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Abstract—We consider a system consisting of a server, which
receives updates for N files according to independent Poisson
processes. The goal of the server is to deliver the latest version
of the files to the user through a parallel network of K caches.
We consider an update received by the user successful, if the
user receives the same file version that is currently prevailing
at the server. We derive an analytical expression for information
freshness at the user. We observe that freshness for a file increases
with increase in consolidation of rates across caches. To solve
the multi-cache problem, we first solve the auxiliary problem of
a single-cache system. We then rework this auxiliary solution
to our parallel-cache network by consolidating rates to single
routes as much as possible. This yields an approximate (sub-
optimal) solution for the original problem. We provide an upper
bound on the gap between the sub-optimal solution and the
optimal solution. Numerical results show that the sub-optimal
policy closely approximates the optimal policy.

I. INTRODUCTION

In the information age, users want instant access to up-to-

date data. Caching is a popular method of pre-storing data

at nodes in a network closer to the users for faster delivery

of latest data. In recent years, various papers have explored

freshness-optimal policies in different settings. Most works

have relied on the age of information (AoI) metric to measure

obsoleteness of data. AoI has been considered in a wide range

of contexts, such as queueing networks, energy harvesting sys-

tems, web crawling, scheduling problems, remote estimation,

UAV systems and so on [1]–[49].

The works that are most closely related to our work here are

[40]–[49]. In [40], a single-server single-cache refresh system

is considered, where it is shown that an asymptotically optimal

policy updates a cached file in proportion to the square root of

its popularity. The work in [40] assumes constant file update

durations, which is extended in [41] by considering file update

durations to be dependent on the size and the age of the files.

While [40], [41] use the AoI metric, reference [42] uses a

binary freshness metric in a caching system, and determines

the optimum update rates at the user and the cache. [42] also

extends the approach to a cascade sequence of cache nodes,

and [43] generalizes it to the case of nodes with limited cache

capacity. Here, we further generalize [42] to a more complex

network which is composed of parallel caches.

Other related work that use caching and relaying techniques

for freshness include: [44] where a tradeoff between content

freshness and service latency from the aspect of mobile edge

caching is studied; [45] which considers caching policies in
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Fig. 1. System model for a parallel multi-cache system.

opportunistic networks; [46] where a cache-enabled aggregator

decides whether to receive a fresh update from an energy

harvesting sensor or serve the request with a cached update;

[47] where an optimal policy is derived when the current rate

of requests for a file is dependent on both history of requests

and the freshness of the file; [48] which considers a two-hop

status update system where an optimal scheduling policy is

identified by a constrained Markov decision process approach;

and [49] where a two-hop system with energy harvesting at

source and relay nodes is considered.

In this paper, we consider a parallel network with multiple

cache routes between a source and a user (Fig. 1). We first

derive a closed-form expression for freshness at the user.

We observe from the freshness formula of the two-cache

system that lop-sided distribution of rates across the routes

supports higher freshness. Further, for the two-route two-file

case, restricting at least one of the files to a single route

maximizes the overall freshness of the system. Moreover, in a

K-cache system, restricting a file to fewer routes improves the

freshness. Motivated by these properties, we solve an auxiliary

problem of a single-cache system and adapt its solution to our

parallel-cache network to obtain an approximate (sub-optimal)

solution for the original problem. We provide an upper bound

on the gap between the sub-optimal policy and the optimal

policy. The gap is finite and is independent of the number of

files. Numerical results show that the proposed sub-optimal

policy closely approximates the optimal policy.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system with a source, K parallel relays and

a user, as shown in Fig. 1. The source has the most up-to-

date versions of a library of N files. File i is updated at the

source with exponential inter-update times with rate λi. The

source updates file i at cache k with exponential inter-update

times with rate cki. Cache k updates file i at the user with

exponential inter-update times with rate uki. There is no delay

or information loss in any source-cache links or cache-user

links. However, the source is subject to a total update rate

constraint
∑K

k=1

∑N
i=1 cki ≤ C, and cache k is subject to a

total update rate constraint
∑N

i=1 uki ≤ Uk, for k = 1, . . . ,K .

When a file is updated at the source, the stored versions of

the same file at the caches and at the user become outdated.

