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Abstract—In rate-distortion (RD) problems one seeks reduced
representations of a source that meet a target distortion con-
straint. Such optimal representations undergo topological tran-
sitions at some critical rate values, when their cardinality or
dimensionality change. We study the convergence time of the
Arimoto-Blahut alternating projection algorithms, used to solve
such problems, near those critical points, both for the rate-
distortion and information bottleneck settings. We argue that
they suffer from critical slowing down – a diverging number
of iterations for convergence – near the critical points. This
phenomenon can have theoretical and practical implications for
both machine learning and data compression problems.

I. INTRODUCTION

Given a source X ∼ p(x) on a finite alphabet X , a
representation alphabet X̂ , and a distortion measure d : X ×
X̂ → R+, the rate-distortion function (RDF) is defined as
R(D) = min I(X; X̂), where the minimization is with respect
to all test channels p(x̂|x) satisfying the distortion constraint
E[d(X, X̂)] ≤ D, [1], [2]. The distortion-rate function D(R)
is merely the inverse of R(D). An analytic expression for
R(D) (or D(R)) involves solving the minimization above, and
is only known for some special cases. However, it is possible
to obtain a numerical solution using different algorithms,
including the Arimoto-Blahut (AB) algorithm [3], [4].

Clearly, for R = 0, the test channel that maps all x ∈ X
to argminx̂ E[d(X, x̂)] is optimal, whereas for R = H(X)
the channel that maps any x ∈ X to argminx̂ d(x, x̂) is
optimal. Thus, the cardinality (support size) of the optimal X̂
attaining D(R) changes as we increase/decrease R. Typically,
the cardinality of the optimal X̂ decreases gradually from
|X̂ | = |X | to |X̂ | = 1 as we decrease R from H(X) to 0, but
there are also examples where the cardinality of the optimal
X̂ behaves non-monotonically [1, Section 2.7]. We refer to
these changes of the representation cardinality as topological-
or phase transitions and the values of R where they occur
as critical. This paper studies the algorithmic difficulty of
computing D(R) near such critical values of R.

In the context of data compression, the main quantity of
interest is the representors’ distribution, p(x̂), at a given value
of R, for which an optimal code is constructed and the conver-
gence to the optimal D(R) can be obtained, as the blocklength
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increases. In applications of RD to machine learning and
statistical physics, however, there is more interest in the nature
of the optimal channel, or representation encoder, p(x̂|x). The
reason is that in machine learning the similar features of the
source patterns x that are mapped to specific representations
x̂ determine the relevant order parameters and topology of the
problem. At the critical points, the neighborhoods of patterns
can merge or split during the learning process, and the induced
topology of the patterns – which patterns are neighbours –
can significantly alter. Understanding such topological changes
and the nature of the encoder is critical in representation
learning [5] and has gained recent interest also in statistical
physics [6].

Similar topological transitions occur also in the closely
related approach of the information bottleneck (IB) [7], which
aims to achieve maximal compression of X while preserving
most relevant information about another correlated variable Y .
This approach has recently drawn attention due to its possible
relation to the learning dynamics of deep neural networks
(e.g. [8]–[10]). Specifically, there is evidence to suggest that
the representations of the layers in such networks converge to
successively refineable points near the IB curve, which may be
related to the critical points where such transitions occur [9],
[11]. Moreover, the critical points represent changes in the
nature of the optimal solutions to the RD or IB problems,
when considering the size of the representation alphabet as an
additional constraint.

In this work we show that solutions to RD problems lose
their stability at the critical points. As a result, we prove that
the AB algorithm slows down dramatically near such critical
points. This phenomenon, in which systems’ dynamics slow
down near phase transitions, is known in statistical physics
as critical slowing down (CSD). Finally, we show that similar
slowing down occurs also for the extended AB algorithm, used
to solve IB problems numerically, near critical points.

II. RELATED WORK

The convergence of the AB algorithm for finite/countable
reconstruction alphabets was established in [3], [4], [12].
Boukris [13] further derived an upper bound on the conver-
gence rate, which shows that the gap between the value of the
Lagrangian defined below in (1) under the AB output and the
optimal solution decreases at least inversely proportional to the
number of iterations. Several papers have analyzed the con-
vergence rate of the AB algorithm for capacity computation,
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Fig. 1. A. A simple RD problem: the sets X , X̂ ∈ R2 shown in orange and purple, correspondingly; p(x) = (0.4, 0.3, 0.2, 0.1)ᵀ; the distortion function is
defined as d(x, x̂) = 1

µ
||x− x̂||22, where µ = maxx′∈X , x̂′∈X̂ ||x

′− x̂′||22 is a normalization factor. B. Values of pβ(x̂), the solutions to the RD problem at
different values of β: note the three phase transitions at β1, β2, β3 (marked with dashed lines) – until β1 only p(x̂4) > 0, then at β1 the representor x̂2 starts
to gain mass, and at β2 also x̂3, finally x̂1 starts to gain mass at β3. C. Eigenvalues of A at pβ : note that near each of the phase transitions an eigenvalue of
A approaches 0. D. Number of iterations until convergence (ε = 10−9, logarithmic scale) using uniform initial conditions and reverse annealing: a slowing
down of approximately an order of magnitude is clearly noticed at each critical point. E. The relation between the number of iterations until convergence
and λ0, the smallest nonzero eigenvalue of A, computed using reverse annealing with various values of ε: as ε decreases, the relation approaches the limit
formula in Theorem 5 (diagonal line); the artifact at the center, consisting of a few vertically arranged points, corresponds to the slowing down to the left of
β1 (we do not fully understand this phenomenon, which is more prominent in the uniform initial conditions setting).

and have demonstrated that the algorithm converges exponen-
tially fast whenever the support of a capacity achieving input
distribution is full [14]–[16].

Phase transitions in the optimal test-channel attaining D(R),
as R changes, were already discussed by Berger [1]. In fact,
Berger also showed that if the support of the optimal X̂ is
known, the computation of the optimal test-channel simplifies.
In a sense, this already shows that finding an optimal test-
channel at critical points, where the support of the optimal
solution changes, can be computationally challenging. Two
decades later, Rose [17] demonstrated that even when the
reconstruction alphabet is continuous, the optimal X̂ typically
has finite support, which grows with R.

