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Abstract—We propose a novel optimization-based decoding al-
gorithm for LDPC-coded massive MIMO channels. The proposed
decoding algorithm is based on a proximal gradient method for
solving an approximate maximum a posteriori (MAP) decoding
problem. The key idea is the use of a code-constraint polynomial
penalizing a vector far from a codeword as a regularizer in the
approximate MAP objective function. The code proximal oper-
ator is naturally derived from code-constraint polynomials. The
proposed algorithm, called proximal decoding, can be described
by a simple recursion consisting of the gradient descent step for a
negative log-likelihood function and the code proximal operation.
Several numerical experiments show that the proposed algorithm
outperforms known massive MIMO detection algorithms, such
as an MMSE detector with belief propagation decoding.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have been widely
used in practical communications and storage systems, such as
mobile wireless communications, digital satellite broadcasting,
optical communications, hard disks, and flash memories. For
decoding LDPC codes, belief propagation (BP) decoding is
the de facto standard, but, in some cases, optimization-based
decoding algorithms have attracted the interest of researchers
[1] [2]. A gradient descent formulation of a non-convex
objective function including a penalty function for codewords
leads to the concept of a gradient descent bit-flipping (GDBF)
algorithm [3], which is suitable for hardware implementation
requiring high-speed processing. A number of variants of the
GDBF algorithm have been proposed, and some of these
variants, especially the noisy GDBF algorithm [4], provide
excellent trade-offs between decoding performance and circuit
complexity. Another advantage of optimization-based decod-
ing algorithms is that these algorithms can be applied to a more
general channel model, including channels with memory [5].
Note that BP decoding is derived based on the memoryless
property of the target channel. This means that applying BP
to channels with memory is not a trivial problem. It may be
possible to formulate maximum a posteriori (MAP) decoding
for channels with memory as a non-convex optimization
problem.

In the present paper, we investigate a new direction for
optimization-based decoding based on a proximal gradient
method [6]. The proximal gradient method is a well-known
iterative minimization algorithm for convex optimization prob-
lems. For example, the iterative soft-thresholding algorithm
(ISTA) [7] is an efficient sparse signal recovery algorithm,
which is an instance of the proximal gradient method. The

proposed algorithm, referred to as proximal decoding, is
conceptually very similar to the ISTA. The key idea is the
use of the code-constraint polynomials penalizing a vector far
from a codeword as a regularizer in the approximate MAP
decoding. The code proximal operator is naturally derived
from code-constraint polynomials, which is the most important
ingredient of the proposed method. The main contributions of
the present paper are 1) a new formulation of an optimization-
based decoding, i.e., proximal decoding, and 2) demonstrating
that proximal decoding is competitive with known decoding
algorithms in time complexity and in bit error rate (BER)
performance over LDPC-coded Massive MIMO channels.

In the present paper, we focus on massive MIMO channel as
a target channel because decoding and detection problems for
LDPC-coded massive MIMO channels are nontrivial problems
and are also practically important problems [8] for wireless
cellular networks referred to as fifth-generation (5G) systems,
as well as for future systems such as beyond 5G/6G systems.
The authors recently proposed a detection algorithm for over-
loaded massive MIMO channels [10], and the architecture of
the detection algorithm proposed in the previous study [10] is
another trigger for the development of proximal decoding.

II. CODE-CONSTRAINT POLYNOMIAL

A. Notation

Let n be a positive integer representing code length. A
binary matrix H ∈ Fm×n2 is a parity check matrix, and
C̃(H) is the binary linear code defined by H , i.e., C̃(H) :=
{x ∈ Fn2 | HxT = 0}. A binary to bipolar transform
b : F2 → {1,−1} is defined as b(0) := 1 and b(1) := −1.
The bipolar code C(H) is simply given by

C(H) := {b(x) ∈ {1,−1}n | x ∈ C̃(H)}.

