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Abstract—We propose a new information-theoretic bound
on generalization error based on a combination of the error
decomposition technique of Bu et al. and the conditional mutual
information (CMI) construction of Steinke and Zakynthinou. In
a previous work, Haghifam et al. proposed a different bound
combining the two aforementioned techniques, which we refer to
as the conditional individual mutual information (CIMI) bound.
However, in a simple Gaussian setting, both the CMI and the
CIMI bounds are order-wise worse than that by Bu et al..
This observation motivated us to propose the new bound, which
overcomes this issue by reducing the conditioning terms in the
conditional mutual information. In the process of establishing
this bound, a conditional decoupling lemma is established, which
also leads to a meaningful dichotomy and comparison among
these information-theoretic bounds.

I. INTRODUCTION

Bounding the generalization error of learning algorithms is

of fundamental importance in statistical machine learning. The

conventional approach is to bound it using a quantity related

to the hypothesis class, such as the VC-dimension [1], and

such bounds are therefore oblivious to the learning algorithm

and data distribution. The obtained results are usually rather

conservative, and cannot fully explain the recent success

of deep learning. Recently, information theoretic approaches

that jointly take into consideration the hypothesis class, the

learning algorithm, and the data distribution, has drawn con-

siderable attention [2]–[11].

The effort of deriving generalization error bounds using

information theoretic approaches was perhaps first initiated

in [2] and [8]. The bound was further tightened in [9], by

decomposing the error, and bounding each term individu-

ally. Steinke and Zakynthinou [10] proposed a conditional

mutual information (CMI) based bound, by introducing a

dependence structure which resembles that in the analysis of

the Rademacher complexity [1]. Combining the idea of error

decomposition [9] and the CMI bound in [10], Haghifam et

al. [11] subsequently provided a sharpened bound based on

conditional individual mutual information (CIMI).

In this work, we propose a new generalization error bound,

which is also based on a combination of the error decomposi-

tion technique and the CMI construction. This new bound is

motivated by the observation that in a simple Gaussian setting,

the CIMI bound in [11] (as well as the CMI bound in [10]) is

of constant order, while the bound in [9] is of order Θ( 1√
n
),

where n is the number of training samples. We further observe

that the conditioning term in CIMI is the same as CMI, and it

tends to reveal too much information which makes the bounds

loose. The proposed new bound is thus obtained by making the

mutual information conditioned on an individual sample (pair),

which we refer to as the individually conditional individual

mutual information (ICIMI) bound. In order to establish the

new bound, we introduce a new conditional decoupling lemma.

This lemma allows us to view the bounds in [8]–[11] and

the new bound in a unified manner, which not only yields

a dichotomy of these bounds, but also makes possible a

meaningful comparison among them. Finally, we show that

in the Gaussian setting mentioned earlier, the proposed new

bound is also able to provide a bound of the same order as,

but with an improved leading constant than, that in [9].

After our initial preprint was posted on Arxiv, we were

made aware of an independent work by Rodríguez-Gálvez et

al. [14], where a similar ICIMI-based generalization bound

was proposed under the restricted assumption of bounded loss.

In contrast, our result applies under more general conditions.

Our work was mainly motivated by the looseness of the CIMI

bound in the Gaussian setting, for which the restricted assump-

tion in [14] makes their result not applicable. Furthermore, the

proposed conditional decoupling lemma, which we believe is

of fundamental importance, was not present in [14].

II. PRELIMINARY

We study the classic supervised learning setting. Denote

the data domain as Z := X × Y , where X is the feature

domain and Y is the label set. The parametric hypothesis

class is denoted as HW = {hW : W ∈ W} ⊆ YX , where

W is the parameter space. During the training, the learning

algorithm (learner) has access to a sequence of training

samples Z[n] = (Z1, Z2, . . . , Zn), where each Zi is drawn

independently from Z following some unknown probability

distribution ξ. The learner can be represented by PW |Z[n]
,

which is a kernel (channel) that (randomly) maps Zn to W .

To complete the classification or regression task, the learner

in principle would choose a hypothesis w ∈ W to minimize

the following population loss, under a given loss function ℓ :
W ×Z → R,

Lξ(w) =

∫

Z
ℓ(w, z)ξ(dz). (1)

http://arxiv.org/abs/2012.09922v2


However, since only a training data vector Z[n] is available,

the empirical loss of w is usually computed (and minimized

during training), which is given as

LZ[n]
(w) =

1

n

n
∑

i=1

ℓ(w,Zi). (2)

The expected generalization error of the learner PW |Z[n]
is

gen(ξ, PW |Z[n]
) := E

[

Lξ(W )− LZ[n]
(W )

]

, (3)

where the expectation is taken over the joint distribution

P (W,Z[n]) = ξn ⊗ PW |Z[n]
. This quantity captures the

effect of the learner’s expected overfitting error due to limited

training data, which we shall study in this work.

III. REVIEW OF RELATED RESULTS

In this section, we briefly review a few information theoretic

bounds on the generalization error relevant to this work.

