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Abstract

Clustering is an essential primitive in unsupervised machine learning. We bring forth the
problem of sublinear-time differentially-private clustering as a natural and well-motivated direc-
tion of research. We combine the k-means and k-median sublinear-time results of Mishra et al.
(SODA, 2001) and of Czumaj and Sohler (Rand. Struct. and Algorithms, 2007) with recent
results on private clustering of Balcan et al. (ICML 2017), Gupta et al. (SODA, 2010) and Ghazi
et al. (NeurIPS, 2020) to obtain sublinear-time private k-means and k-median algorithms via
subsampling. We also investigate the privacy benefits of subsampling for group privacy.

1 Introduction

Preserving privacy in data collection and distribution have long been a concern for industrial and
governmental agencies, who are now rapidly adopting privacy standards and policies [23, 11, 6, 13].
Differential privacy [12] is the gold standard of privacy protection. A randomized function computed
on a database is differentially private if the distribution of the function’s output does not change by
much with the presence or absence of an individual record. While existing research mostly focuses on
computing efficient polynomial-time differentially-private algorithms, in dealing with a large amount
of data, even linear-time algorithms may be prohibitive in costs. Hence, algorithms that can quickly
output approximately accurate solutions while preserving privacy are of great interest in real-world
computations on large datasets (e.g., billions of Facebook or Google, or Microsoft users).

Definition 1. A randomized algorithm M taking as input a dataset D is (ε,δ)-differentially private
if for any two neighboring1 data sets D and D′, and for any subset C of outputs of M it holds that
Pr[M(D)∈C]≤eε ·Pr[M(D′)∈C]+δ. If δ=0, M is ε-differentially private.

However, despite the fact that the literature on differentially private algorithms has grown rapidly
in recent years, sublinear-time private algorithms for many natural problems are still lacking. In this
work we focus on clustering problems and provide some basic sublinear-time private solutions derived
from the existing efficient non-private analogues.

∗J. B. was supported in part by NSF CNS-1931443 and NSF CCF-1910659. E.G was supported in part by NSF
CCF-1910659 and NSF CCF-1910411.

1Datasets D and D′ are neighboring if removing or adding one point in D results in D′; alternatively, if changing
one data point in D results in D′.
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Clustering is an essential primitive in unsupervised machine learning. Since many machine learn-
ing models deal with sensitive data, private clustering has been studied extensively in the polynomial-
time setting [28, 14, 17, 34, 4, 21, 19, 31, 16, 33, 29]. Two of the most widely studied variants of
clustering are the k-median and k-means problem. In the k-median problem, we are given n data
points, and the goal is to find k centers that minimize the sum of distances from the data points to
their nearest centers. The setup is the same for k-means, except the goal is to find k centers that
minimize the sum of the squares of distances from the data points to their nearest centers. Both
types of clustering are classical problems, and there is a rich field of research devoted to them in the
non-private setting [2, 7, 18, 8, 9, 3, 25, 1, 30].

1.1 Contributions

We bring forth the problem of sublinear-time private clustering as a natural and well-motivated
direction of research, and show some basic results derived from the non-private analogues on subsam-
pled data. We expect that our results will entice further interest in understanding the best privacy
guarantees in sublinear clustering settings.

Private sublinear clustering. We combine the techniques of sublinear-time clustering algo-
rithms fromMishra et al. [27] and Czumaj et al. [10] with the private polynomial-time approximation
clustering algorithms with a constant multiplicative factor of Balcan et al. [4], Gupta et al. [17] and
Ghazi et al. [16] to obtain private sublinear-time clustering algorithms for k-median and k-means
clustering in metric spaces, as well as better approximation guarantees for the particular case of Eu-
clidean space. To the best of our knowledge, these are the first sublinear-time differentially-private
clustering algorithms formalized in the privacy literature.

Let (V,d) be an arbitrary metric space. Given an input set D ⊆ V , the goal of the k-median
clustering problem is to find a set of centers (i.e. a clustering) {c1,...,ck} ⊆ V such that the cost of
clustering

∑

x∈Dminid(x,ci) is minimized. The goal of the k-means clustering problem is to find a
clustering {c1,...,ck}⊆V such that the cost

∑

x∈Dminid
2(x,ci) is minimized. An (α,γ)-approximation

algorithm for k-median (equivalently for k-means) takes as input a setD (say), and outputs clustering
Ĉ :={ĉ1,...,ĉk} such that

∑

x∈Dminid(x,ĉi)≤α·
∑

x∈Dminid(x,ci)+γ, where c1,...,ck is the optimum
clustering for D.

We analyze the following sampling algorithm: pick a random sample from the input set; run a
private k-median (or k-means) polynomial-time approximation algorithm on the random sample to
obtain a k-median (or k-means) clustering of the sample; output this clustering. We show that for a
small sample size, the average cost of the clustering induced by the random sample is not too far from
the average cost of the optimum clustering of the input set. Our analysis closely follows the works
of Mishra et al. [27] and Czumaj et al. [10], who gave sublinear time algorithms for clustering in the
non-private setting using a constant α-approximation polynomial-time algorithm as a black-box. We
extend their analysis to handle the case of using an (α,γ)-approximation polynomial time algorithm
as a black-box 2. The approximation guarantee achieved by our algorithm is essentially the same as

2We note that an additive approximation factor γ > 0 is unavoidable for any private clustering algorithm,
thus this extension was necessary. To see why, consider the following two multisets of input data points D1 =
{x1, ... , x1, x2, ...xk−1, xk} and D2 = {x1, ... , x1, x2, ...xk−1, xk+1}, where x1 occurs in both sets n − k + 1 times.
Note that the optimal cost for k-median in both cases is zero, and in the non-private setting, the algorithm can simply
output {x1,...,xk} for D1 or {x1,...,xk+1} for D2 as the solution. But a private algorithm must have an additive error
since the set of centers computed by our algorithm cannot be affected by the change of replacing xk in D1 by xk+1 in
D2, and the input points being private, should not be revealed by our algorithm.



that of the black-box private algorithms (modulo an extra additive factor of η) 3 For an arbitrary
metric space (V,d) consisting of n points and input set D⊆V ,

1. Assuming a private (α,γ)-factor approximation k-median algorithm, that runs in time T (n),
we can draw a sample S⊆D of size poly(α,kln(n)) and obtain a k-median clustering ĉS in time
T (s) such that with high probability avg-cost(ĉS) ≤ α · avg-cost(cD)+ γ+ η, where cD is the
optimum k-median clustering of D.

