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Abstract—This paper investigates the problem of finding an
optimal nonbinary index assignment from M quantization levels
of a maximum entropy scalar quantizer to M -PSK symbols
transmitted over a symmetric memoryless channel with ad-
ditive noise following decreasing probability density function
(such as the AWGN channel) so as to minimize the channel
mean-squared distortion. The so-called zigzag mapping under
maximum-likelihood (ML) decoding was known to be asymp-
totically optimal, but the problem of determining the optimal
index assignment for any given signal-to-noise ratio (SNR) is still
open. Based on a generalized version of the Hardy-Littlewood
convolution-rearrangement inequality, we prove that the zigzag
mapping under ML decoding is optimal for all SNRs. It is further
proved that the same optimality results also hold under minimum
mean-square-error (MMSE) decoding. Numerical results are
presented to verify our optimality results and to demonstrate the
performance gain of the optimal M -ary index assignment over
the state-of-the-art binary counterpart for the case of 8-PSK over
the AWGN channel.

I. INTRODUCTION

Index assignment (IA) is a low-complexity approach for
joint source-channel coding design. The classical binary IA
problem aims to assign bit labels to the quantization code
vectors in a way to ensure that any two code vectors with a
small Euclidean distance have their corresponding bit labels
close in the Hamming space. Therefore, if the transmitted bit
labels are corrupted by noise and decoded erroneously at the
receiver, the resulting distortion may not be too large. Some
important results on the optimal binary IA problem are well-
known. For the maximum entropy scalar quantizers and the bi-
nary symmetric channel (BSC), the natural binary code (NBC)
is an optimal IA for all crossover probabilities, in the sense of
minimizing the channel mean-squared distortion (MSD) [1],
[2]. For general quantizers and discrete memoryless channels
(DMC) with nonbinary channel symbols, lower bounds for the
channel MSD were studied in [3], [4]. Generally speaking,
finding the optimal IA is known to be NP-hard [3]. To the
best of our knowledge, there are few previous works on the
optimal IA problem, except for the aforementioned binary case
and the specific nonbinary case to be described next.

In [5], the nonbinary IA problem of mapping the M levels
of a maximum entropy scalar quantizer to the M -ary phase
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shift keying (M -PSK) symbols transmitted over the additive
white Gaussian noise (AWGN) channel was addressed. It was
proved that the so-called zigzag mapping constructed therein
is an asymptotically optimal IA at a sufficiently high signal-to-
noise ratio (SNR) when a maximum-likelihood (ML) decoder
is used. As an extension of the work, in [6] the authors
proposed a near-optimal index assignment scheme for ML-
level quantizers to M -PSK symbols at a sufficiently high SNR.
Besides the setting under ML decoding, the performance of the
zigzag mapping for M -PSK with minimum mean-square-error
(MMSE) decoding at a sufficiently high SNR was investigated
in [7]. However, the corresponding optimal IA problem for any
given SNR is still open. In particular, it is unclear if different
IA constructions are needed for different SNRs.

Rearrangement inequalities indicate permutations of two or
more functions or sets that optimize an objective function
involving them. They are powerful tools in function analysis
and are widely used in the proof of other inequalities [8].
For instance, classical rearrangement inequalities have been
applied to prove the existence and uniqueness of the ground
states of the Schrödinger equation in quantum mechanics [9].
For a convolution involving three continuous functions, the
Riesz convolution-rearrangement inequality characterizes the
rearrangements of the three functions that maximize the convo-
lution [10]. It has found applications in information theory and
communication problems, such as the network optimization
[11], power entropy inequality [8], and Cover’s problem for
Gaussian relay channels [12]. Its discrete version was first
developed by Hardy and Littlewood [13, Theorem 371] for
characterizing the rearrangement of two sets. The inequality
was extended to prime cyclic groups in [14] and then it
was applied to the proof of discrete entropy inequalities in
[15]. In [16], the Hardy-Littlewood convolution-rearrangement
inequality was also generalized on discrete metric spaces.
Recently, another discrete version of the Riesz rearrangement
inequality on Hamming sphere was derived and applied to
solve Cover’s problem for the binary symmetric relay channel
[17]. Furthermore, many results in majorization theory which
plays an important role in optimization are established by
using rearrangement inequalities [18]. Therefore, it is very
interesting to investigate rearrangement inequalities with ap-
plications to coding and information theory. In this work, we
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relate the IA problem for M -PSK under both ML decoding
and MMSE decoding to a rearrangement inequality to settle
the aforementioned problem for any given SNR.

