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Abstract—Transfer learning is a machine learning paradigm
where the knowledge from one task is utilized to resolve the
problem in a related task. On the one hand, it is conceivable
that knowledge from one task could be useful for solving a
related problem. On the other hand, it is also recognized that
if not executed properly, transfer learning algorithms could in
fact impair the learning performance instead of improving it -
commonly known as negative transfer. In this paper, we study
the online transfer learning problems where the source samples
are given in an off-line way while the target samples arrive
sequentially. We define the expected regret of the online transfer
learning problem, and provide upper bounds on the regret using
information-theoretic quantities. We also obtain exact expressions
for the bounds when the sample size becomes large. Examples
show that the derived bounds are accurate even for small
sample sizes. Furthermore, the obtained bounds give valuable
insight on the effect of prior knowledge for transfer learning
in our formulation. In particular, we formally characterize the
conditions under which negative transfer occurs.

I. INTRODUCTION

Transfer learning is a rising machine learning problem
that leverages past knowledge in one or more source tasks
to resolve the problem (or improve the performance) in a
related target domain. The key problems are how to use the
source intelligently to improve the performance in the target
domain, and, how to characterize and avoid negative transfer.
Currently, most existing transfer learning methods focus on
offline settings where batch target data are available (see
[1]–[3] and references therein). As such an assumption may
not always hold in some real-time applications such as data
transmission, we investigate the online transfer learning that
is firstly proposed by [4]. Unlike traditional online learning,
the framework of OTL is illustrated in Figure 1, where the
decision is sequentially made with the aid of source data and
historical target data. This framework has been extended to
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Fig. 1. Online Transfer Learning Framework

many other problems such as multisource transfer [5], [6],

multi-task problem [7] and iterative domain adaptation [8].
Yet most of these works do not focus on rigorous theoretical
analysis. Moreover, they mostly consider specific learning
tasks such as binary classifications with linear models, and
the performance is evaluated using a very specific metric (e.g.,
the number of mistakes). Such a learning framework in general
does not exploit the structures (or distributions) of the data or
model parameters. Lastly, no prior work has formally studied
the problem of negative transfer.

In this work, we propose a more general framework for
the online transfer problem that is suitable for general setups
from the information-theoretic view. The information-theoretic
framework has been established and studied in many online
learning and reinforcement learning problems [9]–[14]. One
advantage of this framework is that information-theoretic tools
are quite useful in studying the asymptotic behaviors as well
as deriving learning performance bounds for various statistical
problems. This paper is inspired by the universal prediction
framework [13]. By universal we mean that no matter which
distribution the data are drawn from, the predictor will always
yield good performance with theoretical guarantees. Specifi-
cally, we formulate the online transfer learning problem under
the assumption that the source and target data distributions
are parameterized by some unknown parameters θ∗s , θ

∗
t ∈ Λ.

Then we define the expected regret and further propose the
"mixture" strategy for sequential target predictors. The asymp-
totic upper bounds are also derived for the expected regret.
Practically, the bound can be also applied to the typical transfer
learning regime where the abundant source data are available
but the target data are lacking. To conclude, the contributions
of this paper are listed as follows.

• Consider the online transfer learning framework, at each
time k, we propose the mixture strategy for the predictor
bk with the prior knowledge over source and target
parameters. Then the expected regret is characterized by
the conditional mutual information (CMI).

• We give an asymptotic estimation of CMI for Λ ⊆ Rd,
where the bound is captured by the prior knowledge, the
number of common parameters that θ∗t and θ∗s share, and
the structure of the parametric family. The results can be
easily extended to time-variant target domains.
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• Based upon the general asymptotic bounds, we show
that the inappropriate prior will lead to the negative
transfer. That is, using data from the source domain
would hurt the performance on the target domain. To our
best knowledge, this is the first theoretical study on the
negative transfer perspective of online transfer learning.

• The logistic regression example is examined and simple
experiments confirm the effects of the prior and show that
the improper prior will lead to negative transfer.

