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Abstract—Narrow beams are key to wireless communications
in millimeter wave frequency bands. Beam alignment (BA) allows
the base station (BS) to adjust the direction and width of the beam
used for communication. During BA, the BS transmits a number
of scanning beams covering different angular regions. The goal
is to minimize the expected width of the uncertainty region (UR)
that includes the angle of departure of the user. Conventionally,
in interactive BA, it is assumed that the feedback corresponding
to each scanning packet is received prior to transmission of
the next one. However, in practice, the feedback delay could
be larger because of propagation or system constraints. This
paper investigates BA strategies that operate under arbitrary
fixed feedback delays. This problem is analyzed through a source
coding prospective where the feedback sequences are viewed
as source codewords. It is shown that these codewords form
a codebook with a particular characteristic which is used to
define a new class of codes called d−unimodal codes. By analyzing
the properties of these codes, a lower bound on the minimum
achievable expected beamwidth is provided. The results reveal
potential performance improvements in terms of the BA duration
it takes to achieve a fixed expected width of the UR over the state-
of-the-art BA methods which do not consider the effect of delay.

Index Terms—Millimeter wave, Analog beam alignment, In-
teractive beam alignment, Non-interactive beam alignment, Con-
tiguous beams.

I. INTRODUCTION

Millimeter wave (mmWave) communication greatly im-
proves throughput of wireless networks by using the wide
bandwidths available at high frequencies [1]. In order to
establish a viable communication link in highly directional
mmWave links and mitigate the high path-loss and intense
shadowing, it is necessary to perform beamforming [2]. Beam-
fomring methods concentrate the transmit power in a desired
direction by utilizing narrow beams [3].

It is known that mmWave channels are sparse and consist
of only a few spatial clusters [4]. Therefore, to reduce beam-
forming overhead and maximize system throughput, beam
alignment (BA) (a.k.a. beam training and beam search) is
used to find narrow beams aligned with the direction of the
channel clusters [5]. In BA, the wireless transceiver searches
over the angular space through a set of scanning beams to
localize the direction of the channel clusters, i.e., namely,
the angle of arrival (AoA) and angle of departure (AoD)
of the channel clusters at the receiver and transmitter sides,
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respectively. Moreover, due to high power consumption in
mmWave systems it is often assumed that the transceivers only
use one RF-chain during BA, a method known as analog BA.

There is a large body of work on BA methods in the
literature [6]–[16]. In general, BA strategies can be classified
as interactive BA and non-interactive BA. To elaborate, let us
consider the BA procedure at the transmitter whose objective
is to localize the AoD of the channel. The transmitter sends
a set of BA packets through a set of scanning beams to scan
the angular space. In non-interactive BA, the transmitter does
not receive any feedback from the receiver until all the BA
packets are sent. In interactive BA, however, the transmitter
receives feedback during the transmission of the BA packets
which allows it to refine the scanning beams and better localize
the AoD of the channel compared to non-interactive BA.

The problem of multi-user non-interactive BA is consid-
ered in [6] where we analyzed the BA problem through an
information theoretic perspective and provided bounds on
the minimum average expected beamwidth of data beams
allocated to the users given a fixed BA duration along with
achievablity schemes. A more challenging problem is to con-
sider the interactive case which necessitates optimally utilizing
the feedback information during the BA. Prior research on
interactive BA methods [7]–[15], [17]–[19] consider no delay
for the receiver’s feedback on the scanning packets. However,
this might not always be the case due to practical reasons such
as processing delay at the transceivers.

In this paper, we consider the problem of interactive analog
BA at the base station (BS) in a single-user downlink system
where the channel has one dominant cluster and the feedback
to each transmitted BA packet is received after a fixed known
delay. Due to practical constraints, we only look at the case
where the beams are contiguous [6]–[8]. Similar to [6], we
assume that the BA packets and feedback at the user and BS
are received error free. As a result, at the end of the BA phase
the BS can allocate a beam for the data communication which
includes the AoD of the channel with probability one. We refer
to the angular region of this beam as uncertainty region (UR)
on the channel AoD. Our objective is to minimize the expected
width of the UR similar to [6]. Overview of the contributions
of this paper is as follows:
• We view the BA with feedback delay as a source coding

problem in which the BS needs to ask b yes/no questions
where each question is an angular interval. We show
that the resulting source codewords (feedback sequences)
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Fig. 1: Time-slotted system.

have a special characteristic using which we define a new
family of codes that we name d−unimodal (Section III).