Thus, we consider an update received by the user successful

if the user receives a file version that is currently prevailing

at the source. This will happen when the source updates the

cache and the cache in turn updates the user before the file at

the source is updated with a newer version. In the following

subsections, we first derive a freshness expression for file i in

a single-cache system, and then in a multi-cache system. For

simplicity, we drop subscript i from λi, cki and uki since the

derivation is valid for all files (for all i).

A. Freshness of File i in the Single-Cache Model

In this subsection, we find the freshness expression for file i

for a single-cache system. First, we characterize the freshness

at the cache. In Fig. 2(a), the freshness evolution at the cache

is shown between two file updates at the source. We define

the freshness function for file i at the cache as follows

fc(i, t) =

{

1, if file i at the cache is fresh at time t,

0, otherwise.
(1)

Let Ts(i, j) denote the jth update cycle at the source,

i.e., time interval between the jth and (j + 1)th update for

file i. Once the source gets updated, the cache is updated

after duration Wc(i, j) and it remains updated for Tc(i, j) =
Ts(i, j) − Wc(i, j) duration. For simplicity, we drop index i

for variables Ts(i, j), Tc(i, j), and Wc(i, j), as the results in

this subsection pertain to file i. We denote Fc(i) as the long

term average freshness of file i at the cache which is given by

Fc(i) = lim
T→∞

1

T

∫ T

0

fc(i, t)dt. (2)

Let M be the number of update cycles in time duration T .

Provided that the system is ergodic, similar to [42], Fc(i) is

Fc(i) = lim
T→∞

M

T





1

M

M
∑

j=1

Tc(j)



 =
E[Tc]

E[Ts]
. (3)

Here, as Tc(j) are independent and identically distributed

(i.i.d.) over j, we drop the index j and denote Tc(j) with the

typical random variable Tc. Similarly, Ts and Wc denote the

typical random variables for Ts(j) and Wc(j), respectively.

Since Ts is an exponential random variable with rate λ, we

have E[Ts] =
1
λ

. We find E[Wc] by using nested expectations,
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Fig. 2. Freshness function as a function of time at the cache and the user.

i.e., E[Wc] = E[E[Wc|Ts]]. For a given update cycle duration

Ts = t at the source, Wc, which is exponentially distributed

with rate c, either takes a value in between 0 and Ts, or takes

value Ts, i.e., Wc = Ts, and in this case, the cache is not

updated in that cycle. Thus, we have

E[Wc|Ts= t]=

∫ t

0

xce−cxdx+

∫

∞

t

tce−cxdx =
1− e−ct

c
. (4)

Then, we obtain E[Wc] as

E[Wc] =

∫

∞

0

1− e−ct

c
λe−λtdt =

1

λ+ c
. (5)

By using (5), we obtain E[Tc] = E[Ts]− E[Wc] as

E[Tc] =
c

λ(λ + c)
. (6)

Finally, by substituting (6) into (3), we obtain Fc(i) as

Fc(i) =
c

λ+ c
. (7)

Next, we characterize the freshness at the user. Freshness

evolution at user in an update cycle is shown in Fig. 2(b). We

define the freshness function for file i at the user as follows

fu(i, t) =

{

1, if file i at the user is fresh at time t,

0, otherwise.
(8)

Once file i is updated at the cache after Wc(j), and the same

file is updated at the user after W̄u(j), file i at the user remains

fresh for a time period of Tu(j). Thus, the total waiting time

for the user to get the freshest version of file i in the jth cycle

is Wu = Wc+W̄u. We denote Fu(i) as the long term average

freshness of the file i at the user which is given by

Fu(i) =
E[Tu]

E[Ts]
, (9)

where Tu denotes the typical random variable for Tu(j).
First, we find E[Wu] by using nested expectations. When the

jth update arrives at the source, due to memoryless property

of the exponential distribution, Wc and W̄u are exponentially

distributed with rates c and u, respectively. Hence, the distri-

bution of Wu denoted by fWu
(x) is equal to the convolution

of the distributions of Wc and W̄u which is given by

fWu
(x) =

cu

c− u

(

e−ux − e−cx
)

, 0 ≤ x < ∞. (10)