The extended version of the AB algorithm for the IB prob-
lem (henceforth, the IB algorithm), in which the representors
are optimized as well, was proven in [7] to converge, although
not necessarily to a unique minimum as the convexity is
lost. In [18], the authors address the difficulty to identify the
topological transitions in the IB framework using the method
of deterministic annealing [19]. To solve this difficulty, Parker
et al. [20], [21] study the bifurcation structure of solutions to
the IB and other RD-like problems using bifurcation theory.
They focus mainly on the first critical point – where they argue
that the trivial solution (i.e. |X̂ | = 1) loses its stability and
structure begins to emerge. More recently, phase transitions
in the IB have been studied from a representation learning
perspective, shown to relate to learning of new features in the
data [22], [23], and algorithms for finding the critical points

were presented [24]. Analytical expression for the location of
the critical points is known in the Gaussian IB case [11], [25],
where the topological transitions correspond to changes in the
dimension of the Gaussian distribution of X̂ .

III. CRITICAL POINTS IN RATE-DISTORTION THEORY

The constrained optimization problem of RD is solved
by introducing a positive Lagrange multiplier, β, to impose
the expected distortion constraint, and minimizing the La-
grangian [2]

I(X; X̂) + β E[d(X, X̂)], (1)

with respect to all test channels p(x̂|x). The Lagrange mul-
tiplier β, of a role similar to that of inverse temperature
in statistical physics, determines the topological structure
of the optimizing channel as well as the trade-off between
compression and distortion. A solution to the RD problem at
a given value of β, denoted by pβ(x̂|x), that is, a minimizer
of (1), must (self-consistently) satisfy both equations [1]–[3]:

pβ(x̂|x) =
pβ(x̂)e−βd(x,x̂)

Z(x, β)
(2)

and pβ(x̂) =
∑
x

pβ(x̂|x)p(x) , (3)

where Z(x, β) :=
∑
x̂ pβ(x̂)e−βd(x,x̂) is a normalization

(partition) function. Since pβ(x̂|x) is determined by pβ(x̂)
when β and the distortion function are given, we may consider
pβ(x̂) as the optimization variable. Moreover, to simplify the



discussion, we assume throughout that pβ(x̂) is unique for all
values of β, and consider it as a vector pβ in the sequel.

Definition 1: Denote the support of a solution pβ by
supp pβ = {x̂ ∈ X̂ : pβ(x̂) > 0}. We say that βc is critical
and that the RD problem has a topological transition at βc if

| supp pβ− | 6= | supp pβ+ | (4)

for all β− < βc < β+ in some (small) neighborhood of βc.
We restrict our discussion to local stability analysis, and

thus assume that β 7→ pβ is continuous. As a result, we tackle
only what is known in statistical physics as phase transitions
of second order or higher.

Equations (2) and (3) above can be written concisely as
F = 0, where for all x̂ ∈ X̂[

F (p, β)
]
x̂

:= p(x̂)−
∑
x

p(x)
p(x̂)e−βd(x,x̂)

Z(x, β)
. (5)

In what follows, we study the properties of F and its Jacobian
∇F = ∂[F (p,β)]x̂/∂p(x̂′) around critical points, and provide a
characterization of the phase transitions of RD problems in
terms of ∇F . This characterization will play a pivotal role, as
we show next that ∇F is closely related to the Jacobian of a
single step of the Arimoto-Blahut algorithm and its spectrum
governs the algorithm’s convergence rate.

Assume there is a topological transition at βc, such that
| supp pβ− | < | supp pβ+ | in the above notation, then there
exists x̂0 such that pβ−(x̂0) = 0 and pβ+(x̂0) > 0. Consider
the representation space X̂ ′ = X̂ \ {x̂0} and the distortion
function d′, which is the restriction of d to X̂ ′. Clearly, the
solution qβ of the RD problem defined by d′ is identical to pβ
(restricted to X̂ ′) at a left neighborhood of βc, but they must
differ to the right. Nevertheless, the extension of qβ over the
original problem satisfies F (qβ , β) = 0 also to the right of βc,
if one sets qβ(x̂0) = 0. While this would not be a solution to
the RD problem, it shows the number of solutions to F = 0
changes at critical values of β, or that F = 0 has a bifurcation
at βc.

Although the extension of qβ is a fixed point of the AB
algorithm, it is not a stable solution, as adding a small
perturbation to qβ(x̂0) leads to convergence to the optimal
solution pβ instead. Hence, at βc the existing solution to
the RD problem loses its stability with respect to the AB
algorithm, and a new stable solution emerges.

Notice that ∇F must be singular at critical values of β.
Otherwise, by the implicit function theorem, there must exist
a unique solution to F = 0 as a function of β in the vicinity of
βc [26]. Unfortunately, ∇F is trivially singular when pβ(x̂) =
0 for some representor x̂, so this is not a useful characterization
of the critical points. However, we show next that the Jacobian
becomes "more singular" with each transition.

Let A denote the transposed Jacobian matrix of F at a
solution pβ , then (see Appendix A)

Ax̂x̂′ :=
[
(∇F )ᵀ

]
x̂x̂′

=
∑
x

pβ(x̂′|x)pβ(x|x̂) (6)

= pβ(x̂′)
∑
x

p(x)
e−β
(
d(x,x̂)+d(x,x̂′)

)
Z(x, β)2

, (7)

and we have the following result:
Theorem 1: Let m = |X̂ | and k = | supp pβ |, then at pβ

dim kerA = m− k.
Corollary 1.1: Topological transitions of a RD problem

occur exactly at values of β where the dimension of kerA, at
the solutions pβ , changes.

The proof consists of two steps (see Appendix B). First, we
show that dim kerA ≥ m− k:

Lemma 2: Let ex̂ ∈ Rm denote the standard basis vector
with 1 at the x̂ coordinate and 0 elsewhere, then pβ(x̂) =
0 ⇐⇒ ex̂ ∈ kerA.