The paper is structured as follows. In the next section,
we state the problem formulation of index assignment for
M -PSK under ML decoding. In Section III, we provide a
discrete convolution-rearrangement inequality and apply it to
the IA problem. In Section IV, we show that the optimal
index assignment for M -PSK under MMSE decoding can also
be proved by the inequality. Finally, simulation results are
demonstrated to verify the optimality of the proposed IA under
both ML decoding and MMSE decoding.

II. PROBLEM FORMULATION

In this section, we give the problem formulation for the
index assignment under ML decoding. Consider an M -level
maximum entropy scalar quantizer characterized by a set of
quantization levels (i.e. the codebook) Q = {q0, · · · , qM−1},
where qi ∈ R with 0 ≤ q0 < q1 < . . . < qM−1. The maximum
entropy quantizer outputs each quantization level with an equal
probability of 1/M . An M -PSK constellation is defined as

S , {sk = ej2πk/M |k = 0, 1, . . . ,M − 1} , (1)

where j ,
√
−1. To describe the nonbinary index assignment

for M -PSK, let us define a vector

π = [π0, π1, . . . , πM−2, πM−1] . (2)

It is a permutation of the quantization indices, i.e., πk ∈
{0, · · · ,M−1}. The IA is a bijective mapping between the
quantizer and the constellation in a way that each quantization
level qπk

is assigned to a distinct M -PSK symbol sk.
Each quantization level is modulated as an M -PSK symbol

following the bijective mapping π, and the M -PSK symbol is
then transmitted over a memoyless channel with an additive
noise following a symmetrically decreasing probability den-
sity function (such as the AWGN channel). At the receiver,
an M -PSK demodulator detects the most likely transmitted
index based on the received signal and the quantizer decoder
reconstructs the source symbol by producing the quantization
level corresponding to the detected index. The channel MSD
is defined as

DC(π) =
1

M

M−1∑
i=0

M−1∑
j=0

P (sj |si)(qπi − qπj )2 , (3)

where P (sj |si) is the probability that M -PSK symbol sj is
detected conditioned on si is transmitted. The optimal IA
problem is to find π that minimizes DC(π) over the set of
all possible permutations. It is worth noting that the zigzag
mapping [5] is produced by the permutation

πzz , [0, 1, 3, . . . ,M − 1, . . . , 6, 4, 2] .

Note that transition probabilities of the channel satisfy
M−1∑
i=0

P (sj |si) =

M−1∑
j=0

P (sj |si) = 1 . (4)

The channel MSD can be written as

DC(π) =
2

M

M−1∑
i=0

q2i −
2

M

M−1∑
i=0

M−1∑
j=0

qπiqπjP (sj |si) . (5)

For a given quantizer, the first term of (5) is fixed. By defining
pi,j , P (sj |si), the nonbinary index assignment problem can
be formulated as

max
π∈P

M−1∑
i=0

M−1∑
j=0

qπi
qπj

pi,j , (6)

where P denotes the set of all possible M -ary permutations.

III. OPTIMAL INDEX ASSIGNMENT BASED ON A DISCRETE
CONVOLUTION-REARRANGEMENT INEQUALITY

For M -PSK transmission, the channel matrix P of the
resulted M -ary DMC always satisfies the following conditions


pi,j ≥ 0, (7a)
pi,j = pi′,j′ , d(i, j) = d(i′, j′), (7b)
pi,j ≥ pi′,j′ , d(i, j) < d(i′, j′) , (7c)

where 0 ≤ i, j, i′,j′ ≤M−1, and d(i, j) is defined by

d(i, j) , min{(i− j) mod M,M −
(
(i− j) mod M

)
} , (8)

where the mod operation returns an integer between 0 and
M − 1.