The index sets A(i) and B(j) are defined as A(i) := {j |
j ∈ [n], Hi,j = 1}(i ∈ [m]) and B(j) := {i | i ∈
[m], Hi,j = 1}(j ∈ [n]), respectively, where Hi,j denotes
the (i, j)-element of H . The notation [n] represents the set
{1, 2, . . . , n}.

B. Definition of code-constraint polynomial

The code-constraint polynomial for C(H) is a multivariate
polynomial defined as

h(x) :=

n∑
j=1

(x2j − 1)2 +

m∑
i=1

 ∏
j∈A(i)

xj

− 1

2

, (1)
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where x := (x1, . . . , xn) ∈ Rn. In this equation, the first term
represents the bipolar constraint for x ∈ {+1,−1}n, and the
second term corresponds to the parity constraint induced by
H , i.e., if x ∈ C(H), we have ∏

j∈A(i)

xj

− 1 = 0

for any i. Since the polynomial h(x) has a sum-of-squares
(SOS) form, the polynomial can be regarded as a penalty
function that gives positive penalty values for non-codeword
vectors in Rn. The code-constraint polynomial h(x) is inspired
by the non-convex parity constraint function used in the GDBF
objective function [3]. The SOS form directly implies the most
important property of h(x), i.e., the inequality h(x) ≥ 0 holds
for any x ∈ Rn. The equality holds if and only if x ∈ C(H).

C. Gradient

In the following discussion, we need the gradient of h(x).
The first-order derivative of h(x) with respect to xk(k ∈ [n])
is given by

d

dxk
h(x) = 4(x2k − 1)xk +

2

xk

∑
i∈B(k)

(
Q(i)2 −Q(i)

)
, (2)

where Q(i) is defined as Q(i) :=
∏
j∈A(i) xj . The gradient

∇h(x) is thus given by

∇h(x) =

(
d

dx1
h(x), . . . ,

d

dxn
h(x)

)T
. (3)

The point x ∈ Rn satisfying the equality ∇h(x) = 0
is a stationary point of h. For any codeword x ∈ C(H),
x2k = 1 for any k ∈ [n] and Q(i) =

∏
j∈A(i) xj = 1 holds

for any i ∈ [m]. This means ∇h = 0. Assume that a non-
codeword bipolar vector x ∈ {1,−1}n satisfying x /∈ C(H)
is given. For such x, there exists a pair (k, i) satisfying
Q(i)2 − Q(i) = 1 − (−1) = 2. This implies that x is not
a stationary point. The above argument can be summarized as
follows. A codeword x ∈ C(H) is a stationary point of h
and a non-codeword bipolar vector x ∈ {1,−1}n,x /∈ C(H)
cannot be a stationary point. A stationary point that is a
codeword of C(H) is referred to as a codeword stationary
point. Note that h(x) can have non-codeword stationary points
in general. For example, the zero vector 0 ∈ Rn is an example
of a non-codeword stationary point.

D. Example of a code-constraint polynomial

Suppose that the repetition code

C := {(+1,+1), (−1,−1)}

is given. The code-constraint polynomial for C is thus given
by

h(x) := (x21 − 1)2 + (x22 − 1)2 + (x1x2 − 1)2. (4)

The gradient of h is given by

∇h(x) =

[
4(x21 − 1)x1 + 2(x1x2 − 1)x2
4(x22 − 1)x2 + 2(x1x2 − 1)x1

]
. (5)
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Fig. 1. Contour of the code-constraint polynomial h(x) = (x21 − 1)2 +
(x22 − 1)2 + (x1x2 − 1)2 for the repetition code of length. The trajectories
of gradient descent processes (four different initial points) are depicted.

In the case of repetition code of length 2, there are three
stationary points: {(1, 1), (0, 0), (−1,−1)}. The two codeword
points {(1, 1), (−1,−1)} are local minimums, and (0, 0) is
the local maximum. If we apply a gradient descent method
to h(x), the gradient descent step is given by x(t+1) =
x(t) − η∇h(x(t)). Figure 1 illustrates several trajectories of
gradient descent processes for different initial points. We can
observe that the trajectories generated by the gradient descent
processes converge to the codewords {(+1,+1), (−1,−1)}.