2. Assuming a private (α,γ)-factor approximation k-means algorithm that runs in time T (n), we
can draw a sample S⊆D of size poly(α,kln(n)) and obtain a k-means clustering ĉS such that
with high probability avg-cost(ĉS)≤α ·avg-cost(cD)+γ+η, where cD is the optimum k-means
clustering of D.

For the special case of k-median in d-dimensional Euclidean space, we achieve a sample complexity
that is independent of the size of the input set D⊆Rd consisting of n points.

1. Assuming a private (α,γ)-factor approximation k-median algorithm, that runs in time T (n),
we can draw a sample S ⊆D of size poly(α,dk ln(n)) and obtain a k-median clustering ĉS in
time T (s) such that with high probability avg-cost(ĉS)≤α·avg-cost(cD)+γ+η, where cD is the
optimum k-median clustering of D.

2. Assuming a private (α,γ)-factor approximation k-means algorithm, that runs in time T (n), we
can draw a sample S ⊆D of size poly(α,dkln(n)) and obtain a k-means clustering ĉS in time
T (s) such that with high probability avg-cost(ĉS) ≤ α · avg-cost(cD)+ γ+ η, where cD is the
optimum k-means clustering of D.

Group privacy for sampling algorithms. Group privacy ensures that for pairs of inputs that
differ on a small number of points, the privacy loss is still bounded. For example, in the setting of a
health survey administered to families, a family may wish to preserve all its members’ privacy. Any ε-
differentially private algorithm, ensures (gε,0)-privacy for groups of size g. We show that our random
sampling algorithm has better group privacy guarantees. In other words, an algorithm that runs an
(ε,0)-differentially private mechanism on a subsample is (T ·ε,δT )-differentially private for groups of
size g, for 0≤T ≤g, where δT is the probability of the number of samples from the g elements is >T .
We note that δT is often negligible even for T≪g. In such cases, the guarantee of (T ·ε,δT )-differential
privacy is arguably much stronger than the naive guarantee of (gε,0)-group privacy.

1.2 Related Work

Sublinear-time approximate k-median clustering of a space in which the diameter of points is bounded
was introduced by Mishra et al. [27]. They modeled clusterings as functions and studied the quality
of k-median clusterings obtained by random sampling using computational learning theory tech-
niques. For a metric space, their work shows that if we sample a set of size poly(α,klnn) and run an
α-approximation clustering algorithm on the sample, then with high probability, the set of centers
outputted is at most 2α·avg-cost(cOPT )+η. Their sampling model was adapted by Czumaj et al. [10],
who achieved a sample complexity that is independent of n for the k-median clustering problem in
arbitrary metric spaces. They also extended the random sampling model and their analysis to give
sublinear-time results for clustering variants such as k-means and min-sum clustering.

3This extra additive factor of η is unavoidable in order to design clustering algorithms with running time o(n),
see [10] for an exposition.



Private clustering was first studied by Gupta et al. [17], and Feldman et al. [14]. Gupta et al. [17]
modified the local search algorithm for k-median by Arya et al. [2] to choose candidate centers in each
iteration via the exponential mechanism [26] and produced a polynomial-time algorithm that achieves
(O(1),Õ(k2M))-approximation (M is the diameter of the space) in discrete spaces. However, their
algorithm is highly inefficient in Euclidean space (see [21] for a detailed exposition). A recent line
of work has focused on producing an efficient polynomial time algorithm for clustering that achieves
a constant (multiplicative) factor approximation in high-dimensional Euclidean space by adopting
the techniques of Gupta et al. while maintaining efficiency [4, 21]. A different approach to private
clustering was taken by [14]. They gave an efficient algorithm for k-median and k-means in Euclidean
space by introducing the notion of private coresets. A recent line of work has adopted their techniques
to give clustering algorithms with better approximation guarantees and efficiency [15, 29, 16].

Privacy amplification by subsampling has been formally studied by Balle et al. [5]. Our result is
a simple observation that tailors the privacy amplification achieved with respect to group privacy for
a generic sampling algorithm that runs a private algorithm as a black-box in the sampling step.

2 Private Sublinear time Approximate Clustering

In this sectionwedescribe the generic randomsampling algorithmA′using a private (ε,δ)-differentially
private as a black-box, and in the sequel, we show thatA′ is (ε′,δ′)-differentially private where ε′ and δ′
are functions of ε,δ (see Theorem 1). Additionally, we give the accuracy ofA′, i.e., the minimum sam-
ple size needed to guarantee that with high probability the approximate clustering cost of the sampleS
will be close to the true clustering cost of the input setDwhenD is a subset of an arbitrarymetric space
(see Theorem 3, Theorem 7) and in the special case of Euclidean space (see Theorem 5, Theorem 8).

Remark. For the metric setting, both [10] and [27] consider clusterings where the centers are a
subset of the set of input data points (this type of clustering is known as discrete clustering). By
carefully conditioning on this requirement, [10] can make the sample complexity independent of n.
Unfortunately, due to privacy concerns, we must consider the set of chosen k centers to be any subset
of the entire metric space, and not restricted to the input set (this type of clustering is known as
continuous clustering). Thus we cannot hope to achieve a sample complexity independent of n in the
metric setting, using their approach.

We present techniques used by [27] for our k-median clustering analysis and describe the techniques
used by [10] for our k-means clustering analysis.