II. PROBLEM FORMULATION AND MAIN RESULTS

Assume the source data Dm
s = (Z

(1)
s , · · · , Z(m)

s ) ∈ Zm are
given in batch while the target data are received sequentially
as Z(1)

t , Z
(2)
t , · · · , Z(k)

t , · · · where each sample takes value in
Z . Note that Z can be discrete or continuous. At each time
instant k, after having seen Dk−1

t = (Z
(1)
t , Z

(2)
t , · · · , Z(k−1)

t ),
we predict Z(k)

t using Dm
s and Dk−1

t with the predictor bk :
Zm ×Zk−1 → Ẑ . Note that Ẑ could be different from Z in
general, e.g., Ẑ is a quantized version of Z . We define the
loss function ` : Ẑ × Z → R+ that evaluates the prediction
performance. In this paper, we use the convention that capital
letters denote the random variables and small letters as their
realizations. We further make the following assumptions.

Assumption 1 (Parametric Distributions). We assume that
source and target data are generated independently in an
i.i.d. fashion. More precisely, the joint distribution of the data
sequence pairs Pθ∗s ,θ∗t (Dn

t , D
m
s ) can be written as

Pθ∗s ,θ∗t (Dn
t , D

m
s ) =

n∏
i=1

Pθ∗t (Z
(i)
t )

m∏
j=1

Pθ∗s (Z(j)
s ), (1)

where Pθ∗t and Pθ∗s are in a parametrized family of distribu-
tions P = {Pθ}θ∈Λ. Here Λ ⊆ Rd is some measurable space
and θ∗t and θ∗s are points in the interior of Λ.

After observing n target samples, we want to minimise the
corresponding expected regret defined as,

R(n) := Eθ∗s ,θ∗t

[
n∑
k=1

`
(
bk, Z

(k)
t

)
−

n∑
k=1

`(b∗k, Z
(k)
t )

]
, (2)

where b1 is learned from Dm
s and bk(k > 1) is the decision we

made based on both Dm
s and Dk−1

t but without the knowledge
of θ∗s and θ∗t . The predictor b∗k is the optimal decision at each
time k that can depend on true target distributions Pθ∗t . If
not otherwise specified, the notation Eθs,θt [·] (similar to Eθt [·]
and Eθs [·]) means the expectation is taken over all source and
target samples that are drawn from Pθs and Pθt .

A. Expected Regret Bounds

Given the above problem formulation, we begin by considering
the logarithm loss defined as follows.

Definition 1 (Logarithm Loss). Let the predictor bk be a
probability distribution over the sample z

(k)
t at time k, the

logarithm loss is defined as

`(bk, z
(k)
t ) = − log bk(z

(k)
t ). (3)

At each time k, we may view the predictor as a conditional
probability distribution bk(z

(k)
t ) = Q(z

(k)
t |Dk−1

t , Dm
s ), and

the optimal predictor b∗k is naturally given by the true target
distribution over z

(k)
t as b∗k(z

(k)
t ) = Pθ∗t (z

(k)
t ). Then the

expected regret till time n can be written explicitly as

Rlog(n) = Eθ∗s ,θ∗t

[
log

1

Q(Dn
t |Dm

s )
− log

1

Pθ∗t (Dn
t )

]
. (4)

The effect of source data is reflected in the conditional
distribution Q(Dn

t |Dm
s ). Concerning the choice of Q, we first

define Θs and Θt as random variables over Λ. Since Pθ∗s and
Pθ∗t are unknown, we assign a probability distribution ω over
Θs and Θt w.r.t. the Lebesgue measure to represent our prior
knowledge and update the posterior with the incoming data to
approximate the underlying distributions, which is known as
the mixture strategy [13], [15]. In particular, we choose the
predictor Q(Dn

t |Dm
s ) as

Q(Dn
t |Dm

s ) =

∫
Pθt,θs(D

n
t , D

m
s )ω(θt, θs)dθtdθs∫

Pθs(D
m
s )ω(θs)dθs

=

∫
Pθt(D

n
t )ω(θt|θs)dθtQ(θs|Dm

s )dθs, (5)

where ω(θs) is the marginal of ω(θs, θt). From Eq (5), the
mixture strategy quantitatively explains how transfer learning
is implemented via the posterior updates of θt from a Bayesian
perspective. Intuitively speaking, the posterior Q(θs|Dm

s )
firstly gives an estimate of θ∗s from the source data, then the
conditional prior ω(θt|θs) reflects our belief upon θ∗t given θs
estimated from source data. With the choice of Q(Dn

t |Dm
s ),

the expected regret can be explicitly characterized in the
following theorem.