For a given update cycle duration Ts = t at the source, the



total waiting time Wu with pdf in (10) either takes a value in

between 0 and Ts, or Wu = Ts. When Wu = Ts, we note that

the file at the user is not updated in that cycle. Thus,

E[Wu|Ts = t] =
cu

c− u

(

1− e−ut

u2
−

1− e−ct

c2

)

. (11)

By using E[Wu] = E[E[Wu|Ts]], we obtain E[Wu] as

E[Wu] =
λ+ c+ u

(λ + u)(λ+ c)
. (12)

Then, we obtain E[Tu] = E[Ts]− E[Wu] as

E[Tu] =
uc

λ(λ + u)(λ+ c)
. (13)

Finally, by substituting (13) into (9), we obtain Fu(i) as

Fu(i) =
E[Tu]

E[Ts]
=

u

λ+ u

c

λ+ c
, (14)

which is equal to the freshness expression in [42]. Above,

we have provided an alternative method (to [42]) to derive

freshness, which will be useful in the multi-cache system next.

B. Freshness of File i in the Multi-Cache Model

In this subsection, we find the freshness expression of file

i for a multi-cache system. For simplicity, we drop file index

i from all variables. Each cache sends its updates to the user

independent of other caches. After the file at the source is

updated for the jth time, the file at the user becomes fresh

again by the first successful update by any one of the caches.

The file at the cache k is updated after Wck duration. The

cache k updates the same file at the user after W̄uk
duration.

We denote the random variable Xk = Wck + W̄uk
as the

total waiting time for cache k to send a successful update

to the user. As Wck and W̄uk
are exponentially distributed

with rates ck and uk, respectively, similar to (10), we have

fXk
(x) = ckuk

ck−uk
(e−ukx − e−ckx) for x ≥ 0. For a given

update cycle Ts = t, the user is updated after Wu given by

Wu = min{t,X1, X2, . . . , XK}, (15)

where Wu = t denotes the case where the user is not updated

in that update cycle. The ccdf of Xk is given by

P(Xk > x) =

{

ckuk

ck−uk

(

e−ukx

uk
− e−ckx

ck

)

, x ≥ 0,

1, x < 0.
(16)

Since Wu takes only positive values, E[Wu] can be found by

integrating its ccdf, i.e., E[Wu|Ts = t] =
∫

∞

0
P(Wu > x)dx,

E[Wu|Ts = t]=

∫ t

0

P(X1 > x) · · ·P(XK > x)dx. (17)

For ease of exposition, let pv = (pi)i∈[k] ∈ Πk{ck, uk} = Vp,

and Sc =
∑K

k=1 1{pk = ck}. Then, E[Wu|Ts = t] equals

∏

k ck
∏

k uk
∏

k(ck − uk)





∑

pv∈Vp

(−1)Sc

(

1− e−t(
∑

k
pk)

)

(
∑

k pk)
∏

k pk



 . (18)

Next, we find E[Wu] = E[E[Wu|Ts]] as

E[Wu] =

∏

k ck
∏

k uk
∏

k(ck − uk)





∑

pv∈Vp

(−1)Sc

∏

k pk

1

λ+
∑

k pk



 . (19)

Since E[Tu] = E[Ts]− E[Wu], we find Fu(i) in (9) as

Fu(i)=1−

∏

k ck
∏

k uk
∏

k(ck − uk)





∑

pv∈Vp

(−1)Sc

∏

k pk

1

1 +
∑

k
pk

λ



. (20)

We note that when K = 1, i.e., single-cache system, the user

freshness in (20) reduces to the expression in (14). When K =
2, i.e., two-cache system, the user freshness in (20) reduces to

the expression in (21) at the top of the next page. Interestingly,

comparing (14) and (21), we note that freshness in a two-cache

system with update rates (c1, c2) from the source to the caches

and (u1, u2) from caches to the user, yields a smaller freshness

than in a single-cache system with an update rate c = c1 + c2
from the source to a cache and u = u1 + u2 from the cache

to the user due to the negative term in (21).

III. STRUCTURE OF THE OPTIMAL POLICY

In this section, we find the optimum update rate allocation

structure for general K and N . First, we consider the system

with K = 2 caches and N = 2 files. We denote route k as

the file update path from source through cache k to the user.

Again dropping file index i, let user update rates for file i be

u1 and u2 in route 1 and route 2, respectively, also let cache

update rates in route 1 and route 2 be c1 and c2, respectively.

