal policy πt as the mapping from
the state space to the action space that minimizes the expected sum of cost from any state to the final
state. We define the value function Vt (st) to be the expected sum of cost if the agent follows the optimal
policy πt from st till the final state sT . The optimal policy πt is computed using the Bellman equation as

πt (st) = argmin
at

(rt (st, at) + Vt+1 (τt (st, at))) ,

Vt (st) = rt (st, πt (st)) + Vt+1 (τt (st, πt (st))) . (9)
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B. Proposed MDP framework
In the following, we formulate an MDP with the encoding scheme being the policy and the MSE being

the cost, which has to be minimized to get the optimal encoding scheme, as summarized in Table I.

State and Action We define the state st as the tuple of the error covariance matrix and the variance of
the encoder’s state, i.e., st =

{
Σt, σ

2
u,t

}
, and the action at as the encoder parameter, i.e., at = ct. Using

Theorem 1, we can show the following.

Theorem 2. Let state st be the pair of the error covariance matrix and and the variance of the encoder’s
state, st :=

{
Σt, σ

2
u,t

}
, and the control action at be the parameter ct, we can define the MDP as

st+1 = τt(st, at),

where the transition function τt (·) is obtained from (10) and (5).

Proof. From (3), we have, ut+1 = ut + ctỹt, therefore, σ2
u,t+1 = E

[
U2
t+1

]
can be expressed in terms of

σ2
u,t and the encoder parameters as

σ2
u,t+1 = (1 + γtct)

2 σ2
u,t + c2t

(
σ2
f + σ2

b

)
. (10)

Under the constant peak power constraint, we have γt =
√

P
σ2
u,t

, from which it follows that

σ2
u,t+1 =

(
1 +

√
P

σ2
u,t

ct

)2

σ2
u,t + c2t

(
σ2
f + σ2

b

)
=: g4(σ

2
u,t, ct). (11)

In Theorem 1, we derive the recursive function Σt+1 = g2 (Σt, γt, γt+1, ct). Combining γt =
√

P
σ2
u,t

,

γt+1 =
√

P
σ2
u,t+1

, and σ2
u,t+1 = g4(σ

2
u,t, ct), and substituting the values for γt and γt+1, we can represent

Σt+1 as a function of (Σt, σu,t, ct). We let g5 (·) denote such a function, i.e.,

Σt+1 = g5
(
Σt, σ

2
u,t, ct

)
. (12)

Given that st =
{

Σt, σ
2
u,t

}
, and φt includes ct = at, we conclude st+1 = τt (st, at) from (11) and (12).

We now provide an intuition behind choosing {Σt, σ
2
u,t} as the state. A naturally proposed MDP would

be to let Σt denote the state and the encoding function φt denote the action, where φt is parameterized
by {γt+1, ct}. However, γt+1 is not an independent variable given the peak power constraint and can be
obtained from the variance of ut at the encoder, σ2

u,t.
Therefore, we define our state st to be the collection of variances

{
Σt, σ

2
u,t

}
and the parameter ct

becomes the control action at. This allows us to define the recursion function τt that relates the current
state st =

{
Σt, σ

2
u,t

}
and control actions at = ct to the future state st+1 =

{
Σt+1, σ

2
u,t+1

}
, as we show

in Theorem 2. Consequently, the problem of finding the optimal encoding scheme φ̃t is now reduced to
obtaining the optimal action ãt at any given state st.

Cost and Value function We define the cost rt in a way that the objective function that is minimized at
each step of the iteration in (9) is the final MSE. Specifically, we define the cost rt as

rt =

{
0 t 6= T

ε2w,T t = T.
(13)

Such a definition for cost rt ensures the value function, which is the optimized sum of the cost, is always
rT = ε2w,T . This kind of definition for cost function is common in problems where only the final cost is
considered.
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We define the value function as Vt (st) = ε2w,T (st, ãt:T−1), given any state st, t = 0 : T − 1 other
than than the terminal state, which denotes the the final MMSE if we start at state st and undertake the
optimal actions ãt:T−1. Then the following is obtained using the Bellman equation in (9) by substituting
the reward function as defined above.

Vt (st) = ε2w,T (st, ãt:T ) (14a)

= ε2w,T (st, ãt, ãt+1:T ) (14b)

= ε2w,T (st+1, ãt+1:T ) (14c)
= Vt+1 (st+1) . (14d)

In summary, the key idea is to treat the T -step encoding process as an MDP with the action at
representing the free parameter ct of the encoder function. The proposed MDP and the analogy to the
communication network are showcased in Fig. 4 and are summarized in table I. In the next section, we
provide an algorithm for solving this MDP.

C. Solution of the MDP via Dynamic Programming
We presented an MDP and defined the state st :=

{
Σt, σ

2
u,t

}
, the control action at = ct, and the set of

update equations that describe the transition st+1 = τt (st, at) in Theorem 2. To solve the MDP and find
the optimal control action, we use the dynamic programming which returns the analytical expressions for
the T + 1 optimal actions {at}Tt=0 and the value function Vt(st).

Algorithm 2: Proposed Dynamic Program
Output: Optimal action ã0:T−1, Value function V0:T
Initialization: At t = T , ∀ sT , VT (sT ) = ε2w,T (sT , ãT )
for t = T − 1, · · · , 0 do

ãt = argmin
at

Vt+1 (τt (st, at))

Vt (st) = Vt+1 (τt (st, ãt))
end

As depicted in Algorithm 2, we backward recursively evaluate the optimal actions from time t = T till
t = 0, storing the value function at each instant. The algorithm initializes the value function VT at t = T
for all sT as ε2w,T . The value is part of the definition of ΣT given in (6) within the definition of state
sT . The subsequent steps use the formulation proved in (14d) to obtain the value function at each of the
previous states st from t = T − 1 till 0 while optimizing over the actions to obtain the optimal action ãt.