Theorem 1 (Regret with Log-loss). With the mixture strategy
Q(Dn

t |Dm
s ), the expected regret in Eq (4) can be written as

Rlog(n) = Eθ∗s ,θ∗t

[
log

Pθ∗t (Dn
t )

Q(Dn
t |Dm

s )

]
= I(Dn

t ; Θt = θ∗t ,Θs = θ∗s |Dm
s ),

(6)

where I(Dn
t ; Θt = θ∗t ,Θs = θ∗s |Dm

s ) denotes the con-
ditional mutual information I(Dn

t ; Θt,Θs|Dm
s ) evaluated at

Θt = θ∗t ,Θs = θ∗s .

All proofs in this paper can be found in [16]. In many cases,
we need to consider the task-specific loss such as squared
loss, 0-1 loss and hinge, etc. For other general bounded loss
function `, we define the predictor at time k to be,

bk = argmin
b

EQ(Dkt ,D
m
s )

[
`(b, z

(k)
t )|Dm

s , D
k−1
t

]
, (7)

with the choice of the mixture strategy Q(Dk
t , D

m
s ) =∫

Pθt,θs(D
k
t , D

m
s )ω(θt, θs)dθtdθs for some prior ω. The op-

timal predictor is naturally given by,

b∗k = argmin
b

EPθ∗t (Dkt )

[
`(b, z

(k)
t )|Dk−1

t

]
. (8)

As a consequence, we arrive at the following theorem.

Theorem 2 (Bounds on General Loss). Assume the loss
function satisfies |`(b, z)−`(b∗, z)| ≤M for any observation z
and the predictors b, b∗. Then the true expected regret induced
by bk and b∗k in Eq (7) and (8) can be bounded as,

R(n) ≤M
√

2nI(Dn
t ; Θt = θ∗t ,Θs = θ∗s |Dm

s ). (9)

The above theorem implies that if the loss function is
bounded, with a certain prior ω, the regret induced by the



mixture strategy is also captured by CMI evaluated at Θ = θ∗t
and Θs = θ∗s . However, the bound in its current form is less
informative as it does not show what is the effect of the prior
ω and sample size m and n.

B. Asymptotic Analysis of CMI

To further investigate the effect of prior, we give an asymp-
totic analysis of CMI. First we make the regular assumptions
on parametric conditions [17], [18] and define the proper prior.
Assumption 2 (Parametric Condition). Assume the source and
target distributions Pθ∗s (Zs) and Pθ∗t (Zt) are twice continu-
ously differentiable at θ∗s and θ∗t for almost every Zs and Zt.
For any θt, θs ∈ Λ, there exist δs, δt > 0 satisfying,

Eθt

 sup
‖θt−θ∗t ‖≤δ

∣∣∣∣ ∂

∂θt,i
logPθt (Zt)

∣∣∣∣
 <∞ (10)

Eθs

 sup
‖θs−θ∗s‖≤δ

∣∣∣∣ ∂

∂θs,i
logPθs (Zs)

∣∣∣∣
 <∞ (11)

for i = 1, · · · , d. In addition, we assume,

Eθt

 sup
‖θt−θ∗t ‖≤δ

∣∣∣∣ ∂2

∂θi∂θj
logPθt (Zt)

∣∣∣∣2
 <∞ (12)

Eθs

 sup
‖θs−θ∗s‖≤δ

∣∣∣∣ ∂2

∂θi∂θj
logPθs (Zs)

∣∣∣∣2
 <∞ (13)

for any i, j = 1, · · · , d.

Definition 2 (Proper Prior). Given a prior ω(Θs,Θt), we say,
• the induced marginal density ω(Θs) is proper if it is

continuous and positive over the whole support Λ ⊆ Rd.
• the conditional density ω(Θt|Θs) is proper if there exist

some δs > 0 and δt > 0 such that ω(θt|θs) > 0 for any
θs and θt satisfying ‖θs − θ∗s‖ ≤ δs and ‖θt − θ∗t ‖ ≤ δt.

• ω(Θs,Θt) is proper if ω(Θs) and ω(Θt|Θs) are proper.
We also define the proper prior without the source as having
the continuous density ω̂(θt) > 0 over the whole support Λ.