• We provide a lower bound on the minimum expected
width of the UR given any arbitrary prior on the AoD by
analyzing properties of d−unimodal codes. Through nu-
merical evaluations, we show the potential improvement
in terms of the number of required time-slots to achieve
a certain angular resolution for the expected width of the
UR when compared with state-of-the-art (Section IV).

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we outline general system assumptions (II-A
and II-B) and then provide the mathematical formulation of
the problem (II-C and II-D).

A. Network Model

We consider a single-user downlink communication in a
single-cell mmWave system scenario. Motivated by previous
works [9], [10], [19], [20] and experimental results [4], we
assume that the channel has only a single dominant cluster. We
denote the AoD corresponding with this cluster by ψ which is
unknown to the BS. In our setup, motivated by [6], [7], [12],
we consider that the BS performs analog BA during which
it is able to search one beam at a time while the user has
an omnidirectional reception pattern. The goal is to find a
small angular interval (i.e., UR) which contains ψ. We assume
Ψ ∼ fΨ(ψ) for ψ ∈ (0, 2π] which accounts for the prior
knowledge on the AoD (e.g., corresponding to the history of
previously localized AoD in beam tracking applications).

Due to practical constraints, we only consider use of con-
tiguous beams as in [6]. Similar to [6], [7], [12], we assume
that the beams are ideal and use the sectored antenna model
from [21]. In this model, each beam is characterized by
a constant main-lobe gain and an angular coverage region
(ACR). In the case of contiguous beams, this ACR is an
angular interval inside (0, 2π] that is covered by the main-
lobe. This model is often used in the literature (e.g. [22], [23])
and is justified as the BSs are envisioned to use large antenna
arrays which allows for beams close to ideal shape [1].

B. Frames and Feedback

We consider an interactive BA scenario in which the BS
receives feedback form the user during the transmission of
BA packets and can change the subsequent scanning beams
based on the feedback. Unlike conventional interactive BA
in which the feedback to each transmitted packet is available

instantaneously, we consider a fixed known delay of d time-
slots for each feedback. This delay accounts for practical
constraints such as processing delay at the transceivers. If this
delay cannot be accurately measured, an upper bound can be
utilized for our analysis. We assume that the feedback to each
packet is either an acknowledgement (ACK) that the packet
was received by the user or a negative acknowledgement
(NACK) which indicates the user did not receive the packet.
Similar to [7], we consider that the feedback is received
through a control channel and is error free [1]. Also, as in
[6], [9], we assume that the BA packets are detected at the
user without error.

Motivated by the above discussion, we consider a time-
slotted system in which the user has fixed AoD over coherence
intervals of duration T time-slots. We assume that the commu-
nication spanning a coherence interval includes three phases
as shown in Fig. 1. We first have the scanning phase in which
the BS transmits b BA packets through a set of scanning beams
to scan the angular space. Since the response to each packet
takes d time-slots, we consider a waiting phase in which the
BS waits to receive the feedback to the scanning beams. This
phase lasts for d time-slots and can be used for example, for
data transmission to other users for which the BS has already
performed BA. The rest of the coherence interval, i.e., the last
T − b − d time slots, is called transmission phase which is
used for data transmission.

Our main focus in this paper is the design of the beams
to be used in the scanning phase and the resulting expected
beamwidth for data transmission beam.

C. Scanning Beam Set and Data Beam

The objective of BA is to maximize the beamforming
gain which in turn maximizes the data communication rate.
Towards this goal, we consider minimizing the expected width
of the UR for the AoD of the user’s channel.

The BS uses b scanning beams {Φi}i∈[b] to transmit the b
BA packets 1. Let ai ∈ {0, 1} denote the feedback received for
the ith BA packet (i.e., ai = 1 if ACK was received for Φi and
ai = 0 otherwise). Based on the received feedback sequence
by the ith time-slot (i.e., (a1, a2, . . . , ai−d)), there are multiple
choices for Φi. To model this, we use a hierarchical beam set
S = {Si}i∈[b], where Si = {Si,m}m∈[M(i)] denotes the set
of all possible scanning beams given that there are a total of
M(i) ≤ 2i−d possible feedback sequences. To elaborate, note
that by the ith time-slot, the BS has received the feedback
sequence corresponding to the scanning beams Φj , j ≤ i− d.
We design the set Si = {Si,m}m∈[M(i)] to contain a beam
for each of the possible feedback sequences. Therefore, upon
reception of a particular feedback sequence at the ith time-
slot, the BS selects the beam Si,m which was designed for
that feedback sequence and uses it for transmission of the ith

BA packet (i.e., Φi = Si,m).
Given an AoD realization ψ, let us denote the ACR that the

BS chooses for data transmission (i.e., UR) by Beam(S, ψ).