We solve the dynamic program above and obtain the closed-form expressions for the value function
Vt(st) and the optimal action ãt for every t ∈ [0, T ] as shown in the following.

Lemma 2 (Solution to the MDP). Let P , σ2
f and σ2

b be the power constraint, forward and feedback
channel variance respectively for the AWGN channel with feedback. Let Vt (st) be the value function for
state st at any time t for the analogous MDP, then the Vt (st) and the optimal control action ãt is given
as

Vt (st) =
−ε4uw,t +KT−tε

2
w,tσ

2
u,t + ε2w,tε

2
u,t

KT−tσ2
u,t + ε2u,t

, (15)

while the optimal action ãt is given as

ãt = −
Kn

√
S
(
σu,t
σf

)
Knη0 + β

, (16)
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where n = T − t is the number of remaining transmissions and

Kn =
η1K

2
n−1 + η2Kn−1

η3K2
n−1 + η4Kn−1 + η2

=: f (Kn−1) (17)

= fn−1 (K1) , (18)

with K1 = η1
η3

, η0 = (1 + S) (1 + β), η1 = 1+β+Sβ, η2 = β, η3 = S(1+β)(1+S), η4 = 1+β+S+2Sβ,

with S = P
σ2
f

and β =
σ2
b

σ2
f
.

Proof. See Appendix IX-C for the proof.

In the next section, we obtain the sequential linear encoding scheme from the solution of the dynamic
program for both noiseless and noisy feedback cases. We also derive the final MSE obtained using these
schemes from the value function computed from the dynamic program.

V. OPTIMAL SEQUENTIAL LINEAR SCHEMES

In Section IV, we described an MDP analogous to a communication system with feedback and proposed
a DP algorithm to solve it. The solution obtained was a set of T + 1 value functions and corresponding
optimal control actions. This section uses these solutions to derive closed-form expressions for the optimal
encoding scheme and the MMSE and analyze its performance. In addition, we compare our proposed
encoding scheme with the SK scheme for channels with noisy output feedback and show that our scheme
cannot be obtained as a trivial generalization from the SK scheme. Furthermore, we obtain approximate
expressions for MSE for large T and analyze their asymptotic performances for both noiseless and noisy
feedback regimes.

A. Optimal sequential linear schemes
The optimal control actions obtained in Lemma 2 and given by (16) are used to derive the linear

encoding scheme in a closed-form, as defined in (3). We constructed the MDP such that the action vector
was the required coefficient ct of the encoding scheme. We use this fact to derive the encoding scheme
in the following theorem.

Theorem 3 (Closed-form solution for the optimal sequential linear encoding). Let P , σ2
f and σ2

b be the
peak power constraint, forward and feedback channel variances respectively for AWGN channels with
noisy output feedback. Then the optimal sequential linear encoder, denoted as φ̃t (·), for transmitting a
message is given as

xt+1 = γt+1ut+1, (19)

where the state of the encoder ut+1 is updated as

ut+1 =

ut − Kn

√
S
(
σu,t
σf

)
Knη0 + β

ỹt

 ,

and the scaling factor γt+1 is given as

γt+1 =

√√√√ P(
1 + KnS

Knη0+β

)2
+

K2
nSσ

2
u,t

(Knη0+β)
2 (1 + β)

for n = T − t− 1, and the parameters Kn, β, S and ηs are defined in Lemma 2.
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Proof. As shown in (3), sequential linear encoders are in the form of xt+1 = γt+1ut+1 where

ut+1 = ut + ctỹt and γt+1 =

√
P

σ2
u,t+1

under a peak power constraint. Thus, sequential linear encoders are fully defined by the weight ct for
t ∈ [0, T + 1]. In the formulation of the MDP in Section IV, we defined the control action as at = ct and
derived the optimal control action in (16) of Lemma 2. Substituting ct as ãt, and using (11), we obtain
the optimal sequential linear encoding scheme.

Therefore, the optimal encoding scheme to generate the transmitted symbol xt given feedback ỹt and
the previous encoder state ut is as given as (19).

B. Interpretation of optimal sequential linear codes
It is important to interpret and analyze the behavior of the optimal sequential linear scheme. To this

end, we first compare the optimal sequential linear codes against the SK scheme (See Section II-A for a
description). The following corollary shows that our scheme specializes to the SK scheme for channels
with noiseless output feedback.

Corollary 1 (Noiseless feedback). For AWGN channels with noiseless output feedback, the optimal
policy φ̃t (ut, ỹt) derived in Theorem 3 coincides with the SK scheme under a peak power constraint P .

Proof. This corollary immediately follows from the optimal encoding scheme obtained in Theorem 3.
We considers a noiseless feedback channel with the forward noise variance σ2

f = 1. We have σ2
b = 0

i.e. β := σ2
b/σ

2
f = 0.

Using (19) and substituting β = 0, we get

φ̃t (ut, yt) =

√
P

σ2
u,t+1

(
ut −

√
Pσu,t

1 + P
yt

)
(20)

=

√
P

σ2
u,t+1

(ut − E[Ut|yt]) , (21)

which coincides with the SK scheme as in [20].

The fact that the optimal sequential linear scheme coincides with the SK scheme is not surprising given
that the SK scheme belongs to the family of sequential linear schemes. An interesting question is how/if
the optimal sequential linear scheme is different from the SK scheme for channels with noisy output
feedback. To answer this question, we begin by characterizing a natural extension of the SK scheme that
follows the philosophy of the SK scheme.