2.1 Generic Algorithm A′

We first present the basic sampling algorithmwe employ, this model was first introduced in [27]. Note
that the sampling probability ξ should be chosen as o(1).

Algorithm 1 General Sampling Scheme A′

On input dataset D, and sampling probability parameter ξ
Sample each element of D independently w.p. ξ and let S be the sample set.
Run (ε,δ)-DP (α,γ)-approximation algorithm A on S to compute a set of private k-centers for S,
denoted by C∗.
Output the clustering C∗.



2.2 Privacy of A′

In this section we show that for an algorithm A′(D) which takes D as input and runs a (ε, δ)-
differentially private algorithmA on random sampleS⊆D, it is the case thatA′ is (ε′,δ′)-differentially
private. Many works prove something similar to the following, e.g., [22, 24, 5]. We include the proof
here for the sake of clarity and completeness 4.

Theorem 1. If A is an (ε, δ)-differentially private algorithm, and algorithm A′ is the generic
sampling algorithm defined above where each element is sampled independently with probability ξ,
then A′ is (ε′,δ′)-differentially private, where ε′ = lnmax

{

ξ(eε−1)+1,(ξ(e−ε−1)+1)−1
}

, and δ′ =

max{ e−εδξ
(ξ(e−ε−1)+1) ,δξ}.

Observe that if A is (ε,δ)-DP, then trivially, A′ is also (ε,δ)-DP. The privacy bounds achieved
in the above theorem are significantly better than these naive bounds. For example, if we consider
ε = 0.5, ξ = 0.001, for any δ ∈ [0,1), we achieve ε′ < 0.00065, and δ′ = 0.001δ, which is orders of
magnitude smaller than ε and δ.

Proof. Let D and D′ be neighboring data sets i.e. D′ =D∪{x}, and let us fix any subset C of all
possible outcomes in the output space.

Let S be the set sampled from D and S′ be the set sampled from D′, where each element from D
is independently chosen to belong to S w.p. ξ, and similarly, each element from D′ is selected in S′

w.p. ξ. Since A is differentially private we have that for any valid subset of outcomes C, for all y 6∈S,

Pr[A(S∪{y})∈C]≤eεPr[A(S)∈C]+δ , (1)

Pr[A(S)∈C]≤eεPr[A(S∪{y})∈C]+δ . (2)

We will show that PrS′←D′ [A(S′) ∈ C] ≤ eε
′

PrS←D[A(S) ∈ C] + δ′, and PrS←D[A(S) ∈ C] ≤
eε

′

PrS′←D′ [A(S′)∈C]+δ′, which shows that Pr[A′(D′)∈C]≤eε
′

Pr[A(D)∈C]+δ′, and Pr[A′(D)∈
C]≤eε

′

Pr[A′(D′)∈C]+δ′, and hence A′ is differentially private.
Indeed, using eq. (1), we have

Pr
S′←D′

[A(S′)∈C] = Pr[x 6∈S′]Pr[A(S′)∈C |x 6∈S′]+Pr[x∈S′]Pr[A(S′)∈C |x∈S′]

= (1−ξ)· Pr
S←D

[A(S)∈C]+ξ ·Pr[A(S′)∈C |x∈S′]

≤ (1−ξ)· Pr
S←D

[A(S)∈C]+ξ ·(eε Pr
S←D

[A(S)∈C]+δ)

= (ξ(eε−1)+1)· Pr
S←D

[A(S)∈C]+δξ

4Our proof slightly generalizes the analysis given by Adam Smith in his blog post [32].



Now we want to lower bound PrS′←D′ [A(S′)∈C] using eq. (2),

Pr
S′←D′

[A(S′)∈C] = Pr[x 6∈S′]Pr[A(S′)∈C |x 6∈S′]+

+ Pr[x∈S′]Pr[A(S′)∈C |x∈S′]

= (1−ξ)· Pr
S←D

[A(S)∈C]+

+ ξ ·Pr[A(S′)∈C |x∈S′]

≥ (1−ξ)· Pr
S←D

[A(S)∈C]+

+ ξ ·e−ε ·( Pr
S←D

[A(S)∈C]−δ)

= (ξ(e−ε−1)+1)· Pr
S←D

[A(S)∈C]−e−εδξ

It follows that

Pr
S←D

[A(S)∈C]≤ PrS′←D′ [A(S′)∈C]

(ξ(e−ε−1)+1)
+

e−εδξ

(ξ(e−ε−1)+1)

We can set

δ′=max{ e−εδξ

(ξ(e−ε−1)+1)
,δξ}

and
ε′=lnmax

{

ξ(eε−1)+1,(ξ(e−ε−1)+1)−1
}

.

2.3 Private k-median clustering in Metric Space

Our proof is nearly identical to that of [10], except that we consider continuous clusterings in metric
space (see Remark in the beginning of Section 2). For ease of representation and comparison, we also
adopt the notation used in [10], which we recall below.

Let (V,d) be a metric space and D⊆V be the input set, and M be the diameter of V . Let

medavg(D,k)=
1

|D| min
C⊆V
|C|=k

∑

x∈D
d(x,C) ,

denote the average cost of an optimum k-median clustering ofD. Similarly, for any subset U⊆D and
C⊆V , define the average cost of a k-median clustering C as

costmed
avg (U,C)=

1

|U |
∑

v∈U
d(v,C) .

A set of k centers C is a (ρ,ϕ)-bad solution of the k-median of input set D if costmed
avg (D,C) >

ρmedavg(D,k)+ϕ. If C is not a (ρ,ϕ)-bad solution then it is a (ρ,ϕ)-good solution.
The analysis from [10] involves two main steps.

1. (See Lemma 2) If A(S) outputs clustering C∗, then we need to show that for a chosen sample
size, with high probability ,

α·costmed
avg (S,C

∗)+γ≤(α+β)medavg(D,k)+γ .