1We use the notation [n] to represent the set {1, 2, . . . , n}.



Under the assumption of single dominant path channel and
error free system, the minimum length ACR which includes
the user AoD is

Beam(S, ψ) = ∩bi=1Θ(Φi, ai), (1)

where Θ(Φi, ai) = Φi if ai = 1 which corresponds to ψ ∈ Φi,
and Θ(Φi, ai) = (0, 2π]− Φi otherwise.

D. Problem Formulation

We formulate the problem of minimizing the expected width
of the UR for the AoD as

S∗ = arg min
S

EΨ[|Beam(S,Ψ)|], (2)

where expectation is taken over the distribution fΨ(ψ).
Based on (1), given S, we get an UR for each possible

feedback sequence (a1, a2, . . . , ab). Let us denote the set of
possible URs for the AoD of the user by U = {um}m∈M(b),
where M(b) ≤ 2b is the number of possible feedback se-
quences. It is easy to see that Beam(S,Ψ) = um for Ψ ∈ um.
Hence, we can write the expectation in (2) as

EΨ[|Beam(S,Ψ)|] =

M(b)∑
m=1

|um|
∫
ψ∈um

fΨ(ψ)dψ. (3)

The notation |um| is the Lebesgue measure of um, which is
equal to the total width of the intervals in the case where um
is the union of a finite number of intervals.

In the next sections, we will show that the feedback se-
quences can be viewed as source codewords with a special
characteristic. This characteristic lets us define a new class
of codes which we refer to by d−unimodal codes. Then, by
studying these codes, we lower bound the minimum expected
beamwidth in Sec. IV. Explicit construction of optimal scan-
ning beam set is reported elsewhere due to space constraint.

III. BEAM ALIGNMENT AND UNIMODAL CODES

We view the discussed BA problem as a source coding
problem in which the BS asks b questions whose answers (the
feedback sequences) represent the source codewords. Unlike
a finite alphabet source coding problem, here the alphabet is
continuous and the questions are intervals inside (0, 2π]. In
this section, we examine the properties of the aforementioned
source code in our BA problem and define a new class of codes
called d−unimodal. We also establish the connection between
the BA schemes and the design of d−unimodal codes.

To define d−unimodal codes, we need the following

Definition 1 (Unimodal Loop). A binary loop is called
unimodal iff the location of ones (if any) are consecutive 2.

As an example, the loop �{1, 0, 0, 1} is unimodal but the
loop �{1, 0, 1, 0} is not 3. As we will elaborate later, unimodal
loops represent the scanning beams in our BA problem. Now,
we can define d−unimodal codes as follows:

2A loop is a cyclically ordered set of elements [24] (i.e., the elements can
be arranged on a circle).

3The notation �{. . .} indicates the loop of the ordered set {. . .}.

Definition 2 (d−unimodal Code). A binary code (collection
of codewords) with codewords of length b is called d-unimodal
and is denoted by C(b, d), if there exists an ordered set of
its codewords which could also include repetition of some
codewords whose associated loop satisfies:

1) For i ≤ d, the loop created by the ith bits of the
codewords in the loop is unimodal.

2) For i > d, for each sub-loop of the loop consisting only
of codewords with same prefix of length i−d, the binary
loop of the bits in the ith position is unimodal.

We refer to such loop as characteristic loop of the code. The
code cardinality is the number of codewords in C, denoted by
|C|. For example, the code C = {11, 01, 10} is a 2−unimodal
code with a characteristic loop of L = �{01, 11, 10}. More
examples are provided later in the paper.

Characteristic loop of a code is not unique and may contain
repetition of the codewords. For example, consecutively re-
peating a codeword in a characteristic loop generates another
valid characteristic loop. A minimal characteristic loop (MCL)
is defined as one which does not contain any consecutive
repetitions. Yet, an MCL may still contain repetitions that
are not consecutive. For example, consider C = {11, 01, 10}
with the characteristic loop L = �{11, 01, 11, 10} which is
minimal but contains repetition.