Second, assume for simplicity that d is finite and without
loss of generality d(·, x̂1) 6= d(·, x̂2) for all x̂1 6= x̂2. Then
there is always a standard basis of kerA, resulting in the
converse inequality dim kerA ≤ m− k:

Proposition 3: Let v ∈ kerA, such that exactly r ≥ 1
of its coordinates, denoted x̂1, . . . , x̂r, are nonzero; then all
the corresponding standard basis vectors ex̂i , for 1 ≤ i ≤ r,
belong to kerA.

Theorem 1 refers to the geometric multiplicity of the
eigenvalue 0 of A, and shows that it changes at critical points.
However, to ensure that near such points A must have a small
positive eigenvalue we need to establish a similar statement
for the algebraic multiplicity. This will follow as a corollary
of the next theorem (see Appendix C):

Theorem 4: The matrix A is diagonalizable with real non-
negative eigenvalues.

Together with Theorem 1 above, we obtain:
Corollary 4.1: Let m = |X̂ | and k = | supp pβ |, then at pβ

the algebraic multiplicity of the eigenvalue 0 of A is exactly
m−k. Consequently, topological transitions of a RD problem
occur exactly at values of β where the algebraic multiplicity
of the eigenvalue 0 of A changes.

Figure 1 demonstrates this result on a simple RD problem,
consisting of 4 points in R2 (Figure 1A). The solutions to the
problem undergo 3 transitions, at β1, β2 and β3, where the
cardinality of X̂ increases from 1 (trivial solution) to 2, 3 and
4, correspondingly (Figure 1B). Figure 1C shows that at each
critical β another eigenvalue of A reaches 0.

Finally, as the matrix A is row-stochastic, all its eigenvalues
are inside the unit circle [27], and by Theorem 4, they are in
[0, 1], as required in the next section.

IV. SLOWING DOWN OF ARIMOTO-BLAHUT

The numerical computation of solutions to RD problems
is usually performed using the Arimoto-Blahut (AB) algo-
rithm [3], [4]. It consists of an alternating minimization,
applying Equations (2) and (3) repeatedly, starting from some
initial distribution p0 in the interior of the simplex ∆X̂ . The k-
th iteration pk of the AB algorithm is said to have ε-converged
to a RD solution pβ if 1

‖pk − pβ‖ < ε . (8)

Given a value of β, define the operator AB : ∆X̂ → ∆X̂
to be the result of applying a single step of the AB algorithm.

1The exact norm used at (8) is of little importance, as |X̂ | is finite and we
are typically interested in small values of ε. For convenience, we have chosen
L1 in Theorem 5 below, and L∞ in the Figures 1 and 2.



Solutions to the RD problem are fixed points of the algorithm,
that is AB pβ = pβ or

(
I−AB

)
pβ = 0, where I is the identity

operator. Using (5) it follows that at the solutions of the RD
problem AB = I − F , hence ∇AB|pβ = I − Aᵀ, where
∇AB|pβ is the Jacobian matrix of AB at pβ .

Let δpk = pk − pβ be the deviation from pβ , then to first
order in δpk,

AB pk ≈ pβ +∇AB|pβδpk (9)
⇒ δpk+1 = AB pk − pβ ≈

(
I −Aᵀ

)
δpk .

Hence,
δpk ≈

(
I −Aᵀ

)k
δp0 . (10)

As a result, the convergence rate of the algorithm is governed
by the largest eigenvalue of I − Aᵀ inside the unit circle,
denoted λmax. If the initial deviation δp0 has a nonzero
component in the eigenspace of λmax, then

‖δpk‖ < ε
(10)
=⇒ k ≈ − log ε+ const

− log |λmax|
. (11)

For the asymptotic convergence rate we consider
limε→0

k
− log ε , to avoid dependence on the particular

choice of initial conditions, via the constant at (11).
This argument is made precise by the next theorem, proven

in Appendix D. Recall that A is diagonalizable (Theorem 4)
and its eigenvalues are in [0, 1]. Therefore, ∇AB = I − Aᵀ

is also diagonalizable and its eigenvalues are in [0, 1]. When
pβ has a full support, the eigenvalues of ∇AB are in [0, 1)
(Theorem 1). Consequently, we have λmax = 1 − λ0 < 1,
where λ0 > 0 is the smallest nonzero eigenvalue of A.

Theorem 5: Let pβ be a RD solution with pβ(x̂) > 0 for all
x̂, and λmax = 1−λ0 < 1 the largest eigenvalue smaller than
1 of ∇AB at pβ . Denote by k(p0, ε) the number of iterations
required for an initial distribution p0 to ε-converge to pβ , and
define B(δ) := {p ∈ ∆X̂ : ‖p − pβ‖1 ≤ δ}. Then, for any
a > 0,

Pr
p0∼U(B(δ))

(∣∣∣∣ lim
ε→0+

k(p0, ε)

− log ε
− 1

− log λmax

∣∣∣∣ < a

)
−→
δ→0

1 ,

(12)
where U(S) denotes the uniform distribution on S.

A lower bound cannot be expected to hold for every initial
condition in the vicinity of pβ . Indeed, even if the linearization
in (9) were exact, the lower bound (11) holds for all but a zero-
measure set of initial conditions – those with no component in
the λmax eigenspace. In the general case, where the dynamics
are nonlinear, the fraction of applicable initial conditions
increases in the vicinity of pβ as δ → 0, (12). The rate at which
this fraction approaches 1 depends on the desired accuracy a.

Consider a topological transition of the RD problem at
βc, such that | supp pβ− | < | supp pβ+ |. According to Corol-
lary 4.1, the algebraic multiplicity of the eigenvalue 0 of A
is greater at β− than at β+. Since A is continuous in pβ
and pβ is assumed continuous in β, there exists an eigenvalue
λ0 > 0 of A such that λ0 → 0 as β approaches βc from above.
When coordinates x̂ outside supp pβ+ are initialized at 0, as in
reverse annealing (see below), AB effectively coincides with
its restriction to supp pβ+ . Consequently, by Theorem 5, the

AB algorithm experiences a significant slowing down as it gets
closer to the critical point.

