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Abstract—We revisit the linear programming bounds for the
size vs. distance trade-off for binary codes, focusing on the bounds
for the almost-balanced case, when all pairwise distances are
between d and n− d, where d is the code distance and n is the
block length. We give an optimal solution to Delsarte’s LP for
the almost-balanced case with large distance d ≥ (n−√

n)/2+1,
which shows that the optimal value of the LP coincides with the
Grey-Rankin bound for self-complementary codes.

We also show that a limitation of the asymptotic LP bound
shown by Samorodnitsky, namely that it is at least the average
of the first MRRW upper bound and Gilbert-Varshamov bound,
continues to hold for the almost-balanced case.

I. INTRODUCTION

This paper concerns the standard size-versus-distance trade-

off for binary error-correcting codes. A binary code C with

block length n and distance d is a subset of the n-dimensional

Hamming cube {0, 1}n, such that the Hamming distance

between any two elements from C is at least d. In this paper

such codes will be referred to as min-distance codes, and

we denote A(n, d) to be the maximal size of such a code.

Understanding the behavior of A(n, d) is one of the most

fundamental challenges in combinatorial coding theory. For

the case when d is linear in n, one is interested in asymptotic

rates of the code rather than their sizes:

d,

where δ ≈ d/n ≤ 1/2 is the relative distance of the code.

The best known asymptotic bounds as well as finite-

length bounds on A(n, d) for many parameters are given

by Delsarte’s linear programming approach [1]. Specifically,

McEliece, Rodemich, Rumsey, and Welch [2] obtain the best

known upper bounds on R(δ) for the entire region δ ∈ (0, 1/2)
by finding a good feasible solution to Delsarte’s LP. There is,

however, a sizeable gap between the MRRW upper bound on

R(δ) and the Gilbert-Varshamov lower bound R(δ) ≥ 1−h(δ)
where h(·) is the binary entropy function, and shrinking this

gap has remained a major challenge for almost 45 years.

In this paper, we are interested in the performance of

the linear programming approach for bounding the size of

almost-balanced codes, which obey the stronger condition that

the Hamming distance between any two distinct codewords

lies between d and (n − d). Almost-balanced codes when

d = (1− ǫ)n/2 are closely related to ǫ-biased spaces that are

of fundamental interest in pseudorandomness and derandom-

ization, starting with the seminal work of Naor and Naor [3].

The recent breakthrough explicit construction of high distance

codes approaching the Gilbert-Varshamov bound by Ta-Shma

crucially proceeds by constructing almost-balanced codes [4].

Almost-balanced codes are closely related to self-

complementary codes. The code C′ is self-complementary

if u ∈ C′ implies that the complementary vector u is also

in C′. The connection between almost-balanced and self-

complementary codes is two-way:

• any almost-balanced code C with distance d (i.e. all pair-

wise distances lie in the interval [d, n−d]) corresponds to

a self-complementary code of size 2|C|. Indeed, the code

C′ = {u |u or u is in C} is self-complementary and has

size 2|C|.
• any self-complementary code C′ with distance d cor-

responds to a family of almost-balanced codes of size

|C′|/2 and distance d. Such codes can be constructed

by taking one codeword from every complementary pair

u, u ∈ C′.

Thus to translate the bounds for almost-balanced codes to

self-complementary codes, one just needs to multiply the size-

versus-distance trade-off (for the same distance d) by 2.

Let us denote by B(n, d) the maximal size of an almost-

balanced code with block length n and distance d. Once again,

when d is linear in n, we can study the asymptotic rate of the

codes rather than their sizes:

Rbal(δ) = lim sup
n→∞

logB(n, ⌊δn⌋)
n

.

The driving force behind this work is to study upper

bounds obtained for almost-balanced codes via the linear

programming method, and compare them to the ones for the

min-distance codes. Our results consists of two parts:

1) For almost-balanced codes with large distances

d ≥ n−√
n

2 + 1 we find an optimal solution to Delsarte’s

linear program. This solution gives an upper bound

on B(n, d) equivalent to the Gray-Rankin bound for

self-complementary codes [5]–[8]. Since the solution we

obtain is optimal, this proves a matching lower bound on

Delsarte’s LP problem, showing that LP approach cannot

prove better bounds for the almost-balanced case. While

this was already implied for a very limited range of
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pairs (n, d) for which Grey-Rankin bound is achievable

([9]), our bound works for arbitrary even n, d satisfying

d ≥ n−√
n

2 + 1.