The SK encoding scheme for noiseless feedback involves repeatedly sending the error in the receiver’s
estimate of the transmitted message at all subsequent steps. However, for noisy feedback channels, the
encoder has access to only a noisy version of the estimate. An intuitive method would be to estimate the
message at the encoder from the received noisy feedback, compute the error, and then send it as the new
transmitted symbol, i.e.

φSKt (ut, ỹt) =

√
P

σ2
u,t+1

(ut − E[Ut|ỹt]) .

The remaining question is whether the optimal sequential linear scheme coincides with the extended
SK scheme. In the following, we show that the two schemes are different; the optimal sequential linear
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scheme strictly outperforms the extended SK scheme, bolstering the fact that our sequential linear scheme
is non-trivial.

Corollary 2 (Noisy feedback). For AWGN channels with noisy output feedback, where forward and
feedback channel variances are given as σ2

f and σ2
b respectively, the optimal policy φ̃t (ut, ỹt) derived in

Theorem 3 is not the same as the direct generalization of the SK scheme φSK , i.e. φ̃t 6= φSKt , under the
peak power constraint P .

Proof. A strict generalization to the SK scheme implies that the update of the encoder state Ut depends
on the estimate made by the encoder on the expected value for Ut based on the noisy received feedback
ỹt i.e.

ut+1 = ut − E [Ut|ỹt] (22)

= ut −
√
P (σu,t)

P + σ2
f + σ2

b

ỹt. (23)

Therefore, the direct generalization of the SK scheme is given as

φSK (ut, ỹt) =

√
P

σ2
u,t+1

(
ut −

√
Pσu,t

P + σ2
f + σ2

b

ỹt

)
.

To compare the extended SK scheme, denoted by φSK , and the optimal sequential linear encoding
scheme φ̃ derived in Theorem 3, in Figure 5, we plot the coefficient that is multiplied by feedback ỹ0,
from the first forward transmission, for the generalized scheme φSK and the proposed scheme φ̃t as a
function of the total number of transmissions T . The plot stays constant for scheme φSK for different
values of T , unlike our derived scheme. This dependence on T proves that our proposed scheme is not
the same as the generalized SK scheme. Also, the dependence shows that our scheme is non-trivial for
noisy feedback and cannot be derived as a generalization from the SK scheme for which the derived
coefficients are constant with T .

Transmissions, T
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Fig. 5: The first coefficient that is multiplied to ỹ0 (i.e., c0) over different values for the total number of transmissions T with σf = 0dB
and σb = −20dB. It can be deduced that unlike the generalized SK scheme φSK , the coefficients derived from the DP solution φ̃ are a
function of the total intended transmissions.
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We now turn our attention to the achievable MSE. In the following, we derive the MSE achieved by
the optimal sequential linear schemes by establishing the relationship between the value functions and the
final MSE.

C. MMSE of the Optimal Sequential Linear schemes
We provide a theorem to compute the closed-form expression for the MMSE at the end of T + 1

transmissions with noisy feedback. We establish a relationship between the value functions computed in
Lemma 2 using the DP algorithm in Section IV with the intended final MSE.

Theorem 4. Consider an AWGN channel with feedback with a peak power constraint of P , forward
channel variance of σ2

f and feedback channel variance of σ2
b , then MSE after T + 1 transmissions in the

estimate of the message is given by

MSE =
σ2
w

ζT
, (24)

where

ζT =

(
1 + S +

1

KT

)( η2
KT

+ η4
η2
KT

+ η1

)
, (25)

with parameters S, KT and η’s being described in terms of the system parameters P , σ2
f , σ2

b and T as
in (15)

Proof. A message with variance σ2
w can be transmitted with a peak power constraint of P over a forward

and feedback channel with variances σ2
f and σ2

b , respectively, with the MSE after T + 1 transmissions
given by

MSE = V0
(
Σ0, σ

2
u,0

)
.

This is straightforward from the assumption that all costs are 0 except the terminal cost, i.e, MSE, and
from the fact that the value function captures the sum of costs till the terminal state.

Without loss of generality, we can assume the first transmission to be x0 =
√
Pw. Therefore, the receiver

error variance and the encoder variance at the conclusion of the raw transmission can be expressed as

Σ0 =

[
σ2
w

S+1
σ2
w

S+1
σ2
w

S+1
σ2
w

S+1

]
and σ2

u,0 = σ2
w.

Using the expression in (15) and then substituting the value function in terms of the system parameters,
we obtain

V0
(
Σ0, σ

2
u,0

)
. =

σ2
w

ζT
,

where

ζT =
(1 +KT + SKT ) (KT + β + βKT + SKT + 2SβKT )

(KT ) (KT + β + βKT + SβKT )
=

(
1 + S +

1

KT

)( η2
KT

+ η4
η2
KT

+ η1

)
.

In Fig. 6, we plot the MSE (dB) in the estimation of the message w, for σw = 1, P = 10, σ2
f = 1 and

varying values of σ2
b , against the number of transmissions T . We observe that the MSE drops exponentially

for the noiseless feedback case (σb = 0). The exponential nature is evident as the graph is linear with
respect to the T with the MSE in dB scale which we also show analytically (Corollary 3).
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Fig. 6: Plots showing the MSE in the estimation of the original message w for σw = 1, P = 10, σ2
f = 1 and different values of feedback

variance σ2
b against varying number of total transmissions T . The exponential nature of MSE with T is evident for the noiseless case. It

will be shown later that the reduction of MSE in polynomial with T for noisy output feedback

The MMSE obtained using our proposed scheme with noisy feedback varies polynomial with T , but this
dependence is not apparent. Therefore, we use an approximate expression to understand this dependence
better in terms of T for both noiseless and noisy feedback cases. The obtained approximate asymptotic
expression matches the bounds that were given in [2], [21].