This is clearly observed in simulations (Figure 1D) where
the number of iterations until convergence is plotted in two
different settings: reverse annealing and uniform initial con-
ditions,2 p0(x̂) = 1/|X̂ |. In reverse annealing the algorithm
is run for decreasing values of β, starting from the converged
solution at the previous β. In both settings there is a noticeable
slowing down to the right of the critical points, as expected
from Theorem 5, given the small nonzero eigenvalues of A in
those areas (Figure 1C).

In addition, it can be seen that the reverse annealing method
always converges faster than uniform initial distributions. In
the latter, there is an overall increase in the iterations baseline
as β decreases, since more eigenvalues reach 0.

Finally, Figure 1E shows that the number of iterations
required to converge to a solution within accuracy ε gets closer
to the bound in Theorem 5 as ε decreases. Smaller ε are needed
when approaching a topological transition, as can be seen by
examining the second order terms (the details are omitted).

V. CRITICAL SLOWING DOWN IN THE IB FRAMEWORK

Given a pair of random variables (X,Y ) ∼ p(x, y), such
that I(X;Y ) > 0, the information bottleneck approach aims to
find a channel p(x̂|x) that minimizes I(X; X̂), while preserv-
ing as much information I(X̂;Y ) as possible [7]. While the
IB problem can be viewed as a noisy source coding problem
where the reconstruction alphabet is ∆X̂ , the AB algorithm
does not directly apply, since X̂ is continuous. Nevertheless,
it is known [28] that for each β, taking at most |X | points of
the simplex ∆X̂ suffices. If one were given those points of
the simplex, the problem would be reduced to a standard RD
problem on a finite reconstruction alphabet. However, since
those are not known a priori, the IB problem can be thought
of as an envelope of many different RD problems, making the
optimization problem non-convex [10].

As in RD, the constrained optimization problem of the IB
is solved by minimizing a Lagrangian,

I(X; X̂)− β I(X̂;Y ) (13)

over all channels from X to X̂ = {1, . . . , |X |}. Consequently,
solutions to the IB problem follow a set of self consistent
equations, similar to those of RD (Equations (3) and (2)) with
the addition of the decoder equation

pβ(y|x̂) =
∑
x

p(y|x)
pβ(x̂|x)p(x)

pβ(x̂)
, (14)

and the distortion function in (2) is given by dIB(x, x̂) =
DKL[p(y|x)||pβ(y|x̂)]. Notice that this distortion depends (in-
directly) on the encoder distribution and on β. Moreover, here
pβ(x̂) does not capture the entire solution, as in RD, which
must be described by pβ(x̂|x). As a result, the analysis of the
IB topological transitions is somewhat more complicated.

2Other similar choices in the interior of ∆X̂ , e.g. sampling according to
the symmetric Dirichlet distribution p0 ∼ Dir(1), do not yield significantly
different results.



In addition, the transitions in the IB framework do not
consist only of changes in the size of the support, supp pβ . In
fact, various representors may share the same decoder distribu-
tion pβ(y|x̂), making them essentially equivalent. The relevant
quantity that changes in topological transitions of the IB is the
effective cardinality [24], defined as the number of different
non-empty decoder distributions, |{pβ(y|x̂) : pβ(x̂) > 0}|.
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Fig. 2. A simple IB problem with a binary Y , defined by p(x) =
(0.7, 0.1, 0.1, 0.1) and p(y = 0 | x) = (0.2, 0.4, 0.6, 0.8), as well as
its corresponding RD problem. A. The decoder distribution, pβ(y = 0 | x̂):
notice the three phase transitions of the IB problem at β1, β2, β3 (marked
with dashed lines). B. Number of iterations until convergence of the IB
solution (ε = 10−7, logarithmic scale): a slowing down of at least one
order of magnitude is clearly observed at each critical point. C. Values of
qβ(x̂) of the corresponding (tangent) RD problem at β1 (red dashed line):
its topological transition is at β1, as in the IB. D. Eigenvalues of A at qβ .
E. Number of iterations until convergence of the RD solution (ε = 10−7,
logarithmic scale): notice the single slowing down at β1.

IB problems can be solved numerically using a modified
version of the AB algorithm [7], which iterates also the de-
coder equation (14). Based on our RD analysis, we show that
the IB alternating projection algorithm also exhibits critical
slowing down near topological transitions (see Figure 2A,B).

While it can be analyzed directly, we can rely on the fact
that the IB curve is an envelope of tangent RD curves [10].
Consider an IB solution pβ∗(x̂|x) at some value β∗ and let
β− < β∗ < β+ in some small neighborhood. Let X̂− be a
set of representors of the effective cardinality of pβ− , such

that all their decoder distributions pβ−(y|x̂) are different, and
let X̂+ be defined accordingly for pβ+ . Define X̂ ∗ to be the
(formal) disjoint union X̂− t X̂+, and the (fixed) distortion
function d∗ : X × X̂ ∗ → R+ as

d∗(x, x̂) :=

{
DKL[p(y|x)||pβ−(y|x̂)] x̂ ∈ X̂−

DKL[p(y|x)||pβ+(y|x̂)] x̂ ∈ X̂+
(15)

Let qβ be the solution to the RD problem defined by X̂ ∗ and
d∗. Since pβ− is optimal at β−, being the IB solution there,
we know that supp qβ− = X̂−; similarly supp qβ+ = X̂+.
Notice that if the IB problem undergoes a transition at β∗,
then the effective cardinality of pβ− differs from that of pβ+ ,
and therefore by Definition 1, the tangent RD problem above
must have a topological transition at some β− < β < β+.

Taking the limits β− → β∗ from below and β+ → β∗

from above, we say that the RD problem defined by X̂ ∗ and
d∗ is the corresponding tangent RD problem to the original
IB problem at β∗. Consequently, if the IB problem has a
topological transition at βc then the corresponding tangent RD
problem at βc must also have a critical transition at βc (see
Figure 2C).

Finally, by its definition, the solution to the tangent RD
problem at a given β already achieves the optimal decoder
distribution at that point. However, since the IB algorithm has
to iterate additionally over the decoder distributions in order
to converge to the IB solution at β, it is expected to perform at
least the same number of iterations as the AB algorithm for the
tangent RD solution there. Therefore, when β is close enough
to some critical point of the IB, the IB algorithm experiences
similar slowing down there, as shown in Figure 2B,E.