Note that P is a non-negative circulant matrix, i.e., pi,j is a
non-negative function involving two integers i, j and its value
depends on d(i, j) only. For convenience of notation we define
a monotonically decreasing function k(d(i, j)) , pi,j . Let us
define a vector x by

x , [x−m, x−m+1, . . . , x0, . . . , xn−1, xn] , (9)

where m , b(M−1)/2c, n , bM/2c and xi , qπi+m
. Then

(6) can be rewritten in a discrete convolution form

max
x∈PQ

n∑
i=−m

n∑
j=−m

xik(d(i, j))xj , (10)

where PQ is the set of all orderings of quantizer codebook Q.
To solve the problem (10), we give a discrete convolution-

rearrangement inequality in the following theorem.

Theorem 1: Suppose M is a positive integer. Let ZM =
{d 1−M2 e, d

1−M
2 e + 1, . . . , bM2 c}. Let k be a decreasing non-

negative function on [0,∞) and let d(i, j) be defined by (8).
For any two non-negative functions f and g on ZM , we have∑
i,j∈ZM

f(i)k(d(i, j))g(j) ≤
∑

i,j∈ZM

f?(i)k(d(i, j))g?(j) , (11)

where f? is a discrete symmetric decreasing rearrangement of
f such that f? is derived from a permutation on the set of
function values of f and satisfies

f?(0) ≥ f?(1) ≥ f?(−1) ≥ f?(2) ≥ f?(−2) ≥ . . .

≥ f?(bM
2
c) ≥ f?(d1−M

2
e), M is odd ,

f?(0) ≥ f?(1) ≥ f?(−1) ≥ f?(2) ≥ f?(−2) ≥ . . .

≥ f?(d1−M
2
e) ≥ f?(bM

2
c), M is even .



For ease of understanding, we provide a simple example
with M = 6. Let us consider a non-negative monotonically
decreasing function k(d(i, j)) = e−d(i,j) with integers i, j ∈
[−2, 3] and consider f and g as{

f(i) = i2,

g(i) = M + 2i,
i = −2,−1, . . . , 2, 3 .

Denotes by f a vector whose i-th element is f(i), in which
i = −2,−1, . . . , 2, 3. Two vectors associated with f and g are

f = [4, 1, 0, 1, 4, 9], g = [2, 4, 6, 8, 10, 12] .

We want to find orderings (i.e., permutations) of f and g that
maximize the discrete convolution on the left-hand side of
(11). Note that there are M elements in f and g, and there
are M ! orderings of f and g, respectively. Among all of the
M !×M ! orderings, the one following

f? = [1, 4, 9, 4, 1, 0], g? = [4, 8, 12, 10, 6, 2] ,

gives the maximum discrete convolution value.
Remark 1: An anonymous reviewer points out that Theo-

rem 1 we derived is a rediscovery of [16, Theorem 5.1]. Due to
space limitation, readers can find our proof in the full version
of this paper [19].

The major difference of Theorem 1 and the Hardy-
Littlewood convolution-rearrangement inequality [13, Theo-
rem 371] is the definition of d(i, j). For Theorem 1, if we
consider a graph composed of M points joined together in a
circle, then d(i, j) agrees with the graphic distance between
the i-th and the j-th vertices on the circle. Therefore, d(i, j)
is a periodic function of i − j with period M . However, in
[13, Theorem 371] d(i, j) is symmetrically increasing with
i−j. It is worth noting that the Hardy-Littlewood convolution-
rearrangement inequality [13, Theorem 371] is a special case
of Theorem 1 and can be obtained by letting the number of
points on the discrete circle graph tend to infinity.

According to Theorem 1, the objective function of (10)
achieves its maximum when x is ordered as

x0 ≥ x1 ≥ x−1 ≥ x2 ≥ x−2 ≥ . . . , (12)

where . . . indicates that we keep on going until we exhaust
all integers in ZM .

The optimal solution for (6) can be consequently found as{
π = [0, 2, . . . ,M − 1,M − 2, . . . , 1], for odd M,

π = [1, 3, . . . ,M − 1,M − 2, . . . , 0], for even M.
(13)

Finally, we have Theorem 2 for the optimal IA for M -PSK
under ML decoding.