Corollary 3 (MSE for noiseless feedback). Let P and σ2
f be the peak power constraint and forward

channel variance respectively for AWGN channels with noiseless feedback. The MSE in the estimate of
the message of variance σ2

w at the receiver decays exponentially in transmissions T for noiseless feedback,
and the MSE is given as

MSE =
σ2
w

(1 + S)T
, where S =

P

σ2
f

. (26)

Proof. See Appendix IX-D.

Corollary 4 (MSE for noisy feedback). Let P , σ2
f and σ2

b be the peak power constraint, forward and
feedback channel variance respectively for AWGN channel with noisy feedback. The drop in the MSE
of the optimal sequential linear schemes in estimating a message with variance σ2

w is approximately
polynomial given as

MSE ≈ σ2
w

ζ∗ (T )
, (27)

where ζ∗ (T ) is a polynomial function in T and is given as

ζ? = S

(
1 +

1

β

)
T

. with S = P
σ2
f

and β =
σ2
b

σ2
f
.

Proof. See Appendix IX-E

Fig. 7 shows the comparison of the approximated expression for MSE in (27) with the actual closed
form value of the MSE as a function of T obtained in (24). We empirically verify that the approximation
is quite tight, and the tightness improves with the increasing value of the feedback variance σ2

b .
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Fig. 7: The plot shows the actual MSE and the MSE approximation for σw = 1, P = 10, σ2
f = 1 and different values of feedback variance

σ2
b against varying number of total transmissions T . It can be seen that the polynomial approximation of MSE in (27) is tight and is better

with the higher values of T or with higher feedback noise variance

VI. TOTAL POWER CONSTRAINT

In the previous sections, we derived a closed-form solution for the optimal sequential linear scheme and
the corresponding MSE under the peak power constraint. In this section, we derive the optimal sequential
linear encoding scheme under the total power constraint. We begin with the MDP formulated for the peak
power constraint but modify the action spaces; we introduce additional parameters to represent the power
allocations for each of the transmissions. We then propose a dynamic program to optimize the parameters
of the encoding function and the power allocation.

A. State and Action
In Section IV, we introduced an MDP to represent our communication system with feedback as tuple
{st, at, τt, rt} which was summarized in Table I. For the total power constraint, we introduce two new
parameters in the state vector, Pt and Qt, where the parameter Pt represents the instantaneous power used
in the current transmission, while Qt is the unallocated power budget for the remaining steps, including
the current, i.e.

Qt =
T∑
t′=t

Pt′ .

We also introduce a parameter αt into the action vector, defined as the fraction of available power Qt that
is allocated to the current transmission, i.e., Pt = αtQt.

As illustrated in Fig. 8, at any time t, given Pt and Qt, the power budget for the remaining transmissions
[t+ 1, T ] is Qt+1 = Qt − Pt. Now, the objective is to optimize the parameter αt+1 in Pt+1 = αt+1Qt+1

to determine the appropriate power constraint Pt+1 for the t+ 1th transmission. This is repeated at every
time instants t ∈ [0, T − 1] except at time t = T where αT is unity as all the remaining power are
allocated to the final transmission. Thus, the extended state and the action vectors for the MDP are given
as st =

{
Σt, σ

2
u,t, Pt, Qt

}
and at = {ct, αt+1}.



17

Fig. 8: Power allocation in terms of the action parameter αt+1. At time t + 1,
the power constraint is determined as Pt+1 = αt+1Qt+1 where αt+1 is optimized
through the DP algorithm.

Parameter Symbol Value

State st
{

Σt, σ
2
u,t, Pt, Qt

}
Action at ct, αt+1

Transition τt g6 (·), g7 (·), g8 (·)

TABLE II: Table showing the elements of the proposed
MDP under the total power constraint

Let us now provide a theorem to derive the transition functions that govern the altered definitions of
the state and action vectors in line with the framework provided in Theorem 2.

Theorem 5. Let st denote the pair of the error covariance matrix, the variance of the encoder’s state and
the power allocation parameters, st :=

{
Σt, σ

2
u,t, Pt, Qt

}
, and the control action at being the parameter

ct, αt+1. Then, st satisfies the MDP as

st+1 = τt(st, at),

where the transition function τt (·) is obtained from (28), (30) and (31).

Proof. We derive recursive equations for the Σt, σ2
u,t and the power parameters Pt and Qt. These equations

eventually constitute the function τt that govern the transition of st.
From (3), we have ut+1 = ut + ctỹt. Therefore, σ2

u,t+1 can be expressed in terms of σ2
u,t, Pt and the

encoding function as

σ2
u,t+1 = (1 + γtct)

2 σ2
u,t + c2t

(
σ2
f + σ2

b

)
, (28)

where γt =
√

Pt

σ2
u,t

. From (28), we obtain a function g6 (·) such that σu,t+1 satisfies σ2
u,t+1 = g4(σ

2
u,t, ct).

We note that γt+1 is chosen to satisfy the power constraint Pt+1 at time instant t+ 1 as

γt+1 =

√
Pt+1

σ2
u,t+1

=

√
αt+1 (Qt − Pt)

σ2
u,t+1

. (29)

We already have, Σt+1 = g2(Σt, γt, γt+1, ct) as shown in (5). From (28) and (29), Σt can be expressed
recursively in terms of some deterministic function g7 (·) as

Σt+1 = g2 (Σt, γt, γt+1, ct)

= g2

(
Σt,

√
Pt
σ2
u,t

,

√
αt+1(Qt−Pt)

σ2
u,t+1

, ct

)
= g7

(
Σt, σ

2
u,t, ct, αt+1

)
. (30)

In addition, from our definitions of Pt, Qt and αt+1, we have Qt+1 = Qt−Pt and Pt+1 = αt+1 (Qt − Pt)
which we can encapsulate in a function g8 (·) as

{Qt+1, Pt+1} = g8 (Qt, Pt, αt+1) (31)
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Given that st =
{

Σt, σ
2
u,t, Pt, Qt

}
, and φt includes (αt+1, ct) = at, we conclude st+1 = τt (st, at) from

functions g6 (·), g7 (·) and g8 (·).