VI. DISCUSSION

The AB algorithm for rate-distortion problems is known to
converge uniformly to the optimal RD function in times that
are O(1/ε) [13]. Our results deal with the ratio between the
number of iterations until ε-convergence and − log ε, and show
that this ratio increases significantly near critical points. While
the O(1/ε) bound is independent of β, that is, the constant
does not increase near critical points, it corresponds to a much
slower convergence, for sufficiently small ε. Moreover, our
results address the convergence of the encoder p(x̂|x), not just
the rate R(D). At the critical points there might be different
competing optimal solutions at the same R(D).

For similar reasons, variational approximations to either
RD or IB (e.g. [29]) may not suffer from CSD, as they
can be too far from the optimal encoder or use different
dynamics. It is not clear if other local converging algorithms,
such as stochastic gradient decent, should also exhibit CSD
near topological representation transitions, but we know that
near the critical points the Hessian matrix of the Lagrangian
at the optimum becomes singular. Thus any gradient based
optimization is susceptible to CSD if it has components in the
flat dimensions of the minima.

The implications of our results to local representation learn-
ing, when effective annealing is obtained through complexity
regularization, are intriguing. In such cases, deep learning in
particular, the critical points can determine the location of the
final representations along the optimal RD or IB curves.
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APPENDIX A
DERIVATION OF A

Recall that Z(x, β) :=
∑
x̂ pβ(x̂)e−βd(x,x̂), therefore

∂Z(x, β)

∂pβ(x̂)
= e−βd(x,x̂) . (16)

For x̂′ 6= x̂ we have

∂

∂pβ(x̂′)

(
pβ(x̂)

Z(x, β)

)
= −pβ(x̂)e−βd(x,x̂

′)

Z(x, β)2
, (17)

and thus

∂
[
F (pβ , β)

]
x̂

∂pβ(x̂′)
= pβ(x̂)

∑
x

p(x)
e−β
(
d(x,x̂)+d(x,x̂′)

)
Z(x, β)2

. (18)

In contrast,

∂

∂pβ(x̂)

(
pβ(x̂)

Z(x, β)

)
=
Z(x, β)− pβ(x̂)e−βd(x,x̂)

Z(x, β)2

=
1

Z(x, β)
− pβ(x̂)e−βd(x,x̂)

Z(x, β)2
, (19)

and then

∂
[
F (pβ , β)

]
x̂

∂pβ(x̂)
= 1−

∑
x

p(x)
(
e−βd(x,x̂)

Z(x,β) −
pβ(x̂)e

−2βd(x,x̂)

Z(x,β)2

)
= 1−

∑
x

p(x)e−βd(x,x̂)

Z(x,β) + pβ(x̂)
∑
x

p(x) e
−2βd(x,x̂)

Z(x,β)2 . (20)

When pβ(x̂) > 0 we have by (2), applying Bayes’ law,

pβ(x|x̂) =
p(x)

pβ(x̂)
p(x̂|x) =

p(x)e−βd(x,x̂)

Z(x, β)
, (21)

and therefore
∑
x
p(x)e−βd(x,x̂)

Z(x,β) = 1. Note, however, that the
right hand side of (21) is well defined even when pβ(x̂) =
0. Since we are interested only in the right derivative when
pβ(x̂) = 0 (as it is in the boundary of ∆X̂ ), we can refer in
that case to the limit, which also satisfies

∑
x
p(x)e−βd(x,x̂)

Z(x,β) =
1. Consequently, we have from (20)

∂
[
F (pβ , β)

]
x̂

∂pβ(x̂)
= pβ(x̂)

∑
x

p(x)
e−2βd(x,x̂)

Z(x, β)2
, (22)

which together with (18) gives the result in (7).
The formula in (6) is a straightforward result of (7) and

(21). Although simpler, it is not defined when pβ(x̂) = 0.

https://www.nogsky.com/publication/phd-thesis/ZaslavskyPhDthesis.pdf
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Proof of Lemma 2: If pβ(x̂) = 0 then by (7) the
corresponding column of A is zero and thus Aex̂ = 0.
Conversely, if Aex̂ = 0, then by (7) we have particularly

pβ(x̂)
∑
x

p(x)
e−2βd(x,x̂)

Z(x, β)2
= 0 . (23)

Therefore, either pβ(x̂) = 0 or d(x, x̂) = ∞ for all x. But
the latter implies by (2) that pβ(x̂|x) = 0 for all x, and so
anyway pβ(x̂) = 0.

Proof of Proposition 3: We prove the proposition by
induction on r.

The case r = 1 is trivial. Let r = 2 and assume
by contradiction that ex̂1 /∈ kerA. This means that also
ex̂2 /∈ kerA, otherwise v − vx̂2ex̂2 ∈ kerA, which would
imply that ex̂1 ∈ kerA. Therefore, according to Lemma 2,
both pβ(x̂1), pβ(x̂2) > 0.

Now, since v ∈ kerA, we have by (7) for all x̂

0 =
∑
x̂′

pβ(x̂′)
∑
x

p(x)
e−β
(
d(x,x̂)+d(x,x̂′)

)
Z(x, β)2

vx̂′ (24)

=
∑
x

p(x)
e−βd(x,x̂)

Z(x, β)

(
pβ(x̂1|x)vx̂1

+ pβ(x̂2|x)vx̂2

)
, (25)

where the second equality follows from (2). Averaging over
pβ(x̂) gives pβ(x̂1)vx̂1

+ pβ(x̂2)vx̂2
= 0, and thus vx̂1

=

−pβ(x̂2)
pβ(x̂1)

vx̂2
. Plugging this result back in (25) and dividing by

pβ(x̂2) vx̂2
6= 0 we get for all x̂∑

x

p(x)
e−βd(x,x̂)

Z(x, β)2

(
e−βd(x,x̂2) − e−βd(x,x̂1)

)
= 0 , (26)

where we used again (2). Substituting x̂ = x̂1, x̂2 in the last
equation we have∑

x

p(x)
Z(x,β)2

(
e−βd(x,x̂1)e−βd(x,x̂2) − e−2βd(x,x̂1)

)
= 0 (27)∑

x

p(x)
Z(x,β)2

(
e−2βd(x,x̂2) − e−βd(x,x̂1)e−βd(x,x̂2)

)
= 0 (28)

and subtracting (27) from (28) gives∑
x

p(x)

Z(x, β)2

(
e−βd(x,x̂1) − e−βd(x,x̂2)

)2
= 0 . (29)

Therefore, for all x we must have d(x, x̂1) = d(x, x̂2),
contradicting our assumption on the non-degeneracy of d.
Consequently, ex̂1

∈ kerA, and thus v − vx̂1
ex̂1
∈ kerA,

implying that also ex̂2
∈ kerA.