As part of our first main result (Thm. 1), we show that the
feedback sequences in our BA problem form a d−unimodal
code. Moreover, one can also find a construction that given
a d−unimodal code, generates a scanning beam set S whose
feedback sequences are that code. This second part forms the
foundation of our explicit construction of optimal BA schemes
and will be pursued elsewhere due to space constraint.

Before providing the theorem statement, we first provide
the necessary definitions and show through a set of examples
how a scanning beam relates to a unimodal loop and how a
given scanning beam set S leads to d−unimodal code.

Suppose we are given a scanning beam set S. The scanning
beams inside this set, partition the interval (0, 2π] into a set
of angular intervals which we call component beams. We
define these component beams as follows. Each scanning beam
is an angular interval with two endpoints. After sorting the
endpoints of all the scanning beams in S and removing the
repetitions, each angular interval in between two consecutive
endpoints is a component beam. Since the component beams
are contiguous and partition the interval (0, 2π], one can use
their positions on the circle and form a loop of the component
beams. We denote this loop using I. To better understand the
notation and the relation between S and I, let us consider the
following example which we will build upon in the paper.

Example 1. Fig. 2 illustrates a possible set of scanning beams
for b = 4 and d = 3. In this case, S = {S1,S2,S3,S4}, with
Si = {Φi} for i ∈ {1, 2, 3} each consisting of a single possible
scanning beam as no feedback is received prior to fourth time-
slot. However, at the fourth time-slot, we receive the feedback
to the beam Φ1 and so there are two possibilities for Φ4.
Here, we have S4 = {S4,1, S4,2}. As shown in Fig. 2, the set
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Fig. 2: An example set of scanning beams for b = 4 and d = 3 and the corresponding component beams.

S creates the component beam loop I = �{I1, I2, . . . , I10}
which includes ten component beams.

It is easy to see that each of the scanning beams in S can be
written as union of subsets of component beams in I. Consider
one of these beams. By replacing the elements of the loop I
with 1 if the component beam is included in the beam and
0 otherwise, we will have a binary loop. As a result, we can
uniquely determine any beam in S using a binary loop given
I. Note that since the scanning beams are contiguous, they
each include adjacent component beams and so the position
of ones inside their binary loops are consecutive. Therefore,
these binary loops are unimodal. To elaborate, consider the
setup of Example 1. The beam S4,2 in Fig. 2 is partitioned by
component beams I7 and I8. Hence, its corresponding binary
loop is �{0, 0, 0, 0, 0, 0, 1, 1, 0, 0} which is unimodal.

Next, we show how these unimodal binary loops corre-
sponding to the scanning beams lead to d−unimodal codes.
For this purpose, let us first consider the following example.

Example 2. Consider the setup in Example 1. If we replace
the component beams in the loop I with their corresponding
feedback sequences, we get the loop L = �{1100, 1000,
1001, 1000, 1010, 0010, 0011, 0111, 0110, 0100}. Let us
look at the second bit of the codewords in L which leads to
the binary loop �{1, 0, 0, 0, 0, 0, 0, 1, 1, 1}. This loop
is unimodal and is the same binary loop representing the
contiguous scanning beam Φ2 = ∪{I8, I9, I10, I1}. Next,
consider the loop of the fourth bits �{0, 0, 1, 0, 0, 0, 1, 1, 0,
0}. This is not a unimodal loop. Here, this loop corresponds
to the beam S4,1 ∪ S4,2 which is not contiguous. Notice that
each of these beams are contiguous. So if we can separate
their binary loops, we should get unimodal loops. Note that
the decision that which one of these beams is used for Φ4 is
based on the feedback sequences received at the fourth time-
slot which is a1 in our case. Now, if we look at the sub-loops
of the loop L whose feedback sequences have same value for
a1, we will get the binary loops �{0, 0, 1, 0, 0} and �{0,
1, 1, 0, 0}4. These are both unimodal loops where the former
and the latter correspond to S4,1 and S4,2, respectively which
are contiguous.

Let us form a loop of binary codewords by replacing each
component beam in loop I with its corresponding feedback
sequence (i.e., (a1, a2, . . . , ab)) and denote it by L. Following

4A sub-loop of a loop is a loop in which some of the elements of the
original loop are removed.