2) We show (Theorem 2) that the asymptotic LP bound

for almost-balanced codes is at least the average of the

first MRRW bound and Gilbert-Varshamov lower bound.

This is the analog of Samorodnitsky’s result [10] for

min-distance codes, and indicates that the (direct) linear

programming approach cannot attain the best known

lower bound on Rbal(δ). The proof is a simple adaptation

of Samorodnitsky’s argument.

II. KRAWTCHOUK POLYNOMIALS AND DELSARTE’S LP

For fixed n, the Krawtchouk polynomials are defined as

Ks(x) =

s
∑

j=0

(−1)j
(

x

j

)(

n− x

s− j

)

, s = 0, 1, . . . , n.

Ks(x) is a degree-s polynomial, and K0, K1, . . . , Kn form

an orthogonal family with respect to a measure µi =
(

n
i

)

/2n:

n
∑

j=0

(

n
j

)

2n
Ks(j)Kt(j) = δst

(

n

s

)

.

Notice that K0(x) ≡ 1 and Ki(0) =
(

n
i

)

. Below are some of

the properties of Krawtchouk polynomials we will need.

Fact 1: Ks(n/2− x) is an even function for even s, and is

an odd function for odd s.

Fact 2: Kn−s(i) = Ks(i) for even i, and

Kn−s(i) = −Ks(i) for odd i.
Fact 3: Reciprocity property:

(

n
s

)

Ki(s) =
(

n
i

)

Ks(i).
The Delsarte’s upper bound on A(n, d) can be formulated

as the following Linear Programming optimization problem:

max
ai ≥ 0

n
∑

k=0

ak

s.t.

n
∑

k=0

akKs(k) ≥ 0, s = 0, 1, . . . , n, (P)

a0 = 1,

ak = 0 1 ≤ k ≤ (d− 1)

Denote β(x) =
n
∑

k=0

βkKk(x). Then the the dual of the above

LP can be written as

min
βi ≥ 0

β(0)

s.t. β(u) ≤ 0, u = d, d+ 1, . . . , n, (D)

β0 = 1

Denoting by ALP (n, d) the optimum values of the above two

problems, the LP bound claims that A(n, d) ≤ ALP (n, d).
The optimal values of the LPs and asymptotic upper bound

RLP (δ) = lim sup
n→∞

1
n logALP (n, ⌊δn⌋) are not known yet,

however upper bounds on ALP (n, d) (and RLP (δ)) can be

obtained by finding feasible solutions to the dual LP (D).

In particular, the (first) MRRW upper bound RMRRW (δ) =

H
(

1
2 −

√

δ(1− δ)
)

is obtained in such a way in [2] (in this

paper we do not address the second MRRW bound).

To formulate the Delsarte’s LP for the almost-balanced case,

we point out that the variables ai, i = 0, 1, . . . , n in the primal

form of LP (P) correspond to the distance distribution of the

code C, i.e. ai = 1
|C| |{(x, y) ∈ C |∆(x, y) = i}|. The first

set of constraints in the LP (P) then correspond to Delsarte-

MacWilliam’s inequalities for the transformed (dual) distance

distribution, while the constraints ak = 0 for 1 ≤ k < d
denote that there are no codewords at distance below d.

For an almost-balanced code C there is no two codewords

in C at distance below d or above (n − d), i.e. ak = 0 for

k < d or k > (n−d). Therefore, the Delsarte’s linear program

for almost-balanced binary codes with distance d is

max
ai ≥ 0

n
∑

k=0

ak

s.t.

n
∑

k=0

akKs(k) ≥ 0, s = 0, 1, . . . , n, (BP)

a0 = 1,

ak = 0 1 ≤ k ≤ d− 1 and k > (n− d).