Finally, let r ≥ 3 and assume the proposition holds for all
1 ≤ r′ < r. If there exists 1 ≤ i ≤ r such that ex̂i ∈ kerA,
then u = v−vx̂iex̂i ∈ kerA. However, u has exactly r−1 < r
nonzero coordinates, namely x̂j for 1 ≤ j ≤ r, j 6= i, and
therefore by the induction hypothesis all the corresponding
ex̂j also belong to kerA. Together with ex̂i this completes
the induction step.

Conversely, assume by contradiction that ex̂i /∈ kerA for all
1 ≤ i ≤ r, then by Lemma 2 we have pβ(x̂i) > 0 for all x̂i.

This implies that Ax̂x̂i > 0 for all x̂ and x̂i, otherwise by (7)
we would get for some x̂ and x̂i that d(x, x̂) + d(x, x̂i) =∞
for all x, contradicting our assumption on the finiteness of d.
In particular, this means that

∑r
i=2Ax̂x̂i > 0.

Now, since v ∈ kerA we have
∑r
i=1Ax̂x̂ivx̂i = 0 for all

x̂, and thus

0 = Ax̂x̂1
vx̂1

+

r∑
i=2

Ax̂x̂ivx̂i (30)

=

r∑
i=2

Ax̂x̂iAx̂x̂1
vx̂1∑r

j=2Ax̂x̂j
+

r∑
i=2

Ax̂,x̂ivx̂i (31)

=

r∑
i=2

Ax̂x̂i

(
Ax̂x̂1

vx̂1∑r
j=2Ax̂x̂j

+ vx̂i

)
. (32)

Define the vector u ∈ Rm such that ux̂i =
Ax̂x̂1vx̂1∑r
j=2 Ax̂x̂j

+ vx̂i
for all 2 ≤ i ≤ r, and all its other coordinates are 0. By (32)
u ∈ kerA and it has at most r−1 < r nonzero coordinates. If
there exists 2 ≤ i ≤ r such that ux̂i 6= 0 then by the induction
hypothesis we would have ex̂i ∈ kerA, contradicting our
assumption. Therefore, for all 2 ≤ i ≤ r we must have

vx̂i = − Ax̂x̂1vx̂1∑r
j=2Ax̂x̂j

. (33)

In particular this implies that sgn vx̂2 = sgn vx̂3 = − sgn vx̂1 .
Finally, we can perform the same analysis starting at (30) by
setting aside vx̂2

instead of vx̂1
, concluding with sgn vx̂1

=
sgn vx̂3

= − sgn vx̂2
. Together with the previous result, this

means that sgn vx̂i = 0 for i = 1, 2, 3, or equivalently that
vx̂i = 0, contradicting our initial assumption and completing
the induction step.
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Proof: First, we deal with the case in which all pβ(x̂) > 0.
Note from (7) that A can be written as the product of three
matrices,

A = BBᵀC , (34)

where Bx̂x = p(x)
1/2

Z(x,β) e
−βd(x,x̂) and C is a diagonal matrix with

pβ(x̂) in its diagonal. Therefore, we have

C
1/2AC

−1/2 = C
1/2BBᵀC

1/2 = (C
1/2B)(C

1/2B)ᵀ , (35)

meaning that A is similar to a real Gram matrix, and thus
diagonalizable with non-negative eigenvalues [27] .

Second, assume that pβ(x̂i) = 0 for i = 1, . . . , r – the first
r ≥ 1 coordinates – and pβ(x̂) > 0 elsewhere. Let X̂ ′ =
supp pβ and denote by p′β and A′ the solutions and matrix
corresponding to the RD problem restricted to X̂ ′. Note that
Z(x, β) depends only on the support, and thus

A =

(
0 · · ·
0 A′

)
. (36)

Since p′β(x̂) > 0 for all x̂ ∈ X̂ ′, there exist, by the first
part of the proof, an invertible matrix P and a non-negative
diagonal matrix Λ such that P−1A′P = Λ. Moreover, from



Theorem 1 we have dim kerA′ = 0, hence none of the values
in the diagonal of Λ (that is, the eigenvalues of A′) is 0.

Now, we have(
Ir 0
0 P−1

)
A

(
Ir 0
0 P

)
=

(
Ir 0
0 P−1

)(
0 · · ·
0 A′

)(
Ir 0
0 P

)
=

(
0 · · ·
0 P−1A′P

)
=

(
0 · · ·
0 Λ

)
, (37)

where Ir is the r×r identity matrix. This means that A is sim-
ilar to an upper-triangular matrix, and thus all its eigenvalues
appear on the diagonal of that matrix, repeated according to
their respective algebraic multiplicities. Since Λ has no zeroes
in its diagonal, we conclude that the algebraic multiplicity of
the eigenvalue 0 of A is exactly r. However, according to
Theorem 1 we have dim kerA = r, or equivalently, that the
geometric multiplicity of the eigenvalue 0 of A is also r.

Finally, note that the standard basis row vector eᵀx̂r+i for
i ≥ 1 is a left eigenvector of the matrix in (37), associated with
the eigenvalue Λii. Therefore, also for all nonzero eigenvalues
of A, the algebraic multiplicity must equal the geometric
multiplicity. Consequently the matrix A is diagonalizable with
real non-negative eigenvalues.