Theorem 2: For maximum entropy scalar quantizers and
M -PSK transmission over a memoryless channel with additive
noise following a symmetrically decreasing probability density
function, the optimal IA under ML decoding for minimizing
channel MSD is{

[q0, q2, . . . , qM−1, qM−2, . . . , q1], for odd M,

[q1, q3, . . . , qM−1, qM−2, . . . , q0], for even M.
(14)

In [5], a set of distortion-preserving transforms for M -PSK
are introduced. Given any IA, cyclically shifting the indices
to the right, i.e., [q1, q3, . . . , q2, q0]→ [q0, q1, q3, . . . , q2], does
not change the channel MSD. Besides, a reflection operation
[q2, q4, . . . , q1, q0]→ [q0, q1, . . . , q4, q2] does not influence the
channel MSD. Note that the IA for even M in (14) can
be transformed to the zigzag mapping [5] by a cyclic shift
operation, and the IA for odd M in (14) can be transformed to
the zigzag mapping by a reflection operation and a cyclic shift
operation. Therefore, the zigzag mapping under ML decoding
is proved to be optimal for all SNRs.

IV. OPTIMAL INDEX ASSIGNMENT FOR M -PSK UNDER
MMSE DECODING

In this section, the optimal IA for M -PSK under MMSE
decoding is investigated. Different from the ML decoder that
maps the detected M -PSK symbol back to a quantization level
following the IA, we can alternatively consider an MMSE
decoder which computes and outputs yj based on detected
symbol sj by

yj = E(q|sj) =

∑M−1
k=0

1
M qπk

P (sj |sk)∑M−1
k=0

1
M P (sj |sk)

, (15)

and the channel MSD is

DC(π) =
1

M

M−1∑
i=0

M−1∑
j=0

P (sj |si)(qπi
− yj)2 . (16)

According to (4), the channel MSD is formulated as

DC(π) =
1

M

(M−1∑
i=0

q2i − 2

M−1∑
j=0

M−1∑
i=0

P (sj |si)qπiyj +

M−1∑
j=0

y2j

)
=

1

M

M−1∑
i=0

q2i −
1

M

M−1∑
j=0

(M−1∑
k=0

qπk
P (sj |sk)

)2
.

(17)
Letting pk,j = P (sj |sk), then minimizing the channel MSD
is equivalent to

max
π∈P

M−1∑
j=0

(M−1∑
k=0

qπk
pk,j

)2
. (18)

And it can be simplified as

max
π∈P

M−1∑
i=0

M−1∑
j=0

qπi
qπj

hi,j , (19)

where H = PPT .
The similarity between (19) and (6) gives us the insight to

solve (19) by Theorem 1. For this purpose, we investigate the
property of H and get the following lemma.

Lemma 1: Suppose that the conditions in (7) hold for two
square matrices Q and R. Then the conditions in (7) also hold
for the matrix QRT .

Proof: The condition (7a) holds for the matrix QRT since
the product of two non-negative matrices is also non-negative.



Let us define H , QRT . Note that Q and R are symmetric
circulant matrices since (7b) holds for them. According to [20],
H is also a symmetric circulant matrix. This fact implies that
(7b) also holds for H .

To prove the condition (7c), let us define two function
compositions by kq(d(i, j)) , qi,j and kr(d(i, j)) , ri,j
for 1 ≤ i, j ≤ M , where kr and kq are two monotonically
decreasing functions, and d(i, j) is defined by (8). Because of
(7b), the two function compositions can represent all entries
in Q and R. Entries of H are computed by

hi,j =

M∑
k=1

qi,krj,k =

M∑
k=1

kq(d(i, k))kr(d(j, k)) . (20)

The condition (7b) holds iff the following condition

hi,j ≥ hi′,j′ , if d(i′, j′) = d(i, j) + 1 (21)

holds. Defining ∆ii′jj′ , hi,j − hi′,j′ . For the sake of
convenience, subscripts of ∆ will be omitted in the remainder
of the paper. Then based on (20) we have

∆ =

M∑
k=1

kq(d(i, k))kr(d(j, k))−
M∑
k=1

kq(d(i′, k))kr(d(j′, k))

(a)
=

M∑
k=1

kq(d(0, k))kr(d(j − i, k))

−
M∑
k=1

kq(d(0, k))kr(d(j′ − i′, k)) ,

(22)
where equality (a) follows from the fact that

M∑
k=1

kq(d(i, k))kr(d(j, k)) =

M−i∑
k=1−i

kq(d(0, k))kr(d(j−i, k)) ,

and d(i, k) = d(i, k +M).
According to (8), if i and j are integers between 1 and M ,

d(i, j) is equivalent to the following two cases

d(i, j) =

{
|j − i|, |j − i| ≤M/2 ,

M − |j − i|, |j − i| > M/2 .