The dual to the above is the following linear program:

min
βi ≥ 0

β(0)

s.t. β(u) ≤ 0, u = d, d+ 1, . . . , n− d, (BD)

β0 = 1

(the difference from the LP (D) is that β(u) for u > (n− d)
are no longer required to be non-positive.)

We denote by BLP (n, d) the optimal value of the above

pair of LPs, and thus B(n, d) ≤ BLP (n, d). In analogy with

RLP , define by Rbal
LP (δ) = lim sup

n→∞
1
n logBLP (n, ⌊δn⌋) the

LP upper bound on the maximal asymptotic rate for almost-

balanced codes of relative distance δ: Rbal(δ) ≤ Rbal
LP (δ).

III. LP BOUND FOR ALMOST-BALANCED CODES WITH

LARGE DISTANCES

In this section we find the exact optimal solutions to

Delsarte’s linear programs (BD) and (BP) for almost-balanced

codes with large distance. Specifically, we prove

Theorem 1: Let n, d be even such that d ≥ n−√
n

2 + 1.

Then the optimal value of the linear programs BD and BP is

BLP (n, d) =
4d(n− d)

n− (n− 2d)2
.

The upper bound on the size of almost-balanced linear codes

B(n, d) ≤ BLP (n, d) for this regime is equivalent to the

Grey-Rankin bound [5]–[7] on the size of self-complementary

codes. This bound was also obtained by Delsarte by providing

a feasible solution to BD, see, for instance, Problem (18) in

Chapter 17 (p. 544) in [8], or [11] for a more general case.

What we show below is that this solution is in fact optimal

for BD, and therefore for BP via duality.

This implies that the bound in Theorem 1 is the best upper

bound on B(n, d) one can obtain using (a straightforward



application of) Delsarte’s LP, so the Grey-Rankin bound

cannot be improved using this approach. It was already shown

in the literature that the Grey-Rankin bound can sometimes be

achieved [9], however the range of pairs (n, d) for which this

happens is limited, and is related to existence of designs with

certain parameters. Theorem 1, on the other hand, shows that

the LP approach cannot improve the Grey-Rankin bound for

any even n, d. Besides that, we think that finding optimal (in-

stead of feasible) solutions to Delsarte’s LP is of independent

interest, even for this narrow regime and the special case of

almost-balanced codes.

To prove Theorem 1, we start with the following claim

Lemma 1: Let θ = (θ0, θ1, . . . , θn) ∈ R
n+1 be a feasible

solution to the LP (BD). Define θ ∈ R
n+1 which coin-

cides with θ on all even coordinates, and has 0 elsewhere:

θ = (θ0, 0, θ2, 0, θ4, . . . ). Then θ is a feasible solution to the

LP (BD) for almost-balanced codes.

Proof: Denote θ(x) =
n
∑

k=0

θkKk(x), then θ(u) ≤ 0 for

any integer u s.t. d ≤ u ≤ (n− d). Consider then

θ(x) =
θ(x) + θ(n− x)

2
=

n
∑

k=0

θk
Kk(x) +Kk(n− x)

2
.

By Fact 1, Kk(n/2 − y) is an even polynomial for

even k, and so
Kk(x)+Kk(n−x)

2 = Kk(x). On the other

hand,
Kk(x)+Kk(n−x)

2 = 0 for odd k, and therefore

θ(x) =
n
∑

k=0

θkKk(x) by our definition of θ.

For any integer d ≤ u ≤ n−d, we also have d ≤ (n−u) ≤
(n−d). It means that θ(u) ≤ 0 and θ(n−u) ≤ 0, so θ(u) ≤ 0
for any such u. Therefore θ if feasible for (BD).

Corollary 1: Optimal solution to (BD) has βi = 0 for odd i.

Proof: θi ≥ 0 and Kk(0) =
(

n
k

)

≥ 0 in Lemma 1, thus

θ(0) =
n
∑

k=0

θkKk(0) ≤
n
∑

k=0

θkKk(0) = θ(0). So nullifying

all the odd-indexed coordinates doesn’t increase the objective

value in BD.