The new definition of the MDP is summarized in Table II. The cost function is defined in the same way
as for the constant peak power constraint case given in (13). In the later part of the section, we present
this modified DP algorithm as a solution to the MDP to obtain the optimal sequential linear encoder with
total power constraint and then analyze the solution in noiseless and noisy feedback cases.

B. Modified DP Algorithm
The DP algorithm was presented in Section IV-C to compute the optimal sequential linear encoder

for the peak power constraint. The value function optimization was done over the action vector, which
consisted of the coefficient ct of the received feedback. In the modified algorithm for the total power
constraint, we optimize over both the coefficients ct and the fractional power allocation αt. We note that
the action is defined as at = (ct, αt), and we let at(1) and at(2) refer to ct and αt, respectively.

Algorithm 3: Proposed Dynamic Program
Output: Optimal action ã0:T−1, Value function V0:T
Initialization: At t = T , ∀ sT , VT (sT ) = ε2w,T
for t = T − 1, · · · , 0 do

ãt (1) = argmin
at(1)

Vt+1 (τt (st, at (1) , at (2)))

ãt (2) = argmin
at(2)

Vt+1 (τt (st, ãt (1) , at (2)))

Vt (st) = Vt+1 (τt (st, ãt))
end

We solve the dynamic program for the total power constraint in Algorithm 3 and obtain expressions for
the value functions Vt and the optimal actions ãt for every t ∈ [0, T ]. The value function VT is initialized
at time instant t = T and the subsequent steps were followed similar to the steps in the DP algorithm
for the peak power constraint (Algorithm 2). We derive the optimal coefficient (ãt (1)) and the power
allocation (ãt (2)) through alternate optimization where they are determined at two separate steps. We use
MATLAB and algebraic rearrangements to obtain solutions to the optimizations as expressions depicted
in the Theorem described below.

Theorem 6. Let (T + 1)P be the total power available for T + 1 transmissions, and σ2
f and σ2

b be
the forward and feedback channel variance, respectively, for AWGN channels with feedback. The value
function is expressed as

Vt (st) =
−ε4uw,t +KT−tε

2
w,tσ

2
u,t + ε2w,tε

2
u,t

KT−tσ2
u,t + ε2u,t

,

which is similar to the value function that was obtained for the peak power constraint.
The optimal coefficient ct is given as

ct = −
Kn

√
Si

(
σu,t
σf

)
Knη0 + β

,

where n = T − t is the number of remaining transmissions and Kn = fn−1 (fn−2 (· · · f1 (K1))) with
K1 = 1+β+ST β

ST (1+β)(1+ST )
, η0 = (1 + Si) (1 + β), Si = Pi

σ2
f

and fi’s are separate functions determined from the
computed power constraints Pi’s. (Note that structure of the optimal coefficient is similar as in the peak
power constraint (Lemma 2)).
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The optimal power allocation αt+1 is obtained in a closed form for the noiseless case as

αt+1 =
1

T − t
, (32)

and for the noisy case, the solutions of αt+1 are not tractable for a general t. Therefore, we rely on
numerical solutions for the computation of the optimal αt+1.

Proof. The proof follows from Appendix IX-C. The solutions are obtained in symbolic MATLAB by
solving the optimization equations individually for the coefficients and the power allocation.

C. Interpretation
Let us now interpret the results we obtained above regarding the power allocation for the total power

constraint. We begin with an interpretation of noiseless feedback scenario. In the following, we show that
the power allocation for the noiseless case is uniform across all transmissions.

Corollary 5. For the AWGN channel with T noiseless feedback transmissions of a Gaussian message,
with a total power constraint of (T + 1)P , the individual power constraint is given as P , i.e., (T + 1)P
power uniformly spread across all T + 1 transmissions.

Proof. We determine the individual power allocations for the noiseless case using the optimal α from
Theorem 6 as αt = 1

T−t+1
.

From (32), we obtain the fractional power allocation for the first raw transmission α0 = 1
T+1

by
substituting t = 0. The total budgeted power at the beginning of the transmissions is given as Q0 =
(T + 1)P . Therefore the power allocation P0 is given as

P0 = α0Q0

α0 =
1

T + 1
P0 = P.

From (31), the remaining power for the next transmission is given as

Q1 = Q0 − P0 = TP.

α1 =
1

T
P1 = P.

These steps can be repeated to obtain Qi and Pi, i = 2 . . . T and thereby the power allocations for all
transmissions. These power allocations are found to be uniform as P .

The Corollary 5 holds as we assumed that the message w is Gaussian. We note that the uniform power
allocations for the noiseless case are not optimal when non-Gaussian messages like Pulse Amplitude
Modulation (PAM) symbols are considered. The power allocation with M−PAM messages for any number
of feedback transmissions, T is obtained in [20]. It provides a non-uniform power allocation between the
first raw transmission of the PAM message and the rest of the transmissions.

For noisy feedback, we use numerical techniques to solve for the power allocation for each of the
transmission. This is obtained by solving the optimization ãt (2) = argmin

at(2)

Vt+1 (τt (st, ãt (1) , at (2))) in

Algorithm 3 for the values of αt which is found to be different across all transmissions. It was observed
that the power allocations obtained were non-uniform across the transmissions.
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Fig. 9: Comparison of the received SNR for channels with feedback between our DP scheme under peak/total power constraints and CL
scheme under total power constraint [2]. A forward noise variance of σ2

f = 1 and a feedback noise variance of σ2
b = 0.01 were assumed.