Then the condition d(i′, j′) = d(i, j) + 1 in (21) is equivalent
to the following four cases
|j′ − i′| = |j − i|+ 1, |j − i| < M/2, |j′ − i′| ≤M/2 ,

M − |j′ − i′| = |j − i|+ 1, |j − i| < M/2, |j′ − i′| ≥M/2 ,

|j′ − i′| =M − |j − i|+ 1, |j − i| > M/2, |j′ − i′| ≤M/2 ,

|j′ − i′| = |j − i| − 1, |j − i| > M/2, |j′ − i′| ≥M/2 .
(23)

For a given |j − i|, the first two cases have the same value of
d(i′, j′). Because of (7b), the two cases also have the same
value of hi′,j′ . For proving (21), it is sufficient to examine one
of them for |j− i| < M/2. Similarly, we just need to consider
one of the last two cases for |j − i| > M/2.

Then ∆ can be sufficiently examined by the first and the
last cases in (23). We give the proof of the first case. The last
case can be proved similarly. Since H is symmetric, let us

assume i− j ≥ 0 and i′ − j′ ≥ 0 and get j′ − i′ = j − i− 1.
Then (22) is equivalent to

∆ =

M∑
k=1

kq(d(0, k))kr(d(j − i, k))

−
M∑
k=1

kq(d(0, k − 1))kr(d(j − i, k)) ,

(24)

which follows from the fact that
M∑
k=1

kq(d(0, k))kr(d(j−i−1, k))

=

M+1∑
k=2

kq(d(0, k − 1))kr(d(j − i, k)) ,

and d(i, k) = d(i, k +M).
Assume M is even. Note that the case of odd M can be

proved similarly. From (24) we have

∆ =

M∑
k=1

(
kq(d(0, k))− kq(d(0, k−1))

)
kr(d(j−i, k))

=

M
2∑

k=1

(
kq(d(0, k))− kq(d(0, k−1))

)
kr(d(j−i, k))

+

M∑
k=M

2 +1

(
kq(d(0, k))− kq(d(0, k−1))

)
kr(d(j−i, k))

(b)
=

M
2∑

k=1

(
kq(d(0, k))− kq(d(0, k−1))

)
kr(d(j−i, k))

+

M
2∑

k′=1

(
kq(d(0, k′−1))− kq(d(0, k′))

)
kr(d(j−i, 1−k′))

=

M
2∑

k=1

(
kq(d(0, k))− kq(d(0, k − 1))

)
×
(
kr(d(j − i, k))− kr(d(j − i, 1− k))

)
.

where equality (b) is obtained by letting k′ = M − k + 1. It
is obvious that

kq(d(0, k))− kq(d(0, k − 1)) ≤ 0, 1 ≤ k ≤M/2 .

Beside, we have

kr(d(j − i, k))− kr(d(j − i, 1− k)) ≤ 0, 1 ≤ k ≤M/2 ,

which follows from the fact that

d(j − i, k) ≥ d(j − i, 1− k), 0 ≤ i− j < M/2 .

Therefore, we have ∆ ≥ 0. The condition (7c) is proved
consequently.

According to Lemma 1, the optimal IA problem for M -PSK
under MMSE decoding can also be solved by the Theorem 1.
We have Theorem 3 for the optimal IA.



Theorem 3: For maximum entropy scalar quantizers and
M -PSK transmission over a memoryless channel with additive
noise following a symmetrically decreasing probability density
function, the zigzag mapping is the optimal IA under MMSE
decoding.