APPENDIX D
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Proof: Denote by δpk the deviation vector pk−pβ of the
k-th iterate from the fixed point pβ , δpk(x̂) = pk(x̂)− pβ(x̂)
for its x̂-indexed entry. For convenience, we use the L1 norm
in the sequel, denoted ‖ · ‖. The expansion of AB around pβ
is [30]

AB(pβ + δpk)− pβ = ∇AB
∣∣
pβ
δpk +O(‖δpk‖2). (38)

That is, to first order, a single AB iteration amounts to an
application of the linear operator ∇AB

∣∣
pβ(x̂)

= I−Aᵀ to the
deviation. Write B(0, r) for the ball of radius r around the
origin with respect to L1. Then,

δpk+1 ∈ (I −Aᵀ)δpk +B(0, c̃‖δpk‖2), (39)

where c̃ > 0 is a constant bounding the expansion’s remainder.
By Theorem 4, A is diagonalizable, and so I−Aᵀ = PΛP−1

with Λ diagonal. Multiplying (39) by P−1,

P−1δpk+1 ∈ P−1
(
PΛP−1

)
δpk+P−1B(0, c̃‖δpk‖2). (40)

Denote ‖ ·‖op for the operator norm with respect to L1. By its
definition, P−1B(0, r) ⊂ B(0, ‖P−1‖op r). Thus, exchanging
coordinates δ̃pk := P−1δpk to a basis of eigenvectors,

δ̃pk+1 ∈ Λδ̃pk +B(0, c‖δ̃pk‖2), (41)

for c := c̃ · ‖P‖2op · ‖P−1‖op.
Denote by λmax = λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of

I − Aᵀ. As noted in Section IV, they are contained in [0, 1)
by our assumptions. Denote the i-th coordinate of δ̃pk with
respect to this basis by δ̃p

(i)

k , i = 1, . . . , |X̂ |. For exposition’s

simplicity, suppose that λ1 is a simple eigenvalue, λ1 > λ2;
the proof is similar otherwise3.

Let 0 < a < 1
− log λ1

. An upper bound for convergence is

immediate, when λ1 < 1. Choose µ := exp
(

( 1
log λ1

− a)−1
)

.
It satisfies 1

− log µ = 1
− log λ1

+ a, and λ1 < µ < 1. Then
whenever ‖δ̃pk‖ ≤ 1

c (µ− λ1) we have

‖δ̃pk+1‖
(41)
≤ λ1‖δ̃pk‖+ c‖δ̃pk‖2 ≤ µ‖δ̃pk‖ . (42)

Since ‖δpk‖ ≤ ‖P‖op · ‖δ̃pk‖, this holds whenever

‖δpk‖ ≤ δ1 :=
‖P‖op
c (µ− λ1). (43)

Therefore, at most

k ≤ − log ε+ log(‖P−1δp0‖ · ‖P‖op)
− logµ

(44)

iterations are then required for ε-convergence of pk. To capture
the asymptotic convergence rate we divide by − log ε and take
the limit to obtain

lim
ε→0+

k

− log ε
≤ lim
ε→0+

1 +
log(‖P−1δp0‖·‖P‖op)

− log ε

− logµ

=
1

− logµ
=

1

− log λ1
+ a. (45)

For a lower bound, choose η := exp
(

( 1
log λ1

+ a)−1
)

. It
satisfies 1

− log η = 1
− log λ1

− a > 0, and thus 0 < η < λ1.
Define,

ρ(δ̃p) :=
|δ̃p

(1)
|

‖δ̃p‖
(46)

when δ̃p
(1)
6= 0, ρk := ρ(δ̃pk). We proceed by assuming

|δ̃p
(1)

k | ≥ ρ0 · ‖δ̃pk‖ > 0 (47)

for all k ≥ 0. That is, the relative weight of the first
components cannot decrease beyond its initial value at k = 0.
This shall be justified in the sequel. From (41),

|δ̃p
(1)

k+1| ≥ λ1|δ̃p
(1)

k | − c‖δ̃pk‖2
(47)
≥ λ1|δ̃p

(1)

k | − c 1
ρ20
|δ̃p

(1)

k |2

= |δ̃p
(1)

k |
[
λ1 − c

ρ20
|δ̃p

(1)

k |
]
. (48)

Thus, if |δ̃p
(1)

k | ≤
ρ20
c (λ1 − η) then |δ̃p

(1)

k+1| ≥ η|δ̃p
(1)

k |. If the
above were to hold for all k ≥ 0, then we obtain a lower
bound

|δ̃p
(1)

k | ≥ ηk |δ̃p
(1)

0 |. (49)

Since |δ̃p
(1)

k | ≤ ‖δ̃pk‖ ≤ ‖P−1‖op · ‖δpk‖, the condition
|δ̃p

(1)

k | ≤
ρ20
c (λ1 − η) can be replaced by the stricter

‖δpk‖ ≤ δ2 :=
ρ20

c‖P−1‖op (λ1 − η). (50)

3If λmax is of multiplicity > 1, then take δ̃p
(1)
k to be a non-zero

component along some normalized λmax-eigenvector, and discard the other
coordinates in the λmax-eigenspace. The proof follows with minor modifi-
cations.



Since ‖δ̃pk‖ ≥ |δ̃p
(1)

k |, and |δ̃p
(1)

0 | = ρ0‖δ̃p0‖ by the definition
(46), then (49) implies

‖P−1‖op · ‖δpk‖ ≥ ‖δ̃pk‖ ≥ ηk ·ρ0‖δ̃p0‖ = ηk ·ρ0‖P−1δp0‖.
(51)

Thus, at least

k ≥
− log ε+ log(ρ0

‖P−1δp0‖
‖P−1‖op )

− log η
(52)

iterations are required for ε-convergence of pk. In a manner
similar to before,

lim
ε→0+

k

− log ε
≥ lim
ε→0+

1 +
log(

ρ0‖P−1δp0‖
‖P−1‖op )

− log ε

− log η

=
1

− log η
=

1

− log λ1
− a. (53)

Next, we prove assumption (47) by induction. That is, that
the relative weight of the first component cannot decrease
beyond ρ0. For k = 0 this is the definition of ρ0. Assuming
that (47) holds for k, we shall prove that it holds for k + 1.
i.e., we shall prove

|δ̃p
(1)

k+1| ≥ ρ0 · ‖δ̃pk+1‖. (54)

To do so, it suffices to upper-bound ρ0 · ‖δ̃pk+1‖ by some u,

to lower-bound |δ̃p
(1)

k+1| by some l, and to provide a sufficient
condition for l ≥ u to hold.