At low SNR, we outperform the CL scheme in both the peak power as well as the total power constraint. At high SNR, the peak power
constraint results are slightly inferior but the total power constraint results match the CL scheme.

D. Comparison to the state-of-the-art linear schemes by Chance and Love
The authors in [2] have provided a linear scheme to transmit messages over an AWGN channel with

noisy output feedback with a constraint on the total power which to our best of knowledge is the state
of the art in the class of linear codes for such channels. The details of the scheme are discussed in
Section II-B. In the following, we show that the analytical scheme with closed-form solutions that we
derived in this paper outperforms or match the performance of the Chance and Love scheme.

In Fig. 9, we show the comparison of the received SNR between our DP scheme with both peak power
constraint and the total power constraint, and with the implementation of Chance and Love scheme under
the total power constraint [2]. We assume an AWGN channel with a forward noise variance of σ2

f = 1
and a feedback noise variance σ2

b = .01. The plots were generated by varying the power constraint P over
T = 3 feedback transmissions such that the peak power constraint for each transmission was P while the
total power constraint was (T + 1)P .

Under the total power constraint, our scheme (labeled as DP, Total Power) outperforms the CL scheme
(also with the total power assumption) in the low SNR regime and has the same performance as the CL
scheme at high SNR. The received SNR of our scheme under the peak power constraint (labeled as DP,
Peak Power) is also shown for comparison. We can see that the performance of our scheme under the
peak power constraint does not degrade much with respect to the one under the total power constraint.

In summary, we show that the scheme that we propose can be obtained in closed-form for the peak
power constraint which closely matches (slightly inferior) to the CL scheme while outperforming it in the
low SNR regime. Our performance for the total power constraint clearly outperforms the CL scheme in
the low SNR and matches the performance at high SNR.

VII. PAM MESSAGE TRANSMISSION

In the previous sections, we considered Gaussian messages to transmit over the AWGN channel with
feedback. The principal motivating factor was the simplicity in determining the optimal encoding scheme
within the class of sequential linear schemes with the use of the Kalman filter at the receiver as the
decoder.
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In this section, we consider a more practical scenario, where the transmitter has message bits (or an
M -PAM symbol) to communicate. We empirically demonstrate that the sequential linear coding scheme
that we obtained via DP is not optimal within the class of sequential linear schemes for such scenarios.
The analysis and derivation of the optimal scheme are not straightforward when we consider messages
which are not Gaussian in nature. Therefore, we use a learning-based approach; we optimize the weights
of the linear sequential scheme using the backpropagation instead of DP. We show that the sequential
linear scheme learned for the transmission of a message bit outperforms sequential linear codes optimized
for Gaussian messages, albeit by a small margin.

Concretely, we consider a setup where w is the intended m−PAM message to be transmitted across an
AWGN channel with noisy output feedback. The linear sequential encoding scheme can be represented
using (1) as

u0 = w, (33a)
ut+1 = ut + ctỹt, (33b)

where ct’s are the parameters that need to obtained. The final transmitted symbol, in line with our scheme
in Section III, is a scaled version of ut as

xt+1 = γt+1ut+1, (34a)

where the parameters γt+1 are normalized such that the total power across (T + 1) transmissions is
(T + 1)P . In a similar manner, we represent the operation at the decoder to obtain the decoded message
as a linear combination of the received symbols as

ŵT =
T∑
t=0

etyt, (35)

where et’s are the unknown parameters to be obtained.
The collection of parameters from the encoder and the decoder are jointly optimized through a learning-

based approach using backpropagation. A batch of m−PAM messages (w’s) are generated and are passed
through the system of equations in (33a)-(34a) and (35) to generate the corresponding decoded messages
ŵ’s in terms of the parameters. A gradient descent algorithm is used to optimize these parameters such

that the MSE E
[(
W − Ŵ

)2]
is minimized. The update of the weight parameters is repeated for multiple

epochs till the MSE converges to the minimal value.
In Fig. 10, we compare the performance of the sequential linear encoding scheme obtained using the

proposed DP algorithm and the learning-based approach introduced in this section. We consider a set of
2−PAM messages sent over the channel with T = 2 noisy feedback transmissions. In the learning-based
approach, we trained a batch of 2000 randomly generated 2−PAM messages and optimized using an
Adam optimizer with a learning rate of 1e − 3. The performance for the scheme obtained using the DP
approach was evaluated by generating a set of random 2−PAM messages and then using the closed-form
coefficients derived in Theorem 3 to obtain the final MSE. We compute the received SNR as the reciprocal
of the final MSE at the end of three transmissions. The plot shows the received SNR at the decoder for
different total power constraints with the forward and the backward variances as σ2

f = 1 and σ2
b = 1. The

results show a performance improvement obtained in the received SNR at high SNR under a total power
constraint.

VIII. CONCLUSION

We provided a novel approach using dynamic programming to design optimal sequential linear schemes
for communicating a Gaussian message over AWGN channels with noisy (and noiseless) output feedback.
The sequential linear scheme we introduced in this paper is a class of linear coding schemes for which the
encoder maintains a state, which is updated based on the output feedback, and generates the transmission
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Fig. 10: The plots compare the received SNR with 2−PAM symbols as messages against varying power constraint P in dB for an AWGN
channel with feedback with forward and noise variance, σ2

f = 1 and σ2
b = 1 respectively. The improvement in the received SNR is evident

when a learning based approach is used for PAM messages

symbol based on the state. We showed that existing linear schemes for AWGN channels with output
feedback, namely, the SK scheme and the CL scheme, all belong to the class of sequential linear schemes.