If the distributions in parametric family Pθ satisfy the
Assumption 2 (e.g., the exponential families in [19]), with
the proper prior, we ensure that the posterior distribution of
Θt and Θs given Dn

t and Dm
s asymptotically concentrates on

neighborhoods of θ∗t and θ∗s , respectively. With definitions in
place, for the case where both Θs and Θt are scalars, we give
the asymptotic estimation for CMI as follows.
Theorem 3 (Asymptotic Estimation of CMI). Under Assump-
tions 1 and 2, for Λ = R and θ∗s 6= θ∗t , as n,m → ∞, the
mixture strategy with proper prior ω(Θs,Θt) yields,

I(Dnt ; Θt = θ∗t ,Θs = θ∗s |Dms )−
1

2
log

n

2πe
→

1

2
log It(θ

∗
t ) + log

1

ω(θ∗t |θ∗s )
,

(14)

where we define the Fisher information
EΘt

[
−∇2

Θt
logPΘt(Zt)

]
evaluated at Θt = θ∗t as It(θ∗t ).

Remark 1. Compared to the result without the source data
when target sample is abundant [18],

I(Dn
t ; Θt = θ∗t )− 1

2
log

n

2πe
→ 1

2
log It(θ

∗
t ) + log

1

ω̂(θ∗t )
(15)

for some prior ω̂(Θt), the difference between Eq (14) and
(15) is ω̂(θ∗t )

ω(θ∗t |θ∗s ) . It says that if the distribution ω can be chosen

such that ω̂(θ∗t )
ω(θ∗t |θ∗s ) < 1, the source data will help to reduce the

regret. However, it should be noted that ω is chosen without
knowing the exact value of θ∗t and θ∗s so it is not immediately
clear if this is always possible. We will show later that if the
conditional prior ω(θt|θs) is proper, it is always possible to
find a distribution such that ω̂(θ∗t )

ω(θ∗t |θ∗s ) < 1. On the contrary,
if the prior information between the source and target is
incorrect, we may always end up with ω̂(θ∗t )

ω(θ∗t |θ∗s ) > 1, which
is one way to interpret negative transfer.

Remark 2. Notice that the source samples change the con-
stant from log 1

ω̂(θt)
to log 1

ω(θt|θs) , which are independent
from n. Hence the effect of the source samples vanishes
asymptotically as n goes to infinity. However, the asymptotic
analysis is still useful for two reasons. Firstly, we will show
later that when both n and m approach infinity, the sample
complexity of the regret (i.e., how regret scales in terms of m
and n) can change, depending on how fast m and n grow
relative to each other. Secondly, our numerical results show
that the asymptotic bound is in fact very accurate even for
relatively small m and n.

Theorem 3 holds when the distributions are parametrized
by scalars. We extend to a more typical transfer learning
scenario where Θt,Θs ∈ Rd with d > 1 share some common
parameters Θc ∈ Rj for 0 ≤ j ≤ d. To illustrate, we can write
the parameters in the following way.

Θs = (Θc,1,Θc,2, · · · ,Θc,j , Θs,1, · · · ,Θs,d−j) = (Θc,Θsr)

Θt = (Θc,1,Θc,2, · · · ,Θc,j︸ ︷︷ ︸
common parameters

, Θt,1, · · · ,Θt,d−j)︸ ︷︷ ︸
task-specific parameters

= (Θc,Θtr)

where Θc ∈ Rj denotes the common parameter vector and
Θsr,Θtr ∈ Rd−j are task-specific parameter vectors. Then
we reach the following theorem that gives the asymptotic
normality of the conditional mutual information with d > 1.

Theorem 4 (Asymptotic Estimation for General Parametriza-
tion). Under Assumptions 1 and 2, with Θs,Θt ∈ Rd defined
above and as n,m → ∞, the mixture strategy with proper
prior ω(Θs,Θt) yields,

I(Dn
t ; Θt = θ∗t ,Θs = θ∗s |Dm

s )− 1

2
log det(Ij×j +

n

m
∆t∆

−1
s )

− 1

2
log det(nIt(θ

∗
tr))→

d− j
2

log
1

2πe
+ log

1

ω(θ∗t |θ∗s )
, (16)

where ∆s = Ics(θ
∗
c ) − Ics(θ∗c , θ∗sr)I−1

s (θ∗sr)I
T
cs(θ

∗
c , θ
∗
sr) and

∆t = Ict(θ
∗
c )− Ict(θ∗c , θ∗tr)I−1

t (θ∗tr)I
T
ct(θ

∗
c , θ
∗
tr), Ij×j denotes

the identity matrix with size j and θ∗ = (θ∗c , θ
∗
sr, θ

∗
tr) denotes

the true parameters. With a little abuse of notation, we define
the fisher information matrix as