We define the average variables as ū = u1+u2

2 and c̄ = c1+c2
2 ,

and deviation from the average as b = u2−u1

2 and a = c2−c1
2 .

Thus, u1 = ū− b, u2 = ū+ b, c1 = c̄− a, and c2 = c̄+ a.

In the next lemma, for given user rates u1 and u2 (therefore,

given ū and b), and the total cache rate 2c̄, we find the optimal

distribution of cache rates to maximize the freshness at the

user, that is, we find the optimal a, a∗, in terms of b, ū and c̄.

Lemma 1 In a cache update system with K = 2 parallel

caches and N = 2 files, for given user rates u1 and u2, and

the total cache rate 2c̄, the optimal cache rates are equal to

c∗1 = c̄− a∗ and c∗2 = c̄+ a∗ where

a∗ = min

{

b+
(c̄+ λ+ ū)

b(2c̄+ λ)

(

ū(2c̄+ λ+ ū)− b2

−
√

(ū2 − b2)((2c̄+ λ+ ū)2 − b2)

)

, c̄

}

. (23)

Proof: We prove the lemma by writing (21) equivalently as

(22) after inserting ū, c̄, a and b. Since ū and c̄ are fixed, the

first term and pre-factor of the second term in (22) are fixed.

Taking the derivative of the term inside the parentheses with

respect to a yields the first part of the min in (23). As this

critical point yields
∂2Fu(i)

∂a2 < 0, we conclude that a∗ in (23)

maximizes the freshness at the user. We note that ∂a∗

∂b
≥ 0,

and thus, a∗ increases monotonically with b, till it reaches c̄,

after which a∗ is equal to c̄, yielding (23). �



Fu(i) =
(u1 + u2)(c1 + c2)

(λ+ u1 + u2)(λ + c1 + c2)
−

λ

(λ + u1 + u2)(λ+ c1 + c2)

(

u2c1

(λ+ u1 + c2)
+

u1c2

(λ + u2 + c1)

)

(21)

Fu(i) =
4c̄ū

(λ+ 2c̄)(λ+ 2ū)
−

λ

(λ+ 2c̄)(λ+ 2ū)

(

(ū− b)(c̄+ a)

(c̄+ λ+ ū+ b− a)
+

(ū+ b)(c̄− a)

(c̄+ λ+ ū+ a− b)

)

(22)

As an aside, we remark that in (23) we have a∗ ≥ b as

long as a∗ < c̄, that is, for a deviation b of u1, u2 from their

average ū, the optimal a yields a bigger deviation for c∗1, c∗2
from their average c̄.

Next, we define F̃u(i) as the cache-update-rate-optimized

freshness, where for fixed u1, u2, we insert the optimal cache

update rates c∗1 and c∗2 in (21). Note that F̃u(i) is a function

of b, ū and c̄. In the following lemma, we show that as u1, u2

get more lopsided, i.e., as the difference (u2 − u1) increases,

cache-update-rate-optimized freshness F̃u(i) increases.

Lemma 2 F̃u(i) is an increasing function of b.

We prove Lemma 2 by showing
dF̃u(i)

db
> 0. Lemma 2 implies

that lopsided update rates at the user increase the freshness.

Next, for a K = 2 cache system with N = 2 files, we show

that we should restrict at least one of the files to a single route,

that is, lopside at least one of the files to an extreme.

Lemma 3 In a cache update system with K = 2 caches and

N = 2 files, in the optimal policy, we need to restrict at least

one file to a single route.

Proof: Let the average rates at the caches and at the user hold

values c̄i = c1i+c2i
2 and ūi = u1i+u2i

2 for i = 1, 2 which

fixes total user rates and total cache rates. Similarly, we have

u1i = ūi−bi and u2i = ūi+bi which satisfies the total update

rate constraints u11+u12 = U1 and u21+u22 = U2. Then, we

change the update rates at the user to u′

11 = ū1−b1−δ1, u′

21 =
ū1+ b1+ δ1, u′

12 = ū2− b2+ δ2 and u′

22 = ū2+ b2− δ2 such

that we have |δ1| = |δ2|, u
′

11+u′

12 = U1, and u′

21+u′

22 = U2

still hold. We analyze two cases of shuffling, shown in Fig. 3.