Notice that (48) provides a lower bound l to the left-hand
side of (54), by using the induction assumption (47). To upper-
bound the right-hand side of (54),

‖δ̃pk+1‖ = |δ̃p
(1)

k+1|+
n∑
i=2

|δ̃p
(i)

k+1|

(41)
≤ λ1|δ̃p

(1)

k |+ λ2

n∑
i=2

|δ̃p
(i)

k |+ c‖δ̃pk‖2

= λ1|δ̃p
(1)

k |+ λ2

(
‖δ̃pk‖ − |δ̃p

(1)

k |
)

+ c‖δ̃pk‖2

= (λ1 − λ2)|δ̃p
(1)

k |+ λ2‖δ̃pk‖+ c‖δ̃pk‖2 (55)

Multiplying the latter by ρ0 gives an upper bound u to
ρ0 · ‖δ̃pk+1‖. To prove (54), it remains to provide a sufficient
condition for l ≥ u to hold,

|δ̃p
(1)

k |
[
λ1 − c

ρ20
|δ̃p

(1)

k |
]

≥ ρ0
{

(λ1 − λ2)|δ̃p
(1)

k |+ λ2‖δ̃pk‖+ c‖δ̃pk‖2
}
. (56)

By the induction assumption (47), 1
ρ0
|δ̃p

(1)

k | ≥ ‖δ̃pk‖, which
we use to upper-bound the right-hand side of (56). Thus, (56)
is implied by the stricter,

λ1 − c
ρ20
|δ̃p

(1)

k | ≥ ρ0
{

(λ1 − λ2) + λ2

ρ0
+ c

ρ20
|δ̃p

(1)

k |
}
. (57)

This is equivalent to,

|δ̃p
(1)

k | ≤
ρ20(1− ρ0)(λ1 − λ2)

c(1 + ρ0)
. (58)

In a similar manner, the latter is implied by the stricter

‖δpk‖ ≤ δ3 :=
ρ20(1− ρ0)(λ1 − λ2)

2c‖P−1‖op
, (59)

where we have used 1+ρ0 ≤ 2, and |δ̃p
(1)

k | ≤ ‖P−1‖op·‖δpk‖.
That is, condition (59) is sufficient for the induction step (54)
to hold.

Since our discussion focuses on the convergence of the
Arimoto-Blahut algorithm, we may assume that ‖δpk+1‖ ≤
‖δpk‖, for all k ≥ 0, [2]. Therefore, it suffices to require that
‖δp0‖ ≤ δi for i = 1, 2, 3.

Finally, consider δ1 (43), δ2 (50) and δ3 (59) as functions
of ρ0, δi = δi(ρ0), for i = 1, 2, 3. These are polynomials
of zeroth, second and third order in ρ0. They are strictly
positive for 0 < ρ0 < 1, from their definitions. Given an
initial condition p0, δi(ρ(δ̃p0)) is δi evaluated at the relative
weight ρ of the first component (46), at the initial deviation
δ̃p0 := P−1(p0−pβ). By (46), 0 ≤ ρ(δ̃p0) ≤ 1 for any initial
condition p0, and so δi(ρ) are defined on the unit interval
[0, 1].

Let B(δ) be the ball of radius δ around pβ , and

B̃i(δ) :=
{
p0 ∈ B(δ) : ‖p0 − pβ‖ ≤ δi(ρ(δ̃p0))

}
, (60)

for i = 1, 2, 3. Denote,

B̃(δ) := B̃1(δ) ∩ B̃2(δ) ∩ B̃3(δ) (61)

That is, B̃(δ) consists of those initial conditions p0 for which
the conditions (43, 50, 59) required along the proof are met.
Clearly, B̃(δ) ⊂ B(δ). We will show that B̃(δ) gradually fills
the entire volume of B(δ) when δ → 0:

lim
δ→0

vol B̃(δ)

volB(δ)
= 1, (62)

where volS stands for the volume of a set S. It suffices to
show this separately for each B̃i(δ), i = 1, 2, 3.

Take B̃2(δ) for example. We show that it contains a set
whose volume approaches that of B(δ), as δ → 0. Consider
initial conditions in the ball B(δ) by their value of ρ(δ̃p0).
Formally, we rewrite B̃2(δ) as a disjoint union

B̃2(δ) =
⋃

0≤ρ≤1

B̃2(δ, ρ) (63)

over the sets

B̃2(δ, ρ) :=
{
p0 ∈ B̃2(δ) : ρ(δ̃p0) = ρ

}
. (64)

These can be rewritten as,

B̃2(δ, ρ) ={
p0 ∈ B(δ) : ρ(δ̃p0) = ρ ∧ ‖p0 − pβ‖ ≤ δ2(ρ(δ̃p0))

}
=
{
p0 ∈ B(δ) : ρ(δ̃p0) = ρ ∧ ‖p0 − pβ‖ ≤ δ2(ρ)

}
=
{
p0 ∈ B(min{δ, δ2}) : ρ(δ̃p0) = ρ

}
(65)

where the first equality is by plugging in the definition (60)
of B̃2(δ).



Write (50) as δ2(ρ) = C · ρ2, for C > 0. It has a root
at 0, and is otherwise positive. Thus, there are δ > 0 with
δ ≤ δ2(ρ). For these δ, by (65)

B̃2(δ, ρ) =
{
p0 ∈ B(δ) : ρ(δ̃p0) = ρ

}
. (66)

Note that δ ≤ δ2(ρ) is equivalent to
√
δ/C ≤ ρ. So by (63),

B̃2(δ) contains the set⋃
√
δ/C≤ρ≤1

{
p0 ∈ B(δ) : ρ(δ̃p0) = ρ

}
. (67)

If a particular δ value satisfies the above inequalities, then
so does any smaller δ > 0 value. At the limit δ → 0, B̃2(δ)
contains a union (67) over all ρ values, except for ρ = 0 which
is of zero-measure. Since the coordinates transformation P is
invertible, then the latter fills almost all the volume of B(δ)
as δ → 0, as required for B̃2(δ).

The argument for B̃1(δ) and B̃3(δ) is similar.
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