Ics(θ
∗
c ) = −Eθ∗s

[
∇2

Θc
logP (Zs|Θc, θ∗sr)

] ∣∣∣
Θc=θ∗c

∈ Rj×j

Ict(θ
∗
c ) = −Eθ∗t

[
∇2

Θc
logP (Zt|Θc, θ∗tr)

] ∣∣∣
Θc=θ∗c

∈ Rj×j

Is(θ
∗
sr) = −Eθ∗s

[
∇2

Θsr
logP (Zs|θ∗c ,Θsr)

] ∣∣∣
Θsr=θ∗sr

∈ R(d−j)×(d−j)

It(θ
∗
tr) = −Eθ∗t

[
∇2

Θtr
logP (Zt|θ∗c ,Θtr)

] ∣∣∣
Θtr=θ∗tr

∈ R(d−j)×(d−j)



Ics(θ
∗
c , θ
∗
sr) = −Eθ∗s

[
∂ logP (Zs|θ∗c , θ∗sr)

∂Θc,i∂Θsr,k

]
i = 1, · · · , j,

k = 1, · · · , d− j

∈ Rj×(d−j)

Ict(θ
∗
c , θ
∗
tr) = −Eθ∗t

[
∂ logP (Zt|θ∗c , θ∗tr)
∂Θc,i∂Θtr,k

]
i = 1, · · · , j,

k = 1, · · · , d− j

∈ Rj×(d−j)

Remark 3. In the above expression, we can intuitively in-
terpret the term 1

2 log det(Ij×j + n
m∆t∆

−1
s ) as the "learning

cost" of θc, which is captured by the ratio n
m . If m is

• sublinear in n, the rate is O(log(nj)) and source samples
do not improve the learning performance

• linear in n, the cost reduces to O(1).
• superlinear in n, the rate is o(1), and abundant source

samples indeed improve the performance and the cost
vanishes in this case.

While the learning cost of θtr is relied on 1
2 log det(nIt(θ

∗
tr))

and the prior ω(θ∗t |θ∗s), whereas the prior knowledge can only
change the constant but does not change the rate.

Remark 4. As a special case, if there is no common param-
eters (j = 0), then as both m and n are sufficiently large,

I(Dn
t ; Θt = θ∗t ,Θs = θ∗s |Dm

s )− d

2
log

n

2πe

→ 1

2
log det(It(θ

∗
tr)) + log

1

ω(θ∗t |θ∗s )
.

Let d = 1, we can recover the results in Theorem 3
and the knowledge transfer is only reflected on the prior
knowledge ω(θ∗t |θ∗s). If the number of the common parameters
is d (j = d), that is, the source and target distributions
are characterized by the same parameters, which yields the
asymptotic estimation as,

I(Dn
t ; Θt = θ∗t ,Θs = θ∗s |Dm

s )− 1

2
log det(Id×d +

n

m
Ict(θ

∗
c )I−1

cs (θ∗c ))

→ log
1

ω(θ∗t |θ∗s )
.

Under this case, the regret depends on the ratio n
m and prior

ω(θ∗t |θ∗s) as discussed in Remark 3.

C. Time-variant Target Domains
In the above problem, we assume that the target parameter

θ∗t stays fixed for all time. However, in some applications, the
target distribution may change over time, and this motivates
us to consider the time-variant transfer learning scenarios. Let
the time evolving target data be parametrized by θ∗t,l where
at each index l ∈ N+, we will receive nl target samples Z(i)

t,l
drawn from the distribution Pθ∗t,l . It is common to assume that
θ∗t,l only depends on the previous parameter θ∗t,l−1. At index
k, we are interested in minimising the expected regret

R(k) =
k∑
l=1

Eθ∗s ,θ∗t,l,θ∗t,l−1

[
nl∑
i=1

`
(
bi, Z

(i)
t,l

)
−

nl∑
i=1

`(b∗i , Z
(i)
t,l )

]
.

(17)

Here bi is chosen to be the mixture strategy over θ∗s , θ
∗
t,l, and

θ∗t,l−1. Combining Theorem 2 and 4, one can easily reach the
asymptotic estimation of the expected regret.