Example 2, if we look at the loop consisting of the ith bit of
each codeword, we have a binary loop which relates to the
scanning beams in Si. For i ≤ d, since we have not received
any feedback, Si consists of only one contiguous scanning
beam and the binary loop becomes unimodal. However, for
i > d, this is no longer the case since there are multiple
scanning beams in Si. Yet, similar to Example 2, if we create
sub-loops of L that include feedback sequences of same prefix
of (a1, a2, . . . , ai−d) and then look at the loop of the ith bits
for each sub-loop, we will get unimodal loops. These claims
are proved rigorously in the next theorem were we show that
the loop L is in fact an MCL for the d−unimodal code whose
codewords are the feedback sequences resulting from S.

An interesting observation from the MCL created using the
feedback sequences and the component beams loop is that
when it has repetition, one or more of the URs are non-
contiguous. The repetition of a codeword means there are
multiple component beams with same feedback sequence and
adjacent component beams of different feedback sequences. on
the other hand, from Sec. II-D, we know that each feedback
sequence corresponds to an UR. Therefore, there is an UR
that includes these component beams but not their adjacent
which makes it non-contiguous. This is important since as we
discussed in Sec. II, each UR is a possible data beam and
the data beams are preferred to be contiguous. As an example
of this observation, consider Example 2. The MCL has the
repetition of the codeword 1000. On the other hand, if we
form the set of URs, we get U = {um}9m=1, where um = Im
for m ∈ [10]\2 and u2 = ∪{I2, I4}. The non-contiguous UR
is u2 whose feedback sequence is the repeated codeword 1000.

Theorem 1 (Beam Alignment and Unimodal Codes). Con-
sider the BA problem introduced in Section II where the
number of BA scanning packets is set to b and the delay
is set to d. Given any scanning beam set S, the feedback
sequences form a d−unimodal code C whose MCL L is the
loop of binary codewords resulted from replacing the elements
of the component beams I with their corresponding feedback
sequences.

Proof. The proof is provided in Appendix A. �

This theorem shows that the collection of feedback se-
quences of any possible scanning beam set is a d−unimodal
code. We will use this to lower bound the performance of
the considered BA problem in terms of minimum expected
beamwidth in the next section.



IV. LOWER BOUND ON EXPECTED BEAMWIDTH

In this section, we investigate the properties of d−unimodal
codes to lower bound the optimal performance in terms of
expected beamwidth for our BA problem. To this end, we
define a parent-child hierarchy between the codes C(b, d) and
C(b− 1, d) which we will use in our proofs. This hierarchy is
formally defined below.

Definition 3 (Parent Code). For a C(b, d) code with an MCL
L(b, d), the loop containing the prefix of length b − i of all
the codewords in the loop is an MCL that defines a parent
code of order i, i.e., C(b− i, d). The parent code of order 1 is
simply called the parent code.

It can be inferred that given a code, its corresponding parent
code is unique and d-unimodal. However, a parent code can
result in different child codes. Note that based on Thm. 1,
given a scanning beam set, the resulting collection of feedback
sequences is a d−unimodal code. Also, from Sec. II-D, we
know that the number of possible URs is the same as the
number of possible feedback sequences. As a result, we
can upper bound the number of URs (number of feedback
sequences) by finding an upper bound for the cardinality of
d−unimodal codes. In the next theorem, we use the parent-
child hierarchy to bound the cardinality of d−unimodal codes
which also gives us a bound on the number of URs.

Theorem 2 (Maximum Code Cardinality). Let M(b, d)
denote the maximum cardinality for the code C(b, d). Then,
for d = 1, M(b, d) = 2b and for d > 1,

M(b, d) ≤

{
M(b− 1, d) + 2M(b− d, d) b > d,

2b b ≤ d.
(4)

Proof. The proof is provided in Appendix B. A sketch of
which is as follows. From Def. 2, we know that the cardinality
of a d−unimodal code is less than or equal to the length of its
MCL. Moreover, it is easy to see that the length of any MCL
for C(1, d) is at most 2. On the other hand, using parent-child
hierarchy, we bound the difference between the cardinality of
a child’s MCL with its parent’s MCL. Based on these, we
calculate the upper bound in the theorem. �

Using the above results, we can bound the minimum ex-
pected beamwidth for UR as in the next theorem.