In the first case, increasing bi for one file leads to increasing

bi value for the other file as shown in Fig. 3(a). As distributions

of user rates for both files become lopsided simultaneously, it

is a win-win situation for both files. For this case, we increase

bi values of files till one file is completely in a single route.

For example, in Fig. 3(a), the user rates for the second file

(shown in yellow) are ū2 − b2 and ū2 + b2 in route 1 and

route 2, respectively. Then, we increase b2 till ū2 − b2 = 0 in

route 1 and the second file is completely restricted to route 2.

Such shuffling also leads to a simultaneous increase in b1.

In the second case, increasing bi value of one file decreases

bi value of the other file. This case is shown in Fig. 3(b)

where both files have larger user update rates in route 2. In

order to determine which file to prioritize, we compare
dF̃u(i)
dbi

for both files. If
dF̃u(1)
db1

>
dF̃u(2)
db2

, then we prioritize improving

freshness of file 1. One can show that
d2F̃u(i)

db2
i

> 0. Thus, the

increase in freshness of file 1 is always larger than the decrease

in freshness of file 2. Similarly, if
dF̃u(2)
db2

>
dF̃u(1)
db1

, then we

increase the freshness of the second file which decreases the

freshness of the first file. Thus, we need to restrict at least one

file to a single route to obtain the optimum freshness. �

Thus, for a K = 2 cache and N = 2 file system with a given

set of update rates u11, u21, u12 and u22, we can shuffle these

rates to increase the total freshness while keeping average rates

ū1, ū2, c̄1, and c̄2 the same. In this process, we always end

up restricting one of the files to only one route. Extending

this result to a K = 2 cache but arbitrary N files case, we

iteratively choose a pair of files and increase freshness of the

pair by restricting one of these files to a single route. We

repeat this process until we restrict N − 1 files to a single

route each. Thus, for a K = 2 cache, arbitrary N file system,

only at most one file will be updated through both relays, and

the remaining N − 1 files will settle to a single relay.

Lemma 4 Freshness of a file in a K-cache system with

update rates at the cache (c1, c2, c3, . . . , cK), and at the

user (u1, u2, u3, . . . , uK) is smaller than the freshness in

a (K − 1)-cache system with update rates at the cache

(c1 + c2, c3, . . . , cK), and at the user (u1 + u2, u3, . . . , uK).

Proof: With notation of Section II, since freshness Fu(i) =
1− λE[Wu], where E[Wu] =

∫

∞

0 E[Wu|Ts = t]λe−λtdt, we

prove the lemma by showing E[WK
u |Ts = t]−E[WK−1

u |Ts =
t] ≥ 0, where K in WK

u denotes K-cache system. �

Thus, given total update rates
∑K

k=1 uki and
∑K

k=1 cki for

a file i, the maximum freshness is obtained by concentrating

the rates in a single route to the extent possible. In the next

section, we provide an approximate way of finding total update

rates for files and scheduling them to individual links.

IV. APPROXIMATE SOLUTION

The freshness maximization problem for our system is,

max
cki,uki

N
∑

i=1

Fu(i)

s.t.

K
∑

k=1

N
∑

i=1

cki ≤ C

N
∑

i=1

uki ≤ Uk, k = 1, . . . ,K,

cki ≥ 0, uki ≥ 0, k = 1, . . . ,K, i = 1, . . . , N. (24)

This parallel-cache problem is significantly more complex than

the cascade-cache problem in [42]. A Lagrangian approach as

in [42] seems prohibitive as it results in highly nonlinear KKT
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Fig. 3. Shuffling user rates for improving freshness. (a) Freshness of both
files improve (file 2 only in route 2). (b) In upper branch, freshness of file
1 decreases and of file 2 increases (file 2 only in route 2). In lower branch,
freshness of file 1 increases and of file 2 decreases (file 1 only in route 2).

conditions. We pursue an approximate solution approach uti-

lizing the properties of the optimal solution found in Section 3.

First, we construct a single-cache problem by bringing

all relays together, where the source-to-cache total update

constraint is C and the relay-to-user total update constraint

is U =
∑K

k=1 Uk. The optimal solution of this single-cache

problem forms an upper bound for the optimum solution of our

multi-cache problem, as it allows distributed relays to share

update rate capacities. We denote this upper bound by Fub.