As we can see from this example, the code-constraint poly-
nomials as a multivariate function of x are non-convex and
have several local minima and maxima in general. However, if
the initial point is sufficiently close to a codeword stationary
point, then the gradient descent step produces a convergent
point sequence for the corresponding codeword. This pull-in
property has critical importance in proximal decoding.

III. PROXIMAL DECODING

A. Approximate maximum a posteriori decoding

Assume that a sender transmits a codeword of C(H) to
a given channel. The channel is defined by a probability
density function (PDF) p(y|x)(x,y ∈ Rn). The negative log-
likelihood is defined as L(x;y) := − ln p(y|x). The MAP
decoding rule is expressed as

x̂ := argminx∈C(H) L(x;y)p(x), (6)

where p(x) is the prior PDF on the input space. It is natural
to make the equal probability assumption on C(H), which is
given by

p(x) :=
1

|C(H)|
∑

c∈C(H)

δ(x− c), (7)

where δ is Dirac’s delta function. Instead of the true p(x)
above, here, we assume a prior PDF with the form

p(x) =
1

Z
exp (−γh(x)) , (8)



where Z is the normalizing constant and γ is a positive
constant. Note that, at the limit γ →∞, we have

(1/Z) exp (−γh(x))→ 1

|C(H)|
∑

c∈C(H)

δ(x− c). (9)

By substituting the result into p(x|y), we immediately have

p(x|y) ∝ p(y|x)p(x) = exp (−L(x;y)− γh(x)) . (10)

The approximate MAP rule considered here is given by

x̂ := argminx∈Rn [L(x;y) + γh(x)] . (11)

The problem can be seen as a regression problem with a
regularizer. Note that the minimization problem (11) is also
similar to the LASSO problem [9] for sparse signal recovery.
The ISTA is derived from the LASSO formulation. It is natural
to consider a counterpart of the ISTA for (11), which is
proximal decoding to be presented in the next subsection.

B. Proximal decoding

Solving the approximate MAP problem (11) can be seen as
a non-convex regularized minimization problem. In order to
solve the approximate MAP problem efficiently, we will use
the proximal gradient method [6]. The proximal operator of
f : Rn → R is defined as

proxf (v) := argminx∈Rn

(
f(x) + (1/2)‖x− v‖22

)
, (12)

where ‖ · ‖2 represents the Euclidean norm. The proximal op-
erators can be seen as a generalized projection. The proximal
operator proxγh(x) can be well approximated (page 126 of
[6]) by a gradient descent step

proxγh(x) ' x− γ∇h(x) := Pγ(x), (13)

where the approximated proximal operator is said to be the
code-proximal operator.

The proximal decoding proposed in the present paper is
given by the following iterative process:

r(k+1) := s(k) − ω∇L(s(k);y) (14)
s(k+1) := Pγ(r(k+1)) = r(k+1) − γ∇h(r(k+1)), (15)

for k = 0, 1, 2, . . ., where ω is a positive number representing
the step-size parameter of a gradient descent process in (14).
The step indicated by Eq. (14) is referred to as the gradient
descent step, and the step indicated by Eq. (15) is said to be
the code-proximal step.

C. Box projection

Let Bη := [−η, η]n, where η is a positive constant slightly
larger than one, be the n-dimensional hyper cube, where
[a, b] := {x ∈ R|a ≤ x ≤ b}. The norm of the gradient
‖∇h(x)‖2 tends to be very large if x /∈ Bη due to a property
of the code-constraint polynomial. In the proximal decoding
process defined above, this may cause numerical instability
(oscillation or divergent behavior) in some cases. In such a
case, we can use

s(k+1) := Πη

(
Pγ(r(k+1))

)
. (16)

instead of (15) in order to prevent numerical instability. The
projection operator Πη : Rn → Rn represents the projection
onto Bη .