Theorem 3 (Minimum Expected Beamwidth). The minimum
expected beamwidth i.e., the objective function in optimization
problem (2) when contiguous scanning beams are used is
bounded as

2h(Ψ)

M(b, d)
≤ EΨ[|Beam(S,Ψ)|] (5)

Proof. From Thm. 1 and Thm. 2, we observe that the maxi-
mum number of URs is bounded by M(b, d). Using this with
[6, Prop. 2], will give us the lower bound. �

We conclude this section, by providing a comparison of the
total (i.e., scanning phase + waiting phase) BA duration that
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Fig. 3: Total BA duration for a given fixed expected data
beamwidth resolution of 360/25 ≈ 10◦ for different BA
methods and feedback delays for ψ ∼ Uniform(0, 2π].

different BA methods and the derived lower bound require,
given a fixed expected UR width for different values of
feedback delay and Ψ ∼ Uniform(0, 2π]. The result is plotted
in Fig. 3. In the modified exhaustive search method, for a
given b, we divide the (0, 2π] into b+1 equal width URs, and
at each time-slot, scan one UR. Since the system is error free,
we can find the UR including the AoD by only searching
b of b + 1 URs. We observe that as the delay increases,
the performance of bisection method which is optimal for
case of d = 1 rapidly degrades and after delay of d = 8
time-slots, even the modified exhaustive search outperforms
bisection method. This figure also shows that as the delay
increases the lower bound becomes closer to the performance
of the optimal non-interactive method [6]. In fact, if we allow
for more delays, they become exactly the same. The reason
is that the optimal non-interactive method in [6] is a special
case of our problem for d > b. This plot also suggests that
there is potential of improving the performance of the state-of-
the-art methods using an appropriate BA scheme. In fact, the
proposed framework can also be used to construct the optimal
BA method achieving the lower bound in the Fig. 3. Details
and the derivation of optimal BA solution are left for future
publication due to space constraint.

V. CONCLUSION

In this paper, we have investigated the single-user analog
BA, where there is a fixed delay between each transmitted BA
packet and its corresponding feedback. We have proposed a
general framework for this problem using d−unimodal codes.
We have shown that the feedback sequences form a class of
codes we refer to by d−unimodal codes, using which we
have derived a lower bound on the minimum feasible expected
width of the URs. Furthermore, through numerical evaluation,
we have shown the possibility of performance improvement
over the state-of-the art methods in terms of BA duration
required to achieve a fixed expected width for the UR.
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APPENDIX A
PROOF OF THEOREM 1

Let us denote the loop resulting from replacing each com-
ponent beam in I with its corresponding feedback sequences
by L. To prove the theorem statement, we show that L firstly,
does not have any consecutive repetitions and secondly, is a
characteristic loop for a code consisting of all the feedback
sequences of S. We prove the second part by showing L
satisfies each of the conditions in Def. 2.

No consecutive repetitions: We show this by contradiction.
Assume L has a consecutive repetition. This means two
consecutive component beams lets say I1 and I2 have same
feedback sequences. If so, all the scanning beams in S either
include both I1 and I2 or none. Therefore, if we form the
component beams of S, we should get I1∪I2 as a component
beam instead of two separate component beams I1 and I2. This
is a contradiction and so L does not have any repetitions.

To prove that L is a characteristic loop of a code consisting
of all the feedback sequences. First, note that the loop L
includes all the possible feedback sequences as the component
beams of I partition the entire (0, 2π]. Next, we show that L
satisfies the conditions in Def. 2.

Def. 2, first condition: Assume i ≤ d, since no feedback is
received, the set Si includes only one scanning beam. Let us
denote this beam by Φi. By construction of component beams
loop I, Φi can be written as union of subset of component
beams in I. It is easy to see that if a component beam is
included in Φi, the feedback sequence corresponding to that
component beam would have one in the ith position and
otherwise zero. Now, Let us consider the binary loop derived
from the ith elements of the feedback sequences in L and
denote it by Li. Based on our discussions, in Li, at the position
of the component beams which are included in Φi, we should
have one and otherwise we should have zero. Since Φi is
contiguous, the component beams included in Φi are adjacent
and so the positions of ones in Li are consecutive. Therefore,
Li is by definition unimodal and the condition holds.