Theorem 5 (Time-variant Target Regret Bounds). Given the
time-variant target domain described above, suppose that
conditions in Therorem 2 and Assumptions 1 and 2 hold for
each θ∗t,k and θ∗s . For l = 1, 2, · · · , k, we further assume that

source parameters will share j parameters with every θ∗t,l, and
θ∗t,l, θ

∗
t,l−1 have cl common parameters. As nl,m → ∞, the

mixture strategy with proper prior ω(θs, θt,l, θt,l−1) yields,

R(k) ≤M

(
k

k∑
l=1

nl
(

log det

(
Ij×j +

nl
m+ nl−1

∆ct∆
−1
cst

)
+ log det(Icl×cl +

nl
nl−1

∆t∆
−1
t−1) + log det(nlIt,l(θ

∗
tr,l))

+ (d− j − cl) log
1

2πe
+

2

ω(θ∗t,l|θ∗t,l−1, θ
∗
s )

)) 1
2

.

In this case, the prior knowledge ω(θ∗t,l|θ∗t,l−1, θ
∗
s) and the

common parameters among which determine the prediction
performance. Due to the space limit, we omit some analogous
definitions and settings here, but readers can refer to the
supplementary proof [16] for more details and insights.

D. Improper Prior and Negative Transfer

As previously discussed, ω(Θs,Θt) should be chosen prop-
erly so that the posterior updating will asymptotically converge
to the true parameter θ∗s and θ∗t . However, if the prior distribu-
tion (particularly ω(Θt|Θs)) is imposed improperly, the extra
source data do not necessarily mean that our prediction for
target data can always be improved. Roughly speaking, if our
prior knowledge on θ∗s and θ∗t is incorrect, under our scheme,
this would translate to an improper prior distribution for the
mixture strategy. We will show that with an improper prior,
the extra source data will in fact cause a higher regret (i. e.
worse performance) compared to the case without source data.

Proposition 1 (Negative Transfer). Let Rω(Θs,Θt)(n,m) de-
note the regret induced by the mixture strategy Q(Dn

t |Dm
s )

with the prior ω(Θs,Θt) and Rω̂(Θt)(n) denote the regret
induced by Q̂(Dn

t ) with the prior ω̂(Θt). If ω(Θt|Θs) is
improper1, then for any proper ω̂(Θt), the following inequality
holds when both n and m are sufficiently large,

Rω(Θs,Θt)(n,m) > Rω̂(Θt)(n). (18)

Proof Sketch. • By subtraction, we need to prove that,

Eθ∗t ,θ∗s

[
log

Q(Dm
s )Q̂(Dn

t )

Q(Dn
t , D

m
s )

]
> 0,

• Let us examine the logarithm term in the expectation as,

log
Q(Dm

s )Q̂(Dn
t )

Q(Dn
t , D

m
s )

= log
1∫ ∫

Q̂(θt|Dn
t )ω(θt|θs)

ω̂(θt)
dθtQ(θs|Dm

s )dθs
.

• It can be found that the difference is characterized by the
ratio ω(θt|θs)

ω̂(θt)
and improper ω leads to zero mass near θ∗t

compared to proper ω̂, thus a higher regret.

For example, let Z = {0, 1} and assume Θs and Θt are
the probabilities that the source and target samples take value
in 1. Also assume that our (incorrect) prior knowledge on
the parameters is that |θs − θt| ≤ 0.1 given any θs ∈ Λ.
Suppose the true underlying parameters are θ∗t = 0.6 and

1We say ω(Θt|Θs) is improper if it does not satisfy conditions in Def 2.



θ∗s = 0.8. In this case, even if knowing θ∗s precisely, one
can never end up with the correct estimation for θ∗t even with
abundant target samples if the prior ω(θt|θs) is improper. As a
consequence, the regret becomes higher compared to the case
without knowing such prior. For those who are interested in
detailed analysis, we refer to [16] for more theoretical and
experimental results.

In contrast, if ω(Θs,Θt) is chosen properly, we can always
find a prior such that the knowledge transfer from source data
encourages lower regret, namely, the positive transfer.