Now, for every even distance d such that
n−√

n
2 + 1 ≤

d ≤ n/2 we find an optimal solution to (BD) and its

dual (BP). The condition on d comes from a restriction

|K3(d)| ≤ |K2(d)|(n − 2d)/3, which we use in the proof

and prove in Lemma 4.

Observe that K2(x) = 2x2 − 2nx +
(

n
2

)

has roots
n±√

n
2 ,

and so K2(d) < 0 for distances d of our interest. We obtain

the optimal solution to (BD) with a degree-2 function β(x)
(i.e. βi = 0 for i > 2) such that β1 = 0 (due to Corollary 1).

Clearly then, the problem reduces to minimizing β2 with the

condition that β(u) ≤ 0 for u between d and (n − d). Since

the function β(x) = 1 + β2K2(x) is quadratic symmetric

around n/2, it is clear that this is equivalent to the condition

β(d) = 1 + β2K2(d) ≤ 0. Thus the best degree-2 solution

to (BD) is exactly β0 = 1, β2 = − 1
K2(d)

, and βi = 0 for all

other i. We now prove that this is actually the overall optimal

solution to (BD) (for even d and n).

Lemma 2: β0 = 1, β2 = − 1
K2(d)

, and βi = 0 for all other i

is an optimal solution for (BD) when
n−√

n
2 + 1 ≤ d ≤ n/2

and n, d are even.

Proof: We use duality of linear programming to prove

optimally. Namely, we use the fact that if β is feasible for

the LP (BD), some α is feasible for its dual LP (BP), and

complementary slackness conditions are satisfied, then β and

α are optimal for the LP and its dual.

Complementary slackness conditions for our case are:

β(u) · αu = 0 u = d, d+ 1, . . . , (n− d),

βs ·
(

n
∑

k=0

αkKs(k)

)

= 0 s = 1, 2, . . . , n.

Since β(x) = 1−K2(x)/K2(d) only has roots at d and (n−d),
we immediately see that αu = 0 for all u other than d and

(n−d). Further, since β2 6= 0, we have that
(

n
2

)

+αd ·K2(d)+
αn−d ·K2(n− d) = 0. We claim that taking

αd = αn−d = −
(

n
2

)

2K2(d)

and αi = 0 for every other coordinate gives a feasible

solution α to the LP (BP). Notice that all the complementary

slackness conditions are satisfied for such β and α.

We now prove that Delsarte-MacWilliam’s inequalities

in (BP) are satisfied. Specifically, we need to show
(

n

s

)

+αdKs(d)+αn−dKs(n−d) ≥ 0, s = 0, 1, . . . , n.

The case s = 0 is straightforward as α ≥ 0, and for s = 2
the equality holds by the choice of α. Next, for odd s, Ks(d) =
−Ks(n − d) by Fact 1, and therefore

(

n
s

)

+ αd · Ks(d) +
αn−d · Ks(n − d) =

(

n
s

)

≥ 0. Since n is even, this applies

to s = (n − 1). Moreover, for s = n, Kn(d) = K0(d) and

Kn(n−d) = K0(n−d) (using Fact 2 and since n, d are even),

so the inequality also holds.

For every even s we have Ks(d) = Ks(n−d). So it remains

to prove for every even 2 < s < n− 1 that
(

n

s

)

≥ −2 · αd ·Ks(d) =

(

n
2

)

K2(d)
·Ks(d). (1)

Denote for convenience C =
∣

∣K2(d)/
(

n
2

)∣

∣. We prove the

following statement, from which (1) clearly follows

|Ks(d)| ≤ C ·
(

n

s

)

, s = 2, 3, . . . , (n− 2). (2)

Notice that it is sufficient to show (2) only for 2 ≤ s ≤ n/2,

as the inequality for all other values of s will follow from

Fact 1.

We are going to need the following

Lemma 3: Let |Kq−1(d)| ≤ δ ·
(

n
q−1

)

and |Kq(d)| ≤ δ ·
(

n
q

)

for some δ > 0, d < n/2, and positive integer q < n. Then

|Kq+1(d)| ≤ δ ·
(

n

q + 1

)

· n− 2d+ q

n− q
.

For clarity of exposition, we defer its proof until the end of

this section.