We then derived a closed-form expression for the optimal sequential linear scheme by formulating
a novel MDP and solving it using DP. We showed that our derived optimal sequential linear scheme
outperforms the state-of-the-art CL scheme [2] under some channel conditions for channels with noisy
output feedback while matching the SK scheme for channels with noiseless output feedback.

We provided several interpretation results for the optimal sequential linear scheme and its estimation
error. We showed that the derived scheme is not a straightforward generalization of the SK scheme. We
represented the estimation error as a function of a number of transmissions for channels with various
levels of noisy feedback.

We also considered communicating message bits instead of a Gaussian message, for which we cannot
analytically find the optimal sequential linear scheme. We presented a learning-based approach to optimize
the coefficients of the sequential linear scheme directly for message bits and showed that by doing so,
we can outperform the scheme with coefficients analytically optimized for a Gaussian message.

Finally, extending our approach to multi-user scenarios and using a learning-based method to directly
optimize the bit error rate instead of the mean squared error would be interesting. We leave them as future
work.
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IX. APPENDIX

A. Proof of Remark 2
Proof. We show that the SK scheme belongs to the family of sequential linear schemes.

The sequence of receiver’s MMSE estimates {ŵ0, ŵ1, ŵ2, · · · } satisfies the following recursive equation

ŵt = ŵt−1 + E[Ut|yt],

where ut = w − ŵt−1 denotes the error in the most recent estimate of w and the estimation error ut and
yt is the received signal observed as feedback at the encoder. This is derived from the fact that the error
in estimate ut is orthogonal to all the observations till time t, y0:t−1. Therefore, the encoding process is
sequential, ut+1 = ut − E[Ut|yt]. The transmitted symbol xt+1 is a scaled version of ut.

ut+1 = w − ŵt
= (w − ŵt−1)− (ŵt − ŵt−1)

= ut − E [Ut|yt] ,

The transmitter sends xt = γtut, where γt denotes the power normalization constant. Under the average
peak power assumption, γt =

√
P/E[U2

t ]. The estimation error can be also represented in a recursive
equation; after t transmissions, the error in the estimate of w reduces is E[(W − Ŵ )2] = σ2

w/(1 + P )T ,
which decays exponentially in P (See [20] for a detailed derivation). This scheme is analytically shown
to be optimal for communication of Gaussian messages [19].

B. Proof of Remark 3
Proof. The authors in [2] propose a scheme for channels with noisy feedback as

xt+1 = Ftz̃ + gw, (36)

http://arxiv.org/abs/1501.06671
http://arxiv.org/abs/2002.09553
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where xt+1 is the transmitted symbol, z̃t is the noise vector, nt + ñt, and w is the intended message. The
scheme is parameterized through the encoding matrix F which is a lower triangular Toeplitz matrix given
as 

0 · · · 0

− 1−β2
0

(1−σ2
b)β0

0 .

−1−β2
0

1+σ2
b

. . . . . . . .
...

−1−β2
0

1+σ2
b
βT−3
0 . · · · −1−β2

0

1+σ2
b
− 1−β2

0

(1−σ2
b)β0

0


while g is given as

=

√
1− β2

0

1− β2(T+1)
0

[
1 β0 β2

0 · · · βT0
]T

The value of β0 is obtained as a solution to (31) of the paper. Here, we show that the scheme is sequential
and linear in terms of the feedback and the past symbols.

From (36), we can represent the transmitted symbol at any instant t as

xt+1 =

√
1− β2

0

1− β2(T+1)
0

βt+1
0 w +

[
−1−β2

0

1+σ2
b
βt0 −

1−β2
0

1+σ2
b
βt−1
0 · · · − 1−β2

0

(1−σ2
b)β0

]
z̃t

=

√
1− β2

0

1− β2(T+1)
0

βt+1
0 w +

[
−1−β2

0

1+σ2
b
βt0 −

1−β2
0

1+σ2
b
βt−1
0 · · · − 1−β2

0

(1−σ2
b)

]
z̃t−1 +− 1− β2

0

(1− σ2
b ) β0

z̃t

= β0

(√
1− β2

0

1− β2(T+1)
0

βt0w +
[
−1−β2

0

1+σ2
b
βt−1
0 −1−β2

0

1+σ2
b
βt−2
0 · · · − 1−β2

0

(1−σ2
b)

]
z̃t−1

)
+− 1− β2

0

(1− σ2
b ) β0

z̃t

= β0xt +− 1− β2
0

(1− σ2
b ) β0

(ỹt − xt)

=

(
β0 +− 1− β2

0

(1− σ2
b ) β0

)
xt +− 1− β2

0

(1− σ2
b ) β0

ỹt

We represent the current transmitted symbol xt+1 in terms of the past symbol xt and the received feedback
ỹt. The analysis establishes the sequential nature of the scheme.