2. (SeeLemma 3) If clusteringCb⊆V is an (α+3β,γ)-bad solution of input setD, i.e., costmed
avg (D,Cb)>

(α+β)medavg(D,k)+γ, then, we need to show that with high probability the clustering Cb is
also a bad solution for the sample set S,

costmed
avg (S,Cb)>(α+β)medavg(D,k)+γ .

From the above two statements we get that with high probability the clustering C∗ (outputted
by A(S)) is an (α + β, γ)-good solution of input set D, in other words, costmed

avg (D,C∗) ≤ (α +
3β)medavg(D,k)+γ. Putting everything together, we obtain the following lemma,

Lemma 1. Let (V,d) be a metric space and D⊆V . Let 0<θ< 1, α≥ 1, and η> 0 be approximation
parameters. Assuming A is an (α,γ)-approximation algorithm for k-median that runs in time T (n),
we can draw a sample S of size s,

s≥c·max

{

Mα(1+α)ln(1/θ)

η
,
M2

η2
·(ln(1/θ)+klnn)

}

,

where c is an appropriate positive constant, and obtain a k-median clustering C∗ in time T (s) such
that with probability at least 1−θ,

costmed
avg (D,C∗)≤αmedavg(D,k)+γ+η

Lemma 2. Let S be a set of size s chosen from D⊆V i.u.r. For

s≥ 3Mα(β+α)ln(1/θ)

β2medavg(D,k)
.

If an (α,γ)-approximation algorithm for k-median A is run on input S, then the following holds for
the solution C∗ returned by A:

Pr[costmed
avg (S,C

∗)≤(α+β)medavg(D,k)+γ]≥1−θ .

Proof. Let COPT denote an optimal k-median solution for input set D. For 1 ≤ i ≤ s, define
random variables Xi as the distance of the i-th point in S to the nearest center of COPT . Then
costmed

avg (S, COPT ) = 1
s

∑

1≤i≤s Xi. Observe that, E[Xi] =
∑

x∈D Pr[x is sampled u.a.r. from D] ·
d(x,COPT )=

1
|D|
∑

x∈Dd(x,COPT )=medavg(D,k) , also medavg(D,k)= 1
sE[
∑

1≤i≤sXi].

Pr

[

costmed
avg (S,COPT )>

(

1+
β

α

)

medavg(D,k)

]

=Pr





∑

1≤i≤s
Xi>

(

1+
β

α

)

E[
∑

1≤i≤s
Xi]





Each 0≤Xi≤M . Thus we can apply a Hoeffding bound,

Pr





∑

1≤i≤s
Xi>

(

1+
β

α

)

E[
∑

1≤i≤s
Xi]



≤exp
(

− s

3M
·medavg(D,k)min{(β/α),(β/α)2}

)

Choosing s as in the lemma statement, the probability above is bounded by θ. Since A is an (α,γ)-
approximation, the lemma statement follows.



Next, we need to show that any clustering Cb that is a (α+3β,γ)-bad solution of k-median of D
satisfies costmed

avg (S,Cb)>(α+β)medavg(D,k)+γ with high probability.

Lemma 3. Let S be a set of s points chosen i.u.r. from D⊆V such that

s≥ M2

2β2(medavg(D,k))2
·(ln(1/θ)+klnn)

Let C be the set of (α+3β,γ)-bad solutions of a k-median clustering of D. Then

Pr[∃ Cb∈C :costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]≤θ

Proof. Consider an arbitrary Cb ∈ C, and define Xi as the distance of the ith point in S from the
nearest center in Cb. Since Cb is a (α+3β,γ)-bad solutions of a k-median of D, by definition,

costmed
avg (D,Cb)>(α+3β)medavg(D,k)+γ (3)

Now for 1≤ i≤s, we have that E[Xi]=
1
|D|
∑

x∈Dd(x,Cb)=costmed
avg (D,Cb), thus

E[Xi]>(α+3β)medavg(D,k)+γ (4)

Also,
∑

1≤i≤s
Xi=

∑

x∈S
d(x,Cb)=s·costmed

avg (S,Cb) , (5)

and E[
∑

1≤i≤sXi]=sE[Xi] for any i.

We want to show that for any fixed Cb∈C, Pr[costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ] is low, and

then take a union bound over the entire space of C.

Pr[costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]

Substituting Relation 5 on LHS and Relation 4 on RHS,

=Pr





1

s
·
∑

1≤i≤s
Xi≤

(α+β)

(α+3β)
E[Xi]+γ ·

(

1− (α+β)

(α+3β)

)





=Pr





∑

1≤i≤s
Xi≤

(α+β)

(α+3β)
·s·E[Xi]+

2sγβ

α+3β





=Pr





∑

1≤i≤s
Xi≤

(α+β)

(α+3β)
·E[

∑

1≤i≤s
Xi]+

2sγβ

α+3β





=Pr





∑

1≤i≤s
Xi≤

(

(α+β)

(α+3β)
+

2sγβ

(α+3β)E[
∑

1≤i≤sXi]

)

·E[
∑

1≤i≤s
Xi]





=Pr





∑

1≤i≤s
Xi≤

(

1−
(

2β

(α+3β)
− 2sγβ

(α+3β)·s·costavg(D,Cb)

))

·E[
∑

1≤i≤s
Xi]







Since 0≤Xi≤M , we can apply a Hoeffding bound,

Pr[costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]

≤exp

(

−E[
∑

1≤i≤sXi]

2M
·
(

2β

(α+3β)
− 2γβ

(α+3β)·costmed
avg (D,Cb)

)2
)

=exp



−
s·costmed

avg (D,Cb)

2M
·
(

2β ·costmed
avg (D,Cb)−2γβ

(α+3β)·costmed
avg (D,Cb)

)2




=exp

(

− 2sβ2

M ·(α+3β)2
·
(costmed

avg (D,Cb)−γ)2

costmed
avg (D,Cb)

)

≤exp

(

− 2sβ2

M ·(α+3β)2
· (medavg(D,k))2(α+3β)2

costmed
avg (D,Cb)

)

, Applying relation 3

Now, costmed
avg (D,Cb)≤M , therefore

Pr[costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]≤exp

(

−2sβ2

M2
·(medavg(D,k))2

)

By union bound and using the fact that |C|≤
(

n
k

)

≤nk,

Pr[∃ Cb∈C :costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]

≤nk ·exp
(

−2sβ2

M2
·(medavg(D,k))2

)

We choose

s≥ M2

2β2(medavg(D,k))2
·(ln(1/θ)+klnn)

The proof of Lemma 1 is presented below.