Second, we extract a feasible solution for our multi-cache

problem from the optimum solution of the constructed single-

cache problem. We know from Lemma 4 that files need to

be restricted to single routes for maximum freshness. Thus,

our approximate solution takes the optimum solution of the

constructed single-cache problem, and distributes the update

rates in the multi-cache setting in such a way that each file

is updated only through a single relay to the extent possible.

Let the solution of the single-cache problem be ui which is

ui =
∑K

k=1 uki. We assign the files in order of decreasing ui

to one of the routes. We start with the first route and fit fully

as many files as possible, till we reach a file which will not fit

completely and we make it split rates with the last route (route

K). We follow this for K − 1 routes. If a file rate ui exceeds

route capacity Uk, we first fill maximal full routes with it, then

try to fit the remaining rate fully in the remaining routes. This

leaves us with at most K−1 files that split rates between two

routes. The remaining files go to route K . This approximate

solution gives us a sub-optimal freshness Fso. Denoting the

optimal freshness in our problem in (24) as F ∗, we have

Fso < F ∗ < Fub (25)

which means F ∗−Fso ≤ Fub−Fso, i.e., the gap between the

sub-optimal solution and the optimal solution is bounded by

the gap between the upper bound and the sub-optimal solution.

Next, we bound Fub−Fso. We note that, in the sub-optimal

policy, we assign at most K − 1 files to two routes. From

Lemma 2, freshness for file i increases when bi increases, with

minimum at bi = 0 (a∗ = 0) and maximum at bi = ūi (a∗ =
c̄). Hence, using (22), we find an upper bound on maximum

freshness loss ratio ρ possible for a file due to splitting,

ρ =
Fu(i)|(bi,a∗

i
)=(ūi,c̄i) − Fu(i)|(bi,a∗

i
)=(0,0)

Fu(i)|(bi,a∗

i
)=(ūi,c̄i)

, (26)
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Fig. 4. (a) Total user rates and total cache rates obtained from the auxiliary
solution, (b) route allocations for files (files with blue rates in single routes),
and (c) freshness obtained for the single-cache and parallel cache systems.

which is equal to ρ = λi

2(λi+ūi+c̄i)
< 0.5. Since Fub(i) < 1,

the optimality gap is F ∗−Fso ≤ ρ(K−1)Fub(i) < 0.5(K−1).
These K − 1 files have low uis, owing to very high or very

low λis, as observed in [42]. In the former case, Fub(i) is low,

while in the latter case, ρ is very low.

V. NUMERICAL RESULTS

We choose number of routes K = 5, number of files N =
30, total update rate at source C = 50 and at caches U = 100
where each route has Uk = 20. We use update arrival rates

λi = bqi at the source for i = 1, . . . , N , where b > 0, q = 0.7,

and
∑N

i=1 λi = a, with a = 100. Note that the update arrival

rates at the source λi decrease with the file index since q < 1.

We apply alternating maximization approach described in

[42] to solve the auxiliary single-cache problem to obtain total

update rate for file i at the user
∑K

k=1 uki and at the caches
∑K

k=1 cki as shown in Fig. 4(a). The total cache update rate

constraint, i.e.,
∑K

k=1

∑N

i=1 cki ≤ C, is already satisfied by

both problems. In a parallel cache system, each route has its

own total update rate constraint
∑N

i=1 uki ≤ Uk, whereas the

single-cache system has only one total update rate constraint

for the user, i.e.,
∑K

k=1

∑N
i=1 uki ≤ U where U =

∑K
k=1 Uk.

Thus, we need to choose the user rate allocation for all files

in each route as described in Section IV, with corresponding

cache rates found by (23) which are shown in Fig. 4(b). We

denote the freshness at the user for the single-cache system

obtained by the method in [42] as F̄ub. We plot F̄ub and Fso

in Fig. 4(c). Even though we split the update rates among

different routes for K − 1 = 4 files that have some of the

highest freshness (files 26, 28, 29, 30), their freshness loss

is negligible as shown in Fig. 4(c). In this system, the total

freshness loss, i.e., F̄ub − Fso, is equal to 0.0026, which is

much smaller than the theoretical upper bound 0.5(K−1) = 2.
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