C. Proof of Lemma 2
Proof. At time t = T − 1, from the optimization step in Algorithm 2, ãt = argmin

at

Vt+1 (τt (st, at)), we

find ãT−1 through ∂VT
∂aT−1

= 0 which leads to

ãT−1 = −

√
S
(
σu,T−1

σf

)
η0

,

where all the symbols have been defined in Lemma 2. Therefore, the optimal transmission scheme is
given as,

φ̃T−1

(
uT−1, ỹT−1

)
=

√
P

σ2
u,T

uT−1 −

√
S
(
σu,T−1

σf

)
η0

ỹT−1

 .
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The value function that captures the MSE if we use the optimal policy from t = T − 1 till T which is
given as

VT−1 (sT−1) =
− (εuw,T−1)

4 +K1 (εw,T−1σu,T−1)
2 + (εw,T−1εu,T−1)

2

K1σ2
u,T−1 + (εu,T−1)

2

where

K1 =
1 + β + Sβ

(1 + β)S (1 + S)
=
η1
η3

We repeat the same procedure for t = T − 2, t = T − 3 and for any general t and obtain corresponding
φ̃ and V as

φ̃T−2 =

√
P

σu,T−1

uT−2 −
K2

√
S
(
σu,T−2

σf

)
K2η0 + β

ỹT−2


VT−2 =

− (εuw,T−2)
4 +K2 (εw,T−2σu,T−2)

2 + (εw,T−2εu,T−2)
2

K2σ2
u,T−2 + (εu,T−2)

2 ,

φ̃T−3 =

√
P

σu,T−2

uT−3 −
K3

√
S
(
σu,T−3

σf

)
K3η0 + β

ỹT−3


VT−3 =

− (εuw,T−3)
4 +K3 (εw,T−3σu,T−3)

2 + (εw,T−3εu,T−3)
2

K3σ2
u,T−3 + (εu,T−3)

2 ,

φ̃t =

√
P

σu,t+1

ut − KT−t
√
S
(
σu,t
σf

)
KT−tη0 + β

ỹt


Vt =

− (εuw,t)
4 +KT−t (εw,tσu,t)

2 + (εw,tεu,t)
2

KT−tσ2
u,t + (εu,t)

2 ,

where

K2 =
η1K

2
1 + η2K1

η3K2
1 + η4K1 + η2

= f (K1) .

K3 =
η1K

2
2 + η2K2

η3K2
2 + η4K2 + η2

= f (K2) .

Kt =
η1K

2
t−1 + η2Kt−1

η3K2
t−1 + η4Kt−1 + η2

= f (Kt−1) = f t−1 (K1) .

Significance of Kn: We observe that the structure of the value expression Vt with respect to the state
st remain similar barring the value of K which is a function of system parameters P , σ2

f and σ2
b and T .

Therefore, the value function Vt and the optimal policy at any instant t can be obtained by computing K1

and then applying the function f (·), T − t − 1 times to obtain KT−t. The expressions of K1, Kn, and
f (·) can be obtained from Lemma 2. This formulation helps us determine the value function (=MSE)
and the optimal policy for any number of iterations and any value of feedback variance without worrying
about the increase in complexity.
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D. Proof to Corollary 3
Proof. We provided a solution to the dynamic program in Section IV-C and obtained the value function
expression in Lemma 2. In Theorem 4, we obtained the exact closed-form expressions for the MSE. The
parameter Kn in the expression is defined through the system parameters, the power constraint P , the
forward noise variance σ2

f , and the feedback noise variance σ2
b . In order to study the variation of MSE

with respect to T , we study the progression of K1 through KT .
We begin by studying the series Kn, n = 1 . . . t generated from the recursion function f . We establish

that Kn is a geometric series for the noiseless case where σb = 0 and for large n, where

Kn =
η1K

2
n−1 + η2Kn−1

η3K2
n−1 + η4Kn−1 + η2

. (37)

as defined in (17). We get

Kn =
1

1 + S
Kn−1

or
1

KT

= (1 + S)T
1

K1

= (1 + S)T
η3
η4
.

By substituting in (24), we get,

MSE =
σ2
w

(1 + S)T
.

E. Proof to Corollary 4
Proof. We extend the results of the noiseless case to study the variation of MSE with transmissions T
with noisy feedback case. We establish that Kn is a harmonic series for the noisy feedback case.

Kn =
η1K

2
n−1 + η2Kn−1

η3K2
n−1 + η4Kn−1 + η2

. (38)

as defined in (18). Now, we show that the common difference between the reciprocal terms of Kn is a
constant. From (38), we have,

1

Kn

− 1

Kn−1

=
η3Kn−1 + η4 − η1
η1Kn−1 + η2

.

We observe that Kn is a monotonically decreasing function. Assuming that Kn becomes much smaller
with increasing n we get,

1

Kn

− 1

Kn−1

=
η4 − η1
η2

i.e.
1

KT

=
1

K1

+
η4 − η1
η2

T. (39)

This approximation holds for any value of T . In fact, with a high value of T , the difference between
the exact and the approximate expression goes down to zero.

The exact MSE expression is given in (24) which can be approximated by using the harmonic progres-
sion series for Kn from (39). Thus we can obtain a very close approximation for the error variance after
T transmissions without the need to solve the DP or use the function f recursively, given by

MSE =
σ2
w

ζT
,
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where

ζT =
((η1η4 − η21)T + η2η3 + η1η4) ((η1η4 − η21)T + η2η3 + η1η2 (S + 1))

η1η2 ((η1η4 − η21)T + η2η3 + η21)

=

(
η4−η1
η2

T + η2η3+η1η4
η1η2

)(
η4−η1
η2

T + η2η3
η1η2

+ S + 1
)

η4−η1
η2

T +
η2η3+η21
η1η2

.

Upon further simplifications, the approximate value for MMSE for high value of T can be expressed as

MSE ≈ σ2
w

ζ?
, where

ζ? =

(
η4 − η1
η2

)
T

=

(
S + Sβ

β

)
T = S

(
1 +

1

β

)
T.

The bounds obtained match the results in [21] and in [2].
It is worth noting that the resulting MMSE expression is described only through the system parameters.

The definition for the η parameters is provided in Theorem 4. This expression helps us (a) establish the
bounds for our expression as was provided by other authors in their work like Weissman et al. in [21] and
Chance and Love in [2], (b) visualize the progression of the MMSE with the increase in the parameter
T which was not apparent from the exact expression in (24).
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