V. NUMERICAL RESULTS

To verify the optimality of the zigzag mapping, numerical
results are demonstrated to compare the MSD performance
of the zigzag mapping with the optimal mapping by the
exhaustive search. Real-valued source symbols following a
uniform distribution over [0, 1] are generated. The source
symbols are then quantized by an M -level uniform scalar
quantizer. The M -level quantized symbols are mapped to M -
PSK symbols following an index assignment. M -PSK symbols
are transmitted over the AWGN channel. After ML or MMSE
decoding, the source data are reconstructed. To show that
the zigzag mapping is optimal at all SNRs, we perform an
exhaustive search for each simulated SNR separately.

To show the gain of the nonbinary index assignment, we
also compare its performance with the state-of-the-art binary
counterpart. To modulate the bits as M -PSK symbols, Gray
code is used to minimize the bit error rate of the resultant BSC.
In binary index assignment design for maximum entropy scalar
quantizers and the BSC, the NBC is known to be optimal under
both ML decoding [1] and MMSE decoding [2]. Therefore, the
NBC-Gray mapping is considered as the binary counterpart.
To make the equivalent BSC from the M -PSK transmission
memoryless, we assume an ideal bit interleaver to eliminate
the correlation among all Gray coded bits.

Figure 1 and Figure 2 show channel MSD performances
under ML decoding and MMSE decoding, respectively. To
verify the optimality of the zigzag mapping at all SNRs, we
also provide results at low SNRs. Here we only provide the
results for M = 8 since the search space (which consists of
M ! candidates) has a size that grows exponentially with M .

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-2

10-1 zigzag mapping
NBC-Gray mapping
exhaustive search

Fig. 1. Channel MSD of the zigzag mapping, the NBC-Gray mapping and the
optimal mapping exhaustively search for each SNR for 8-PSK (i.e., M = 8)
under ML decoding in AWGN channel.

-10 -8 -6 -4 -2 0 2 4 6 8 10

10-2

10-1

zigzag mapping
NBC-Gray mapping
exhaustive search

Fig. 2. Channel MSD of the zigzag mapping, the NBC-Gray mapping and the
optimal mapping exhaustively search for each SNR for 8-PSK (i.e., M = 8)
under MMSE decoding in AWGN channel.

From the figures, the performances of the zigzag mapping
and the exhaustive search mapping are always the same.
We also checked exhaustive search IAs for all simulated
SNRs. They are the same as the zigzag mapping or can be
transformed to the zigzag mapping by distortion-preserving
transforms in [5]. Besides, the performance gain of the optimal
zigzag mapping over that of the NBC-Gray mapping is signif-
icant. The SNR gains are up to around 3 dB under both ML
and MMSE decoding. It is also worth noting that the channel
MSD under MMSE decoding outperforms the one under ML
decoding, especially at low SNRs.

VI. CONCLUSION

A discrete convolution-rearrangement inequality was re-
discovered. The inequality was applied to settle the opti-
mal nonbinary index assignment problem for the M -level
maximum entropy scalar quantizer and the M -PSK over a
memoryless channel. For both ML and MMSE decoding, the
zigzag mapping has been proved to be optimal for all SNRs.
Simulation results were provided to verify the optimality of
the zigzag mapping and to show the gain over the conventional
binary index assignment. Further research on the application
of rearrangement inequalities to address the IA and other
problems in coding theory is a promising direction.

APPENDIX

The discrete decreasing rearrangement f? and g? is equiv-
alent to the fact that{

f?(r)− f?(r′) ≥ 0, if |r′| > |r|, or if r′ = −r < 0 ,

g?(s)− g?(s′) ≥ 0, if |s′| > |s|, or if s′ = −s < 0 .
(25)

To prove the ordering following (25) gives the maximum, we
define an operation Ωp(f, g) that swaps all pairs(
f(p−i), f(p+i)

)
,
(
g(p−j), g(p+j)

)
, i, j = 1, 2, 3, . . . , (26)

or in pairs(
f(p−i), f(p+i+1)

)
,
(
g(p−j), g(p+j+1)

)
, i, j = 0, 1, 2, . . . ,

(27)



which do not satisfy conditions in (25). Note that f(r), g(s)
are set as 0 when r, s out of the scope of [−m,n]. It is worth
pointing out that starting from any f and g, the operation
Ωp(f, g) can be applied for different p iteratively, until we get
f? and g?. Therefore, a sufficient condition of Theorem 1 is
that Ωp always introduces non-negative increment.