Let us discuss the time complexity per iteration of the
proximal operation. For evaluating Pγ(x), we require the
gradient of h(x). Let k be the number of ones in H . All
of the quantities Q(i) for i ∈ [m] can be calculated with time
complexity O(k). This means that the time complexity for
evaluating the gradient of h(x) is O(n + k). If C(H) is an
LDPC code, then k = O(n) holds in general. This implies that
the complexity for obtaining ∇h(x) becomes O(n), which is
the practical time complexity, because O(n) is the same as
the complexity of belief propagation (BP) decoding for LDPC
codes.

D. Proximal decoding for a massive MIMO channel

The principle of the proximal decoding is applicable to
any channel model if we precisely know the negative log-
likelihood function L(x;y) and its gradient ∇L(x;y) can
be efficiently evaluated. In the present paper, we focus on a
specific type of channel, i.e., the LDPC-coded massive MIMO
channel, which is of practical importance. Let A ∈ Rm×n be
a channel matrix. Suppose that a received word y ∈ Rm is
given by

y = Ax + w, (17)

where w ∈ Rm is a Gaussian noise vector, the components of
which follow an i.i.d. Gaussian distribution. The channel input
vector x is assumed to be a codeword of C(H), which means
that we assume BPSK modulation. In this problem setting, the
PDF representing the channel is given by

p(y|x) = a exp
(
−b‖y −Ax‖2

)
,

where a and b are positive constants. We thus have the
approximate MAP decoding problem for an LDPC-coded
massive MIMO channel:

x̂ = argminx∈Rn

[
‖y −Ax‖2 + γh(x)

]
. (18)

Since ∇‖y−Ax‖2 ∝ AT (Ax−y), an iteration of proximal
decoding for LDPC-coded massive MIMO channels can be
summarized as

r(k+1) = s(k) − ωAT (As(k) − y) (19)
s(k+1) = Pγ(r(k+1)). (20)

In the following experiments, we set s(k) := 0. However, there
are alternative choices for the initial point, i.e., an estimate of
the zero forcing detector or the MMSE detector can be used
as an initial point.

IV. NUMERICAL EXPERIMENTS

A. Proximal iteration for Hamming code

We start from an experiment to confirm the behavior of a
proximal iteration based on the code proximal operator Pγ .
A simple proximal iteration [6] x(k+1) = Pγ(x(k)), k =
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Fig. 2. Trajectories of the proximal iteration for the (7,4,3) Hamming code
(six trials). The parameter γ is set to 0.05. Each curve in a graph corresponds
to a component of x(k). The initial value is set to y.

0, 1, 2, . . . for (7, 4, 3) Hamming code is examined. The ex-
perimental setting is as follows. We assume that the all-one
codeword x := (1, 1, 1, 1, 1, 1, 1) is sent to an AWGN channel.
The received word is given by y = x + w, where each
i.i.d. component of w follows a Gaussian distribution with
a mean of zero and a standard deviation of 0.5. We used the
received word y as the initial value of the proximal iteration,
i.e., x0 := y. The trajectories of components in x(k) are
depicted in Fig. 2. The horizontal axis represents the number
of iteration steps, and the vertical axis indicates the value
of x(k)i , i ∈ [7]. A curve in a graph corresponds to each
component of x(k). From Fig. 2, we can observe that the
proximal iteration promotes the convergence to the all-one
codeword, i.e., the trajectories are attracted to the codeword
point in these proximal iterations. The pull-in property of the
code proximal operator is confirmed based on this result. Note
that any codeword stationary point is a fixed point of Pγ .