Proposition 2 (Positive Transfer). For any proper ω̂(Θt),
there always exists a proper prior ω(Θs,Θt) that leads to
the following inequality when both n and m are sufficiently
large,

Rω(Θs,Θt)(n,m) < Rω̂(Θt)(n). (19)

In our claim, we can always find a proper prior ω(Θs,Θt)
whose marginal ω(Θt|Θs) encourages a tighter support over
Θt. In other words, making use of source data appropriately
can narrow down the uncertainty range over Θt. It then follows
that such prior assigns more concentrated mass around θ∗t ,
which reduces the expected regret.

III. EXAMPLES

Consider a logistic regression problem in a 2-dimensional
space. For the given parameter θ ∈ [0, 1]2 and Zi =
(Xi, Yi) ∈ R2 × {0, 1}, each label Yi ∈ {0, 1}, is generated
from a Bernoulli distribution with probability p(Yi = 1) =

1

1+e−θ
TXi

. Suppose that the source and target input features

X
(k)
s and X(k)

t are drawn from the same normal distribution

N (

[
5
−5

]
,

[
1 0
0 1

]
). The loss function is then given by

`(θ, Zi) := −(Yi log(σ(θTXi)) + (1− Yi) log(1− σ(θTXi))),

where σ(x) = 1
1+e−x . Let θ∗t = (0.3, 0.5) and θ∗s = (0.2, 0.4)

denote the true parameters for the target and source domains.
Given m = 5000, let the marginal prior ω(Θs) be uniformly
distributed over [0, 1]2 and our prior knowledge ω(Θt|Θs)
assumes that Θt is normally distributed with the mean of Θs

and covariance of
[
c2 0
0 c2

]
, here c represents the prior belief

on Θt such that smaller c implies Θt is closer to Θs and vice
versa. To show the usefulness of the source data, we compare
with the target only case (m = 0) where we assume the prior
ω̂(Θt) is uniformly distributed over [0, 1]2.

After receiving n target samples, we plot different posteriors
to see the effect of the mixture strategy induced by the chosen
prior. From Figure 2, given sufficient source data, the posterior
of Θs will give a precise estimation of θ∗s and the density will
mostly concentrate around [0.2, 0.4]. While there is a lack of
target samples (n is small), the posterior Q̂(Θt|Dn

t ) without
the source is relatively scattered and the density around θ∗t is
quite low. On the contrary, with the prior knowledge ω(Θt|Θs)
and small c = 0.1, the posterior Q(Θt|Dm

s , D
n
t ) will be

concentrated more around θ∗t as source and target parameters

Fig. 2. The posterior of θs and θt given Dms and Dnt under different prior
belief c and target sample size n

are particularly close. When c increases to 1, the source data
is no longer helpful as Θt is roughly distributed uniformly on
[0, 1]2 and the posterior behaves similarly to target only case.

To further demonstrate our theoretical results, we plot the
expected regrets in Figure 3 for positive and negative transfer
cases, and we also plot the asymptotic estimation of CMI in
dashed lines from Theorem 1 and 4 to numerically evaluate the
difference. From the left figure, it is observed that introducing
the source indeed yields lower regret, which fits our intuition
from the posteriors. Even for small n(≈ 40), CMI captures
the regret quite well and the gap is roughly log

ω(θ∗t |θ
∗
s )

ω(θ∗t ) as
noted in Remark 1. In contrast, we also examine the negative
transfer case with θ∗s = [0.8, 0.2] where the results are shown
in the right figure. With this specific choice of θ∗s , the prior
distribution ω(θ∗c |θ∗s) in this case has an extremely low density
and the estimation will hardly approach the true parameters.
As a result, the negative transfer happens and source samples
will hurt the performance instead. It also appears that CMI
captures this trend well when n goes reasonably large (≈ 80).

(a) Positive Transfer (b) Negative Transfer

Fig. 3. The comparisons of the expected regret R(n) of the positive
transfer with θ∗s = [0.2, 0.4] (left) and the negative transfer (right) with
θ∗s = [0.8, 0.2] under the common settings where θ∗t = [0.3, 0.5] and
c = 0.1. The results are averaged over 200 experiments.

Overall, in both positive and negative transfer cases, the
gaps between the regrets are mainly reflected on the prior
knowledge ω(θ∗t |θ∗s) when n is reasonably large as mentioned
in Remark 1 and 3, which experimentally confirms Theorem 4.
Moreover, it shows that the asymptotic bounds are still rea-
sonably accurate in the case when n and m are small.
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