To prove Theorem 1, we give the following lemma as the
sufficient condition of Theorem 1.

Lemma 2: For any f and g, the operation Ωp(f, g) for
arbitrary p can always introduce non-negative increment to
the discrete convolution on thee left hand side of (11).

Proof: Note that (26) and (27) always involve different
pairs. We can prove Lemma 2 for them separately. Here we
give the proof for pairs in (27) and the proof for pairs in (26)
can be done following a similar procedure. In the proof we
also assume M is an even number, the case for odd M also
can be done similarly.

Given any p, then i, j in (27) satisfy that{|p− i| ≤ |p+ i+ 1|, |p− j| ≤ |p+ j + 1|, p ≥ 0,

|p− i| ≥ |p+ i+ 1|, |p− j| ≥ |p+ j + 1|, p < 0.
(28)

For given f and g, let us denote by Iw and Jw the set of i
and j for which{

f(p− i) < f(p+ i+ 1), g(p− j) < g(p+ j + 1), p ≥ 0,

f(p− i) > f(p+ i+ 1), g(p− j) > g(p+ j + 1), p < 0.

Note that the pairs corresponding to i ∈ Iw and j ∈ Jw do not
satisfy (25). We also define the set of i, j who satisify (25) as
Ir and Jr. Note that the union of Iw and Ir is the set of all
possible values that i can be, let us define it by I . Similarly,
the union of Jw and Jr can also be defined as J .

Let us define d as the value of the discrete convolution, i.e.,

χ =
∑

r,s∈ZM

f(r)k(d(r, s))g(r) . (29)

According to the aforementioned definition of I and J , (29)
can be divided into four partial sums

d =
∑
i∈I

∑
j∈J

(
k(d(i, j))

(
f(p−i)g(p−j)+f(p+i+1)g(p+j+1)

)
+ k(d(i+1,−j))

(
f(p−i)g(p+j+1)+f(p+i+1)g(p−j)

))
=
∑
i∈Ir

∑
j∈Jr

(
k(d(i, j))

(
f(p−i)g(p−j)+f(p+i+1)g(p+j+1)

)
+ k(d(i+1,−j))

(
f(p−i)g(p+j+1)+f(p+i+1)g(p−j)

))
+
∑
i∈Iw

∑
j∈Jw

(
k(d(i, j))

(
f(p−i)g(p−j)+f(p+i+1)g(p+j+1)

)
+ k(d(i+1,−j))

(
f(p−i)g(p+j+1)+f(p+i+1)g(p−j)

))
+
∑
i∈Iw

∑
j∈Jr

(
k(d(i, j))

(
f(p−i)g(p−j)+f(p+i+1)g(p+j+1)

)
+ k(d(i+1,−j))

(
f(p−i)g(p+j+1)+f(p+i+1)g(p−j)

))
=
∑
i∈Ir

∑
j∈Jw

(
k(d(i, j))

(
f(p−i)g(p−j)+f(p+i+1)g(p+j+1)

)
+ k(d(i+1,−j))

(
f(p−i)g(p+j+1)+f(p+i+1)g(p−j)

))
.

(30)

Let us define the four partial terms corresponding to the four
convolution ranges as χ1, χ2, χ3, and χ4.

To show the increment of Ωp on χ, its effect on each of the
four terms need to be examined separately. It is clear that Ωp
has no influence on χ1. It is also trivial to check that χ2 is
not affected by Ωp. Therefore, the only two partial sums need
to be considered are χ3 and χ4.

Let us define d3 to be the increment produced by Ωp on
χ3, i.e.,

d3 ,
∑
i∈Iw

∑
j∈Jr

(
k(d(i, j))

(
f(p−i)g(p+j+1)+f(p+i+1)g(p−j)

))
+ k(d(i+1,−j))

(
f(p−i)g(p−j)+f(p+i+1)g(p+j+1)

)
−
∑
i∈Iw

∑
j∈Jr

(
k(d(i, j))

(
f(p−i)g(p−j)+f(p+i+1)g(p+j+1)

)
+ k(d(i+1,−j))

(
f(p−i)g(p+j+1)+f(p+i+1)g(p−j)

))
.