Proof. Let β∗ be a positive parameter that will be fixed later. Recall from Lemma 2, the sample
complexity is as follows,

s≥ 3Mα(β+α)ln(1/θ)

β2medavg(D,k)
, (6)

And from Lemma 3 we have,

s≥ M2

2β2(medavg(D,k))2
·(ln(1/θ)+klnn) , (7)

Let s be chosen such that sample complexity prerequisites of both Lemma 2 and Lemma 3 hold with
β replaced with β∗.

s≥max

{

3Mα(β∗+α)ln(1/θ)

β∗2medavg(D,k)
,

M2

2β∗2(medavg(D,k))2
·(ln(1/θ)+klnn)

}

(8)



For the chosen sample complexity, we have from Lemma 3 that with probability at least 1− θ, no
clustering C ⊆ V that is a (α + 3β∗, γ)-bad solution of a k-median of D satisfies the inequality
costmed

avg (S,C)≤(α+β∗)medavg(D,k)+γ.
On the other hand, if we run algorithm A(S), then by Lemma 2, the resulting clustering C∗ with

probability at least 1−θ satisfies, costmed
avg (S,C

∗)≤(α+β∗)medavg(D,k)+γ.
Thus with probability at least 1−2θ, the clustering C∗ must be a (α+3β∗,γ)-good solution of a

k-median of D, in other words,

Pr[costmed
avg (D,C∗)≤(α+3β∗)medavg(D,k)+γ]≥1−2θ . (9)

To complete the proof, we must remove the dependency on medavg(D,k) in the sample complexity.

• Case 1: medavg(D,k)<η.Choose β∗ :=(η/3)/medavg(D,k), therefore β∗≥1/3 and β=1/(3β∗)<
1 then we get that if sample complexity

s≥c·max

{

Mα(1+αβ)ln(1/θ)

η
,
M2

η2
·(ln(1/θ)+klnn)

}

,

where c is a certain positive constant, then with probability 1−2θ,

costmed
avg (D,C∗)≤(α+3β∗)medavg(D,k)+γ≤α·medavg(D,k)+γ+η ,

and

• Case 2: medavg(D,k)≥ η. Choose β∗ = η/(3 ·medavg(D,k))≤ 1/3. Then, we get that if sample
complexity

s≥c·max

{

Mα(1+α)ln(1/θ)

η
,
M2

η2
·(ln(1/δ)+klnn)

}

,

where c is a certain positive constant, then with probability 1−2θ,

costmed
avg (D,C∗)≤(α+3β∗)medavg(D,k)+γ≤α·medavg(D,k)+γ+η ,

Given a metric space (V,d) of n points with diameter M , a private set D⊆ V , Gupta et al. [17]
modify a non-private local clustering algorithm [2] for solving k-median to make it differentially-
private. Their algorithm starts off with an arbitrary set of k-centers and in each iteration, it swaps
out an existing center in the set with a better center using the exponential mechanism, and after a
sufficient number of steps, the algorithm chooses a good solution from amongst the ones seen so far.
They obtain the following accuracy guarantee for their private algorithm.

Theorem 2. [17] Given a metric space (V,d) of n points with diameter M , a set D⊆ V , there ex-
ists a ε-differentially private k-median algorithm that except with probability O(1/poly(n)) outputs a
(6,O(Mk2log2(n/ε)))-approximation of a k-median clustering of D.

We will use the algorithm in [17] as our black-box algorithmA. By plugging in the approximation
guarantees for A into our Lemma 1, we get the following accuracy guarantee for our algorithm A′.



Theorem 3 (Accuracy of A′). Let η > 0, 0<θ < 1 be approximation parameters. For an arbitrary
metric space (V,d) of n points with diameter M , and a private set of points D⊆ V , given the ε-DP
(6,O(Mk2log2(n/ε)))-approximation k-median algorithm (from [17]), we have a ε′-DP algorithm A′
(as defined in Theorem 1) that can draw a sample S⊆D of size s,

s=c·max
{M ln(1/θ)

η
,

(

M

η

)2(

klnn+ln
1

θ

)

}

where c is an appropriate constant, and obtain a k-median clustering C∗ such that with probability at
least 1−θ,

costmed
avg (D,C∗)≤6medavg(D,k)+O(Mk2log2(n/ε))+η .

2.4 Private k-median clustering in Euclidean Space

In this setting, we consider input setD⊆Rd with diameterM , and |D|=n. We use the same notation
as introduced in Subsection 2.3, keeping in mind that now both the input setD and clusterings C are
subsets of Rd. The techniques are very similar to the metric space setting and we only highlight the
major differences in the sequel. We first present the main lemma of this section.

Lemma 4. Let D ⊆ Rd with diameter M . Let 0 < θ < 1, α ≥ 1, and η > 0 be approximation
parameters. Assuming A is an (α,γ)-approximation algorithm for k-median that runs in time T (n),
we can draw a sample S of size s,

s≥c·max

{

Mα(1+α)ln(1/θ)

η
,
M2

η2
·
(

ln(1/δ)+kdln

(√
dM

2η

))}

,

where c is an appropriate positive constant, and obtain a k-median clustering C∗ in time T (s) such
that with probability at least 1−θ,

costmed
avg (D,C∗)≤αmedavg(D,k)+γ+η

Our strategy for proving Lemma 4 is identical to the strategy used in the metric setting. In fact
the following statement and proof is identical to Lemma 2 which shows that the clustering outputted
by the A is also a “good” solution for the entire input set D.