B. LDPC-coded massive MIMO channel

1) Problem setup: In this subsection, we follow the real-
valued MIMO model discussed in [10]. Let A′ := {a′i,j} ∈
CM×N be a channel matrix, where a′i,j is the fading coef-
ficient corresponding to the path between the jth transmit
antenna and the ith receive antenna. Here, we assume that
each component of A′ follows the Kronecker model [17],
which is a simple channel model representing the spatial
correlation between antenna elements. Let ρ(0 ≤ ρ < 1) be
the spatial correlation factor. The correlation matrix for the
receiver side is given by Rr := {ri,j}1≤i,j≤M , ri,j := ρ|i−j|

and the correlation matrix for a transmitter side is given by
Rt := {ti,j}1≤i,j≤N , ti,j := ρ|i−j|. In the Kronecker model,
a channel matrix A′ is represented by A′ := R

1/2
r G(R

1/2
t )T ,

where each element of the matrix G ∈ CM×N follows a
complex circular Gaussian PDF with zero mean and unit
variance. Note that A′ = G holds when there is no spatial
correlation, i.e., ρ = 0.

We assume QPSK modulation for transmitted signals. An
equivalent real-valued MIMO model with BPSK modulation
can be defined as y = Ax + w, where A is given by

A =

[
Re(A′) −Im(A′)
Im(A′) Re(A′)

]
∈ Rm×n.

Note that m = 2M and n = 2N holds. The transmitted word
x is randomly chosen from C(H) according to the uniform
distribution. Each component of the noise vector w ∈ Rm is
an i.i.d. Gaussian PDF with zero mean and variance σ2

w/2. In
this model, σ2

w is related to the signal to noise ratio SNR
by σ2

w := (2N)/SNR. The details of the equivalence of
the complex-valued model and the real-valued model can be
found in [10]. In the following experiment, we used (3,6)-
regular LDPC codes with n = 204 and m = 102. The step-
size parameter ω used in the gradient descent step is set to
ω := 2.0/(λmin + λmax), where λmin and λmax are the
minimum and maximum eigenvalues of ATA, respectively.
In the following experiments, we used the box projection (15)
with η = 1.5 in the proximal step.

2) Baseline schemes: For the purpose of comparison, we
exploited a proximal-based detection algorithm, referred to as
a Tanh detector, given by the following recursion [10][11]:

r(k+1) = s(k) − ωAT (Ax− y), (21)

s(k+1) = tanh(αr(k+1)), (22)

where α is a positive real value. Furthermore, the MMSE
detector defined as

x̂ := AT (AAT + (σ2
w/2)I)−1y (23)

is also examined as a baseline scheme.
3) Convergence behavior: Let x̂ be the estimated word

obtained from these detection algorithms. The performance
measure used herein is the averaged error value ‖x−sign(x̂)‖
where x is the transmitted word, and x̂ indicates an estimate
obtained from the detector.

Figure 3 presents the averaged error as a function of the
number of iterations when there is no spatial correlation, i.e.,
ρ = 0.0. Proximal decoding provides much smaller averaged
error values and faster convergence compared with the Tanh
detector and the MMSE detector. Moreover, the saturated
value of proximal decoding is much smaller than that of the
Tanh detector. These results imply that the parity constraint
included in the code-constraint polynomial is fairly beneficial
to obtain a reasonable solution. We have also observed that
the convergence speed of proximal decoding is sensitive to
the choice of γ. In this experiment, γ = 0.05 provides the
best result.

4) Bit error rate performance: The BER is the primal
performance measure for the detection algorithms for massive
MIMO systems. Here, we investigate the BER performance
of proximal decoding and several benchmark schemes, such
as the Tanh detector and the MMSE detector (with/without
BP decoding). The input of the BP decoder after the MMSE
detection is set to ξx̂, where ξ is a positive constant, and
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Fig. 3. Comparison of the averaged error value ‖x− sign(x̂)‖ under ρ = 0
(no spatial correlation). The number of received and transmitted antennas are
N = M = 102. (Left): SNR = 8 (dB), (Right): SNR = 10 (dB). The
error values are averaged for 100 trials. The choice of the parameter γ is
crucially important to obtain appropriate performance for proximal decoding.
We chose γ = 0.05 for these experiments. The parameter α used in the tanh
detector is set to 2.0. In all of the schemes, the step-size parameter is set to
ω = 2.0/(λmin + λmax).