We show (2) in two steps. First, we prove the following:

Hypothesis: For every 1 ≤ t ≤ d/2,

|K2t(d)| ≤ C ·
(

n

2t

)

·
t
∏

i=2

n− 2d+ 2i

n− 2i
,

|K2t+1(d)| ≤ C ·
(

n

2t+ 1

)

·
t
∏

i=2

n− 2d+ 2i

n− 2i
,

(3)

where empty products are treated as 1.

Base: For t = 1, we already know |K2(d)| = C ·
(

n
2

)

. The

proof of above inequality for |K3(d)| is defered to Lemma 4.

Step: Denote ηt =
t
∏

i=2

n−2d+2i
n−2i for brevity. So, suppose (3)

holds for some (t − 1), where 1 ≤ t ≤ d/2. First, we derive

from Lemma 3 for q = 2t− 1:

|K2t(d)| ≤ C ·ηt−1 ·
(

n

2t

)

· n− 2d+ (2t− 1)

n− (2t− 1)
≤ C ·ηt ·

(

n

2t

)

,

where we use
n−2d+(2t−1)

n−(2t−1) ≤ n−2d+2t
n−2t . Notice also that

n−2d+2t
n−2t ≤ 1 for t ≤ d/2, and so ηt ≤ ηt−1. Then apply

Lemma 3 for q = 2t and δ = C · ηt−1 again:

|K2t+1(d)| ≤ Cηt−1·
(

n

2t+ 1

)

n− 2d+ 2t

n− 2t
= Cηt

(

n

2t+ 1

)

.

Therefore, (3) holds for any 1 ≤ t ≤ d/2. Denote Φ =

ηd/2 =
d/2
∏

i=2

n−2d+2i
n−2i . We now prove the following

Hypothesis: For every s such that d ≤ s ≤ n/2,

|Ks(d)| ≤ C · Φ ·
(

n

s

)

·
s−1
∏

k=d+1

n− 2d+ k

n− k
. (4)

Base: The cases s = d, (d+ 1) follow from (3) for t = d/2.

Step: Denote µs =
s−1
∏

k=d+1

n−2d+k
n−k , and notice that µs−1 ≤ µs

for any s within the range of interest. Suppose (4) holds for

(s − 2) and (s − 1), and (d + 2) ≤ s ≤ n/2. Then apply

Lemma 3 for q = (s− 1) and δ = C · Φ · µs−1 :

|Ks(d)| ≤ CΦ·µs−1·
(

n

s

)

n− 2d+ (s− 1)

n− (s− 1)
= C ·Φ·µs·

(

n

s

)

.

We are finally ready to prove (2) for every s between 2 and

n/2. For s such that 2 ≤ s ≤ (d+ 1), (3) implies |Ks(d)| ≤
C ·η⌊s/2⌋ ·

(

n
s

)

. Clearly η⌊s/2⌋ ≤ 1 as every term in the product

is at most 1, so (2) holds for such s.

Next, we have from (4) that |Ks(d)| ≤ C · Φ · µs ·
(

n
s

)

≤
C · Φ · µn/2 ·

(

n
s

)

for every s between (d + 2) and n/2, as

µs is an increasing sequence. So it is sufficient to show that

Φ · µn/2 ≤ 1. Denote w = n/2− d− 1, so w <
√
n/2, since

d > (n−√
n)/2. Recall that Φ = ηd/2 ≤ ηw+1, and so

Φ · µn/2 ≤
w+1
∏

i=2

n− 2d+ 2i

n− 2i
·

w
∏

v=1

n− d+ v

n− d− v

≤
(

n− 2d+ 2w + 2

n− 2w − 2

)w (
n− d+ w

n− d− w

)w

=

(

4w + 4

n− 2w − 2
· n/2 + 2w + 1

n/2 + 1

)w

≤ 1.

The final inequality clearly holds because w <
√
n/2 .

This completes the proof of (2) for the whole range of 2 ≤
s ≤ (n−2), and together with our arguments that (1) holds for

s ∈ {0, 1, (n−1), n}, this means that all Delsarte-McWilliam’s

inequalities from (BP) are satisfied. Therefore, we conclude

that α is optimal for (BP) and β is optimal for (BD).