(31)
Now the task becomes proving that (31) is non-negative.

Let us simplify d3 in (31) as

d3 =
∑
i∈Ir

(f(p+i+1)− f(p−i))

×
∑
j∈Jw

(k(d(i, j))− k(d(−i, j+1)))(g(p−j)− g(p+j+1)) .

(32)
Recall that f(r), g(s) are 0 if r, s outside of the scope of
[−m,n]. If j ∈ Jw, both p− j and p+ j+ 1 should be in the
range of [−m,n]. Therefore, the range of Iw, Jw should be

0 ≤ i, j ≤ m− |p|, if i ∈ Iw, j ∈ Jw. (33)

Similarly, for i ∈ Ir, at least one of p − i and p + i + 1
should be in the [−m,n]. The range of Iw, Jw should be

0 ≤ i, j ≤ m+ |p|, if i ∈ Ir, j ∈ Jr. (34)

Then d3 in (32) can be further divided into two terms

d3 =
∑

0≤i≤m−|p|,
i∈Ir

(f(p+i+1)− f(p−i))

×
∑
j∈Jw

(k(d(i, j))− k(d(−i, j+1)))(g(p−j)− g(p+j+1))

+
∑

m−|p|+1≤i≤m+|p|

(f(p+i+1)− f(p−i))

×
∑
j∈Jw

(k(d(i, j))− k(d(−i, j+1)))(g(p−j)− g(p+j+1)).

(35)
Note that the second term does not exist if p = 0. And all i
in the range of the second term satisfy i ∈ Ir because of (33).

It is trivial that the first term in (35) is non-negative. When
p 6= 0, the second term of (35) also need to be considered, in
which m−|p|+1 ≤ i ≤ m+|p|. For each m+1 ≤ i ≤ m+|p|,
there is m− |p|+ 1 ≤ (2m+ 1)− i ≤ m such that{

d(i, j) = d(−((2m+ 1)− i), j + 1),

d(−i, j + 1) = d((2m+ 1)− i, j).
(36)

Therefore, the second term of (35) can be written as∑
m+1≤i≤m+|p|

((
f(p+i+1)− f(p−i)

)
−
(
f(p+i′+1)− f(p−i′)

))
×
∑
j∈Jw

(
k(d(i, j))− k(d(−i, j + 1))

)(
g(p−j)− g(p+j+1)

)
,

(37)



where i′ = (2m+ 1)− i for notational convenience.
Note that f(p − i) = f(p − i′) = 0 when p < 0 since

both p− i and p− i′ are outside the range [−m,n]. Similarly,
f(p+ i+ 1) = f(p+ i′ + 1) = 0 when p > 0. Then for any
p 6= 0 there is((
f(p+i+1)−f(p−i)

)
−
(
f(p+i′+1)−f(p−i′)

)))(
g(p−j)−g(p+j+1)

)
≤ 0.

We also can prove

k(d(i, j)) ≤ k(d(−i, j+1)), m+1 ≤ i ≤ m+|p|, 0 ≤ j ≤ m−|p|

by trivially check that

d(i, j) ≥ d(−i, j + 1), m+ 1 ≤ i ≤ m+ |p|, 0 ≤ j ≤ m− |p| .

Therefore, (37) is non-negative for an arbitrary p. Conse-
quently, (35) is proved to be non-negative for any p, i.e., d3 is
always non-negative. Similarly, the increment produced by Ωp
on χ4 can be proved to be non-negative. Finally, the increment
introduced by Ωp to all of χ1, χ2, χ3, χ4 are non-negative.
The increment produced by Ωp on χ for any p is always non-
negative.
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[12] X. Wu, L. P. Barnes, and A. Özgür, “‘The capacity of the relay channel’:
Solution to Cover’s problem in the Gaussian case,” IEEE Trans. Inf.
Theory, vol. 65, no. 1, pp. 255–275, Oct. 2019.

[13] G. H. Hardy, J. E. Littlewood, G. Pólya et al., Inequalities. Cambridge,
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