Lemma 5. Let S be a set of size s chosen from D⊆R
d i.u.r. For

s≥ 3Mα(β+α)ln(1/θ)

β2medavg(D,k)
.

If an (α,γ)-approximation algorithm for k-median A is run on input S, then the following holds for
the solution C∗ returned by A:

Pr[costmed
avg (S,C

∗)≤(α+β)medavg(D,k)+γ]≥1−θ .

Next, we need to show that any clustering Cb that is an (α+3β,γ)-bad solution of k-median of D
satisfies with high probability costmed

avg (S,Cb)> (α+2β)medavg(D,k)+γ. The proof below is identical
to Lemma 3, except we use η-nets to approximate the size of the set of bad solutions denoted by C

(see [27, 10]).



Lemma 6. Let S be a set of s points chosen i.u.r. from D⊆Rd such that

s≥ M2

2β2(medavg(D,k))2
·
(

ln(1/δ)+kdln

(√
dM

2η

))

Let C be the set of (α+3β,γ)-bad solutions of a k-median clustering of D. Then

Pr[∃ Cb∈C :costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]≤δ

Proof. Consider an arbitrary Cb ∈ C, and define Xi as the distance of the ith point in S from the
nearest center in Cb. Since Cb is a (α+3β,γ)-bad solutions of a k-median of D, by definition,

costmed
avg (D,Cb)>(α+3β)medavg(D,k)+γ (10)

Now for 1≤ i≤s, we have that E[Xi]=
1
|D|
∑

x∈Dd(x,Cb)=costmed
avg (D,Cb), thus

E[Xi]>(α+3β)medavg(D,k)+γ (11)

Also,

∑

1≤i≤s
Xi=

∑

x∈S
d(x,Cb)=s·costmed

avg (S,Cb) , (12)

andE[
∑

1≤i≤sXi]=sE[Xi] for any i, recall that E[Xi]=costmed
avg (D,Cb) and hence independent of i.

We want to show that for any Cb ∈ C, Pr[costmed
avg (S,Cb)≤ (α+2β)medavg(D,k)+γ] is low, and

then take a union bound over the entire space of C.

Pr[costmean
avg (S,Cb)≤(α+β)meanavg(D,k)+γ]

Substituting Relation 12 on LHS and Relation 11 on RHS,

=Pr





1

s
·
∑

1≤i≤s
Xi≤

(α+β)

(α+3β)
E[Xi]+γ ·

(

1− (α+β)

(α+3β)

)





=Pr





∑

1≤i≤s
Xi≤

(α+β)

(α+3β)
·s·E[Xi]+

2sγβ

α+3β





=Pr





∑

1≤i≤s
Xi≤

(α+β)

(α+3β)
·E[

∑

1≤i≤s
Xi]+

2sγβ

α+3β





=Pr





∑

1≤i≤s
Xi≤

(

(α+β)

(α+3β)
+

2sγβ

(α+3β)E[
∑

1≤i≤sXi]

)

·E[
∑

1≤i≤s
Xi]





=Pr





∑

1≤i≤s
Xi≤

(

1−
(

2β

(α+3β)
− 2sγβ

(α+3β)·s·costavg(D,Cb)

))

·E[
∑

1≤i≤s
Xi]







Since 0≤Xi≤M , we can apply a Hoeffding bound,

Pr[costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]

≤exp

(

−E[
∑

1≤i≤sXi]

2M
·
(

2β

(α+3β)
− 2γβ

(α+3β)·costmed
avg (D,Cb)

)2
)

=exp



−
s·costmed

avg (D,Cb)

2M
·
(

2β ·costmed
avg (D,Cb)−2γβ

(α+3β)·costmed
avg (D,Cb)

)2




=exp

(

− 2sβ2

M ·(α+3β)2
·
(costmed

avg (D,Cb)−γ)2

costmed
avg (D,Cb)

)

≤exp

(

− 2sβ2

M ·(α+3β)2
· (medavg(D,k))2(α+3β)2

costmed
avg (D,Cb)

)

, Applying relation 10

Now, costmed
avg (D,Cb)≤M , therefore

Pr[costmed
avg (S,Cb)≤(α+β)medavg(D,k)+γ]≤exp

(

−2sβ2

M2
·(medavg(D,k))2

)

By union bound and using the fact that |C|≤
(√

dM
2η

)kd

,

Pr[∃ Cb∈C :costmean
avg (S,Cb)≤(α+β)meanavg(D,k)+γ]

≤
(√

dM

2η

)kd

·exp
(

−2sβ2

M2
·(medavg(D,k))2

)

We choose

s≥ M2

2β2(medavg(D,k))2
·
(

ln(1/δ)+kdln

(√
dM

2η

))

We use identical arguments as in the proof of Lemma 1 for the proof of Lemma 4, i.e., we condition
on medavg(D,k)< η and medavg(D,k) ≥ η to remove the dependency of medavg(D,k) in the sample
complexity.

We now state the DP clustering results that we combine with Lemma 4 to obtain our differentially-
private sublinear time k-median result in Euclidean space as a corollary. Given any w-approximation
algorithm for k-median (respectively k-means), Ghazi et al. [16] use differentially-private coresets to
give pure and approximate differentially-private algorithms that run in polynomial time and achieve
approximation guarantees very close to that of the original algorithm.

Theorem 4. [16] Assume there is a polynomial-time (not necessarily DP) algorithm for k-median
(respectively k-means) inRd with approximation ratiow. Then there is an ε-DP algorithm that runs in

time kOα(1)poly(nd) and with probability 0.99, produces a
(

w(1+α),Ow,α

((

kd+kOα(1)

ε

)

poly log n
))

-

approximation for k-median (respectively k-means).



Moreover, there is an (ε,δ)-DP algorithm with the same runtime and approximation ratio but with

additive error Ow,α

((

k
√
d

ε
·poly log

(

k
δ

)

)

+
(

kOα(1)

ε
·poly log n

))

.