x̂ is an estimation vector obtained by (23) without binary
quantization. The value of the scaling parameter ξ is crucial
for deriving the full performance of the BP decoding. In the
following experiments, we set ξ := 5, which was heuristically
adjusted. The channel model is the Kronecker model described
in Subsection IV-B1.

Figure 4 presents the BER performances of the proposed
and benchmark schemes. The left-hand panel in Fig. 4 rep-
resents the case of no spatial correlation (ρ = 0), and
the right-hand panel indicates the results under the spatial
correlation (ρ = 0.4). Although the MMSE detector is the
simplest detector among them, the error curve is not so steep
in either Fig. 4 (Left) or Fig. 4 (Right). Furthermore, the
MMSE detector involves the inversion of a matrix requiring
time complexity O(n3), which is not negligible in terms of
complexity in a massive MIMO scenario. The combination of
the MMSE detector followed by a BP decoder (MMSE+BP) is
a standard and practical configuration of a receiver for LDPC-
coded massive MIMO channels.

The BER performance of MMSE + BP provides a much
steeper error curve as compared with the plain MMSE error
curve. The Tanh detector also achieves much smaller BERs as
compared with the naive MMSE detector when ρ = 0. Com-
pared with the Tanh detector and the MMSE (with/without BP
decoding), the BERs of proximal decoding yield the smallest
BERs. In particular, the margin between the proposed method
and MMSE + BP is approximately 3 dB at BER = 10−4

in Fig. 4(Right). Comparing Figs. 4(Left) and 4(Right), the
performance of MMSE+BP deteriorates as ρ increases. The
proposed method provides similar BER performances in both
cases.

Although a number of studies have discussed joint detection
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Fig. 4. Bit error rate performances of proximal decoding and baseline
schemes. (Left) Without spatial correlation (ρ = 0); (Right) with spatial
correlation (ρ = 0.4). The number of received and transmitted antennas are
N =M = 102. The error values are averaged for 5,000 trials. The parameter
γ used in the code proximal operator is set to 0.05. The step-size parameter
is set to ω = 2.0/(λmin + λmax). The number of iterations for BP is 20,
and the number of iterations for proximal decoding and the Tanh detector is
set to 50. The scaling factor ξ = 5 is used for MMSE+BP.

and decoding for LDPC-coded MIMO channels, such as [16],
their time and circuit complexities are much larger than those
for proximal decoding. The complexity of proximal decoding
is O(`n2), where ` represents the number of iterations, which
is lower than the complexity of the MMSE detector if ` is
constant. Due to the pull-in property of the code proximal
operator, a search point may be attracted by a codeword
stationary point in a decoding process. This attractive force
would achieve superior performance of the proposed method.

V. SUMMARY

In the present paper, we present proximal decoding as an
instance of the approximate MAP decoding for LDPC codes.
Through numerical experiments, proximal decoding is shown
to be competitive with known detection methods, such as
MMSE + BP. Although we restricted our attention to the
case of LDPC-coded massive MIMO channels, the concept
of proximal decoding can be applied to another non-trivial
channel if the gradient of the negative log-likelihood function
can be efficiently evaluated. The approach presented in the
present paper may open a new direction of optimization-based
decoding algorithms. Another preferable feature of proximal
decoding is that all the subprocesses of proximal decoding
are differentiable. Thus, we can apply standard deep learning
techniques to optimize the internal parameters for achieving
better performance. Such a methodology, often referred to
as deep unfolding [12] [13] [14] [15], appears promising for
tuning parameters γ and ω in proximal decoding, which are
highly influential in the case of the BER performance.
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