Proof of Lemma 3: We use the following recurrence for

Krawtchouk polynomials:

(q+1)Kq+1(x) = (n−2x)Kq(x)−(n−q+1)Kq−1(x), (5)

for any positive integer q < n, where K0(x) = 1, and

K1(x) = n − 2x. The proof now follows from a simple

inductive calculation.

Lemma 4: Let
n−√

n
2 + 1 ≤ d ≤ n/2. Then

|K3(d)| ≤
|K2(d)|
(

n
2

)

(

n

3

)

=
|K2(d)| · (n− 2)

3
.

Proof: We know K1(d) ≥ 0 and K2(d) < 0 for such d.

Using recurrence (5) and this sign information, obtain

|K3(d)| =
−(n− 2d)K2(d) + (n− 1)(n− 2d)

3

We need to show that the above is at most −K2(d)·(n−2)
3 .

Equivalently, we need to prove

−2(d− 1)K2(d)
?
≥ (n− 2d)(n− 1). (6)

Decompose K2(d) = 2
(

d− n−√
n

2

)(

d− n+
√
n

2

)

, and using

the conditions on d, we have −K2(d) ≥
√
n.

Further, using
√
n− 2 ≥ (n− 2d) for (6) we finally get

−2(d− 1)K2(d) ≥ (n−
√
n)
√
n > (

√
n− 2)n

≥ (n− 2d)(n− 1).

This finally brings us the the proof of our main result.

Proof of Theorem 1: Observe that K2(d) = 2d2−2nd−
(

n
2

)

= − 1
2

(

n− (n− 2d)2
)

. Applying Lemma 2 obtain

BLP (n, d) = 1−
(

n
2

)

K2(d)
= 1 +

n(n− 1)

n− (n− 2d)2

=
4d(n− d)

n− (n− 2d)2
.

IV. LOWER BOUND ON LP BOUND FOR

ALMOST-BALANCED CODES

Consider asymptotic lower and upper bounds on R(δ)

RGV (δ) ≤ R(δ) ≤ RMRRW (δ),

where RGV (δ) = 1 − H(δ) is a Gilbert-Varshamov bound

obtained using a standard packing argument, which is cur-

rently the best known lower bound on R(δ). The bound

RMRRW (δ) = H
(

1
2 −

√

δ(1 − δ)
)

is the first MRRW [2]



bound, which is the best known upper bound for δ > 0.273
(the second MRRW bound is the best known for the remaining

range of δ).

In [10] Samorodnitsky proved an integrality gap of at most 2
for the MRRW bound with respect to the true LP bound:

RGV (δ) +RMRRW (δ)

2
≤ RLP (δ) ≤ RMRRW (δ).

Combined with the fact that RMRRW (δ) > RGV (δ) for

any δ ∈ (0, 1
2 ), the above proved that Delsarte’s linear

programming bound cannot attain the currently best known

lower bound on R(δ).
In this section we prove an analogous result for the linear

programming bound for the almost-balanced codes. Our proof

is a slight modification of a proof from [10].

Theorem 2: Rbal
LP (δ) ≥ RGV (δ)+RMRRW (δ)

2
for any

δ ∈ (0, 1
2 ).

To obtain a lower bound, we derive a feasible solution to

(BP), closely following [10].

Lemma 5: Let ε =
1

4n

√

(

n
⌊xd⌋

)

2n ·
(

n
d

) , where xd is the first

(smallest) root of the polynomial Kd(x), and let

• a0 = 1
• ak = 0 for 0 ≤ k ≤ d− 1 and (n− d+ 1) ≤ k ≤ n
• ad = an−d = ε · (d+ 1) ·

(

n
d

)

• ak = ε ·
(

n
k

)

for d < k < (n− d).

Then a0, . . . , an is a feasible solution to the LP (BP).