Note that the state-of-the-art non-private algorithm for k-median achieves an approximation ratio
of w= 2.633 [1]. We use the algorithm from [16] as our black-box algorithm A, and by plugging in
the approximation guarantees of A as stated in Theorem 4 with Lemma 4, we obtain the following
accuracy guarantees for our sampling algorithm A′ in the pure differential privacy as well as the
approximate differential privacy settings.

Theorem 5 (Accuracy of A′ for pure and approximate DP). Let η> 0, 0<θ< 1, constant α be ap-
proximation parameters, along with approximation ratio w. For private set D⊆Rd with diameter M ,

and an ε-DP
(

w(1+α),O
((

kd+kO(1)

ε

)

poly log n
))

-approximation k-median algorithm (from [16]),

that runs in time kO(1)poly(nd), we have a ε′-DP algorithm A′ that can draw a sample S⊆D of size s,

s=c·max

{

Mw(1+α)(1+w(1+α))ln(1θ)

η
,
M2

η2

(

ln(1/θ)+kdln

(√
dM

2η

))}

where c is an appropriate constant, and obtain a k-median clusteringC∗ in time kO(1)poly(sd) such that

with probability at least 1−θ, costmed
avg (D,C∗)≤w(1+α)medavg(D,k)+O

((

kd+kO(1)

ε

)

poly log n
)

+η.

Moreover, by using the (ε,δ)-DP algorithm from [16] with the same runtime and approximation

ratio but with additive error γ′ :=O
((

k
√
d

ε
·poly log

(

k
δ

))

+
(

kO(1)

ε
·poly log n

))

, we obtain a (ε′,δ′)-DP

algorithm A′ that draws a sample of the same size, and obtains a k-median clustering such that with
probability at least 1−θ, costmed

avg (D,C∗)≤w(1+α)medavg(D,k)+γ′+η. Privacy parameters ε′,δ′ are
as defined in Theorem 1.

Note that the state-of-the-art non-private algorithm for k-median achieves an approximation ratio
of w=2.633 [1].

2.5 Private k-means clustering in Metric Space

We follow the techniques of Czumaj et al. [10] and extend their sublinear k-means clustering analysis
to work for black-box polynomial-time k-means algorithms that have an additive factor of γ>0. The
analysis is almost identical to that of the k-median problem in metric space, except now, we work
with the square of the metric distance function. We combine this extension with the existing private
k-means clustering algorithm [4] to obtain a private sublinear-time k-means clustering algorithm in
metric space.

For ease of representation and comparison, we again adopt the notation used in [10], which we
recall below.

Let (V,d) be a metric space and D⊆V be the input set, and M be the diameter of V . Let

meanavg(D,k)=
1

|D| min
C⊆V
|C|=k

∑

x∈D
d(x,C)2 ,

denote the average cost of an optimum k-mean clustering of D. Similarly, for any subset U ⊆D and
C⊆V , define the average cost of a k-mean clustering C as

costmean
avg (U,C)=

1

|U |
∑

v∈U
d(v,C)2 .



We first state the main lemma of this section.

Lemma 7. Let 0<θ< 1, α≥ 1, and η > 0 be approximation parameters. For D⊆Rd, assuming an
(α,γ)-approximation k-means algorithm that runs in time T (n), we can draw a sample S of size s,

s≥c·max

{

M2α(1+α)ln(1/θ)

η
,
M4

η2
·(ln(1/θ)+klnn)

}

,

where c is a positive constant, and obtain a k-means clustering C∗ in time T (|S|) such that with
probability at least 1−θ, costmean

avg (D,C∗)≤αmeanavg(D,k)+γ+η.

The proofs of the following two lemmas are identical to those in Subsection 2.3, barring the fact
that the distance function is now squared. We state the lemmas here for the sake of completeness,
and note that the proof for Lemma 7 will follow by considering the sample complexity that satisfies
both Lemma 8 and Lemma 9 and then removing the dependence ofmeanavg(D,k) from the expression
obtained.

Lemma 8. Let S be a set of size s chosen from D⊆V i.u.r. For

s≥ 3M2α(β+α)ln(1/θ)

2β2meanavg(D,k)
.

If an (α,γ)-approximation algorithm for k-means A is run on input S, then the following holds for the
solution C∗ returned by A:

Pr[costmean
avg (S,C∗)≤(α+β)meanavg(D,k)+γ]≥1−θ .

Lemma 9. Let S be a set of s points chosen i.u.r. from D⊆V such that

s≥ M4

2β2(meanavg(D,k))2
·(ln(1/θ)+klnn)

Let C be the set of (α+3β,γ)-bad solutions of a k-means clustering of D. Then

Pr[∃ Cb∈C :costmean
avg (S,Cb)≤(α+β)meanavg(D,k)+γ]≤θ

Following the techniques of [17], [4] extended their results to the private k-means setting by adapt-
ing their analysis to the non-private local search approximation algorithm for k-means clustering [20].

Theorem 6. [4] Given a metric space (V, d) of n points with diameter M , a set D ⊆ V , there
exists an ε-differentially private k-means algorithm that with probability at least 0.99 produces a
(

30,O
(

(M2k4/ε)·log2n
))

-approximation for k-means clustering.

We use the algorithm from [4] as our private black-box k-means clustering algorithm A. By
plugging in the approximation guarantees of A into our Lemma 7, we obtain the following accuracy
guarantee for our sublinear sampling algorithm A′.
Theorem 7 (Accuracy of A′). Let (V, d) be a metric space of n points with diameter M . Let
0<θ<1, and η>0 be approximation parameters. For private setD⊆V , and an ε-DP

(

30,O
(

(M2k4/ε)·log2n
))

-
approximation k-means algorithm (from [4]), that runs in time T (n), we have a ε′-DP algorithm A′
(as defined in Theorem 1) that can draw a sample S⊆D of size s,

s≥c·max
{M2ln(1/θ)

η
,
M4

η2
·(ln(1/θ)+klnn)

}

,

where c is a positive constant, and obtain a k-means clustering C∗ in time T (s) such that with prob-
ability at least 1−θ, costmean

avg (S,C∗)≤30meanavg(D,k)+O
(

(M2k4/ε)·log2n
)

+η.