Def. 2, second condition: Suppose that we are at the ith

time-slot of BA where i ≥ d. Without loss of generality
assume that the BS has received the feedback sequence
(a1, a2, . . . ai−d) for which it uses the scanning beam Si,m
from Si for some m ∈ [M(i)]. We need to show that if we
form the sub-loop of the feedback sequences in L that have
the prefix (a1, a2, . . . , ai−d), the binary loop of the ith bits is
unimodal. Let us denote this binary loop by L̃i.



Note that the scanning beams Φj , j ≤ i − d and the
considered feedback sequence (a1, a2, . . . , ai−d) determine an
angular region that includes the AoD of the user at the ith

time-slot. By construction of the component beam loop I,
we can write this angular region as a union of subset of
the component beams in I. Given this, let us form a sub-
loop of I by removing the component beams which are not
included in this angular region and name it Ĩ. Consider one
of the component beams inside this sub-loop and denote it
by Ĩ1. It is straight forward to see that the ith bit of the
feedback sequence (a1, a2, . . . , ab) corresponding to Ĩ1 is one
if Ĩ1 ∈ Si,m and zero otherwise. Therefore, if we replace the
component beams inside Ĩ with their feedback sequences and
look at the loop of ith bits it would be unimodal since Si,m
is contiguous. Next, we show that this loop is the loop L̃i.
To show this, note that Ĩ is a sub-loop of I and includes all
and only component beams of I whose feedback sequences
have the prefix (a1, a2, . . . , ai−d). Therefore, if we replace the
component beams inside Ĩ with their corresponding feedback
sequences and form the binary loop of the ith bits by definition
it will be the loop L̃i.

APPENDIX B
PROOF OF THEOREM 2

For the case of d = 1, we know that the maximum number
of feedback sequences using b yes/no questions is 2b which is
also achievable (e.g., bisection method). Therefore, M(b, 1) =
2b.

For d > 1, we first bound the cardinality of the MCL
L(b, d), and then bound M(b, d) using Def. 2 which indicates
M(b, d) ≤ |L(b, d)|.

Looking at the Def. 2, by grouping the codewords in the
MCL L(b, d) into sub-loops whose codewords have same
prefix of length b−d, the loop of the last bit of the codewords
in each sub-loop becomes unimodal. On the other hand, we
know that if we remove the last bit of all the codewords in the
MCL L(b, d) and eliminate the consecutive repetitions of the
created codewords, by definition of the parent code, we will
get an MCL L(b−1, d). Note that if no consecutive repetitions
are caused by removing the last bit of the codewords, we
would have |L(b, d)| = |L(b − 1, d)|. However, if there were
codewords to be eliminated due to the consecutive repetitions,
we would get |L(b, d)| > |L(b − 1, d)|. So, by finding
the maximum possible reduction of codewords due to the
consecutive repetitions, we can find the maximum possible
difference between |L(b, d)| and |L(b − 1, d)|. To count this,
observe that the MCL L(b, d) cannot have any consecutive
repetitions by definition. Therefore, if the bits removed from
two consecutive codewords in L(b, d) are the same, they
cannot lead to consecutive repetitions in L(b − 1, d). Also,
removing the last bit of the consecutive codewords in L(b, d)
which have different prefixes of length b − d does not lead
in consecutive repetitions either since the codewords don’t
have the same first b − d bits. As a result, the only way that
consecutive repetitions might happen is when the last bits are
not the same and the codewords have same prefix of length

b − d. Suppose we group the codewords into sub-loops that
have same prefix of length b−d. We know that the loop of the
last bits in each sub-loop is unimodal. Moreover, the maximum
number of times that two consecutive bits in a unimodal loop
can be different is 2. Therefore,

|L(b, d)| ≤ |L(b− 1, d)|+ 2(number of sub-loops). (6)

The number of sub-loops of codewords with same prefix of
length b− d for any possible MCL of C(b, d) is by definition
of a parent code equal to |C(b − d, d)|. Combining this with
(6) and using the fact that M(b−d, d) ≤ |L(b−d, d)|, we get

M(b, d) ≤ |L(b, d)| ≤ |L(b− 1, d)|+ 2|L(b− d, d)|. (7)

When b ≤ d, we can conclude form in [6, Prop. 6] that
M(b, d) = |L(b, d)| = 2b. Therefore,

M(b, d) = |L(b, d)| = 2b. for b ≤ d (8)

Combining this with (7), we get the bound in the theorem
which concludes the proof.
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