Proof: Clearly, we only need to verify the first set of

constraints in (BP) (Delsarte-MacWilliam’s inequalities). The

case s = 0 is immediate, so assume s ≥ 1. We have

n
∑

k=0

akKs(k) =Ks(0) + ε ·
n−d
∑

k=d

(

n

k

)

Ks(k) (7)

+ ε · d
(

n

d

)

(

Ks(d) +Ks(n− d)
)

(8)

=

(

n

s

)

+ ε

n−d
∑

k=d

(

n

s

)

Kk(s) + εd

(

n

s

)

(

Kd(s) +Kn−d(s)
)

,

(9)

where we used reciprocity property from Fact 3.

Next we use Facts 1-2, and consider two cases. When s is

odd, everything except the first summand in the RHS of (9)

cancels out. Indeed, Kd(s) = −Kn−d(s), and the summation

in the middle can be written as

n−d
∑

k=d

(

n

s

)

Kk(s) =

(

n

s

)

n

2
−1
∑

k=d

(

Kk(s) +Kn−k(s)
)

+

(

n

s

)

·Kn/2(s) ·
[

(n+ 1) mod 2
]

,

Observe that Kk(s) + Kn−k(s) = 0 for any k within the

summation range. Finally, for even n we have
(

n
s

)

Kn/2(s) =
(

n
n/2

)

Ks(n/2) = 0, as Ks(n/2 − x) is an odd function.

Therefore,
n
∑

k=0

akKs(k) = Ks(0) =
(

n
s

)

≥ 0 for odd s.

Now consider the case of even s. Using the fact that

Krawtchouk polynomials are orthogonal with respect to the

binomial measure µ(k) =
(

n
k

)

/2n and that K0(k) ≡ 1, obtain

2n ·∑n
k=0 µ(k)Ks(k) ·K0(k) =

∑n
k=0

(

n
k

)

Ks(k) = 0. Then

in (7)-(8) for the summation in the RHS we can write

n−d
∑

k=d

(

n

k

)

Ks(k) = −
d−1
∑

k=0

(

n

k

)

Ks(k)−
n
∑

k=n−d+1

(

n

k

)

Ks(k)

= −
d−1
∑

k=0

(

n

s

)

Kk(s)−
n
∑

k=n−d+1

(

n

s

)

Kk(s)

= −
(

n

s

)d−1
∑

k=0

(

Kk(s) +Kn−k(s)
)

= −2

(

n

s

)d−1
∑

k=0

Kk(s),

where we used reciprocity and Fact 2 for even s. Using these

properties again for last part of RHS in (7)-(8), we obtain

n
∑

k=0

akKs(k) =

(

n

s

)

(

1− 2ε
d−1
∑

k=0

Kk(s) + 2ε · dKd(s)

)

.

Finally, we notice that the RHS of the above equation

is exactly the expression derived by Samorodnitsky in [10,

eq. (22)] (we took ε exactly two times smaller than in [10]

for these expressions to coincide), where it was proven to be

non-negative. Therefore, a0, . . . , an is feasible for (BP).

Proof of Theorem 2: Taking the feasible solution

a0, . . . , an for (BP) from Lemma 5 we obtain

BLP (n, d) ≥
n
∑

k=0

ak ≥ ε

n−d
∑

k=d

(

n

k

)

.

Consider some fixed δ ∈ (0, 1/2) and d = ⌊δn⌋ as n increases.

Standard concentration properties of Binomial distribution

(e.g. Chernoff bound) then imply that for large enough n,

most of the weight will lie between
(

n
d

)

/2n and
(

n
n−d

)

/2n.

Then for such large n we write

BLP (n, d) ≥ ε · 2n−1 ≥ 1

8n

√

√

√

√

(

n
⌊xd⌋

)

· 2n
(

n
d

) .

Finally, we use an asymptotic for the first root
of Krawtchouk polynomial Kd as n goes to infinity:

xd = n

(

1
2 −

√

d
n

(

1− d
n

)

)

+ o(n). Together with an asymp-

totic lim
n→∞

1
n log2

(

n
γn

)

= H(γ), we derive

Rbal
LP (δ) ≥ lim

n→∞

1

2n

[

log
2

(

n

⌊xd⌋

)

+ n− log
2

(

n

δn

)]

=
1−H(δ) +H

(

1/2 −
√

δ (1− δ)
)

2
=

RGV (δ) +RMRRW (δ)

2
.
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