2.6 Private k-means clustering in Euclidean Space

The extension of the k-means analysis to Euclidean space involves the same steps as outlined in
Subsection 2.5, but similar to the analysis for k-median in Euclidean space, we need to consider η-nets
to estimate the size of possible clusterings (see Subsection 2.4). The main lemma is presented below.

Lemma 10. For D ⊆ Rd, assuming an (α,γ)-approximation k-means algorithm that runs in time
T (n), we can draw a sample S of size s,

s≥c·max

{

M2α(1+α)ln(1/θ)

η
,
M4

η2
·
(

ln(1/θ)+kdln

(√
dM

2η

))}

,

where c is a positive constant, and obtain a k-means clustering C∗ in time T (s) such that with prob-
ability at least 1−θ, costmean

avg (S,C∗)≤αmeanavg(D,k)+γ+η.

Note that the state-of-the-art non-private algorithm for k-means achieves an approximation ratio
of w=6.358 [1]. We use the private k-means algorithm by Ghazi et al. [16] (See Theorem 4) as our
black-box private k-means clustering algorithm A. By plugging in the approximation guarantees for
A to Lemma 10 we obtain the following accuracy guarantees for the sampling algorithm A′ in both
the pure approximate differential privacy setting.

Theorem 8 (Accuracy of A′ for pure and approximate DP). Let η > 0, 0 < θ < 1, constant α be
approximation parameters, along with approximation ratio w. For private set D⊆Rd with diameter

M , and an ε-DP
(

w(1+α),O
((

kd+kO(1)

ε

)

poly log n
))

-approximation k-means algorithm (from [16]),

that runs in time kO(1)poly(nd), we have an ε′-DP algorithmA′ that can draw a sample S⊆D of size s,

s≥c·max
{M2w(1+α)(1+w(1+α))ln(1/θ)

η
,
M4

η2
·
(

ln(1/θ)+kdln

(√
dM

2η

))

}

,

where c is an appropriate constant and obtain a k-means clustering C∗ in time kO(1)poly(sd) such that

with probability at least 1−θ, costmean
avg (S,C∗)≤w(1+α)meanavg(D,k)+O

((

kd+kO(1)

ε

)

poly log n
)

+η.

Moreover, by using the (ε,δ)-DP algorithm from [16] with the same runtime and approximation

ratio but with additive error γ′ :=O
((

k
√
d

ε
·poly log

(

k
δ

))

+
(

kO(1)

ε
·poly logn

))

, we obtain a (ε′,δ′)-DP

algorithm A′ that draws a sample of the same size, and obtains a k-means clustering such that with
probability at least 1−θ, costmean

avg (S,C∗)≤w(1+α)meanavg(D,k)+γ′+η. Privacy parameters ε′,δ′

are as defined in Theorem 1.

3 Group Privacy in Sublinear setting

In this section, we give a group privacy result that holds for any sampling algorithm A′(D) that
samples a set S from the input setD by independently sampling with probability ξ and runs an ε-DP
algorithm A on S. Let D′ be a set that differs on g elements with respect to D, and 0≤ T ≤ g be
a threshold. Define δT,ξ,g := 1−∑T

j=0

(

g
j

)

ξj(1− ξ)g−j , in other words, δT,ξ,g is the probability of

choosing more than T elements that differ from elements in D′ in the sample S.
Given that A is ε-DP, we have already shown that A′ is ε′-DP (see Theorem 1). In the following

theorem, we show that A′ also gives us better group privacy guarantees.



Theorem 9. If A′ is an ε′-DP sampling algorithm (as described above) then it gives (T ·ε′,δT,ξ,g)-

privacy for groups of size g, where δT,ξ,g :=1−
∑T

j=0

(

g
j

)

ξj(1−ξ)g−j.

Proof. Consider two setsD andD′ that differ on g elements, i.e., |D|= |D′|+g and set S⊆D sampled
independently w.p. ξ. Define the random variable Y to be the number of elements in S sampled from
the g differing elements. Fix an output set C in the output space of A′. Then

Pr[A′(D)∈C]

=

g
∑

i=0

Pr[A′(D)∈C,Y = i]

=

g
∑

i=0

Pr[A′(D)∈C|Y = i]Pr[Y = i]

=
T
∑

i=0

Pr[A′(D)∈C|Y = i]Pr[Y = i]+

g
∑

i=T+1

Pr[A′(D)∈C|Y = i]Pr[Y = i]

Applying the naive group privacy bound for each term Pr[A′(D)∈C|Y = i] in the first sum,

≤
T
∑

i=0

eε·iPr[A′(D′)∈C]Pr[Y = i]+

g
∑

i=T+1

Pr[A′(D)∈C|Y = i]Pr[Y = i]

Observe that
∑g

i=T+1Pr[A′(D)∈C|Y = i]Pr[Y = i]≤∑g
i=T+1Pr[Y = i]≤δT,ξ,g, therefore,

Pr[A′(D)∈C]≤eε·TPr[A′(D′)∈C]+δT,ξ,g .

We demonstrate how in many instances, our sampling algorithmA′ achieves better group privacy
guarantees for chosen ξ and T such that T ≪ g. (1) If we sample each element of the input set with
probability ξ = 1/

√
g, and set threshold T = 2

√
g, then A′ is (2√gε′,δT,ξ,g) for δT,ξ,g negligible in

g. (2) If we sample each element of the input set with probability ξ = 1/log(g), and set threshold
T =2g/log(g), then A′ is ((2g/log(g))ε′,δT,ξ,g) for δT,ξ,g negligible in g.
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