A more thorough discussion of their relation is deferred to

Section IV-D and IV-E, after a unified framework is given.

A. Mutual information based bounds

Xu and Raginsky, motivated by a previous work by Russo

and Zou [2], provided a mutual information (MI) based bound

on the expected generalization error [8].

Theorem 1 (MI Bound [8]). Suppose ℓ(w,Z) is σ2-sub-

Gaussian under ξ for all w ∈ W , then

gen(ξ, PW |Z[n]
) ≤

√

2σ2

n
I
(

W ;Z[n]

)

. (4)

The generalization can be written in two ways

gen(ξ, PW |Z[n]
) = E

[

LZ̃[n]
(W̃ )

]

− E
[

LZ[n]
(W )

]

(5)

=
1

n

n
∑

i=1

E

[

(ℓ(W̃ , Z̃i)− ℓ(W,Zi))
]

, (6)

where W̃ and Z̃i are independent random variables that have

the same marginal distributions as W and Zi, respectively.

Instead of bounding the difference (5) as in [8], Bu et al. [9]

bounded each individual difference in (6) and derived an in-

dividual mutual information (IMI) based bound. Furthermore,

the following inverse Fenchel conjugate function was utilized

to obtain a tightened bound. For any random variables F , its

cumulant generating function is

ψF (λ) := lnE
[

eλ(F−E[F ])
]

, (7)

and the inverse of its Fenchel conjugate is given as

ψ∗−1
F (η) := inf

λ>0

η + ψF (λ)

λ
, η ∈ [0,∞). (8)

The tightened bound is summarized in the following theorem.

Theorem 2 (IMI Bound [9]). Suppose ψ− is an upper bound

of ψ−ℓ(W̃ ,Z̃i)
, then

gen(ξ, PW |Z[n]
) ≤ 1

n

n
∑

i=1

ψ∗−1
− (I (W ;Zi)) , (9)

where W̃ and Z̃i are independent random variables that have

the same marginal distributions as W and Zi, respectively.

B. Conditional mutual information based bounds

Steinke and Zakynthinou [10] recently introduced a

novel bounding approach. In their approach, Z±
[n] :=

(Z±1
1 , Z±1

2 , . . . , Z±1
n ) is a 2×n table of samples that each Zs

i ,

for s = −1, 1 and i = 1, . . . , n is independently drawn fol-

lowing ξ. The training vector (ZR1
1 , ZR2

2 , . . . , ZRn
n ) is selected

from the table Z±
[n], where Ri’s are independent Rademacher

random variables, i.e., Ri takes 1 or −1 equally likely. The

vector R[n] = (R1, . . . , Rn) ∈ {−1, 1}n essentially selects

one sample from each column in the table, which partition

Z±
[n] into a training vector and a testing vector. For simplicity,

we shall write Z−1
i and Z+1

i as Z−
i and Z+

i , when the meaning

is clear from the context.

With the structure given above, the expected generalization

error of the algorithm can be written as

gen(ξ, PW |Z[n]
) =

EZ±

[n]

[

E

[

1

n

n
∑

i=1

Ri

(

ℓ(W,Z−
i )− ℓ(W,Z+

i )
)

∣

∣

∣
Z±
[n]

]]

. (10)

Steinke and Zakynthinou obtained the following conditional

mutual information (CMI) based result.

Theorem 3 (CMI Bound [10]). Suppose supw∈W |ℓ(w, z1)−
ℓ(w, z2)| ≤ ∆(z1, z2) for any z1, z2 ∈ Z , then

gen(ξ, PW |Z[n]
) ≤

√

2

n
E[∆(Z1, Z2)2]I

(

W ;R[n]|Z±
[n]

)

,

(11)

where Z1, Z2 are independent samples distributed as ξ.

Since Ri is binary, the conditional mutual information is

always bounded; in contrast, mutual information based bounds

(i.e., MI and IMI bounds) can be unbounded, particularly when

the random variables W,Zi are both continuous.

Motivated by the results in [9], Haghifam et al. [11] pro-

posed a sharpened bound by similarly bounding each term in

(10). Moreover, they provided a conditional individual mutual

information (CIMI) based bound represented by the sample-

conditioned mutual information, which is defined as

Iu(X ;Y ) := I(X ;Y |U = u). (12)

Clearly IU (X ;Y ) is a function of the random variable U , thus

also a random variable, and E[IU (X ;Y )] = I(X ;Y |U). These

sharpened bounds are summarized in the following theorem.

Theorem 4 (CIMI Bound [11]). Suppose ℓ ∈ [0, 1], then

gen(ξ, PW |Z[n]
) ≤ 1

n

n
∑

i=1

E

[

√

2IZ±

[n]
(W ;Ri)

]

(13)

≤ 1

n

n
∑

i=1

√

2I
(

W ;Ri|Z±
[n]

)

. (14)



IV. NEW RESULT

A. A motivating example

Let us consider the simple setting of estimating the

mean from samples generated from a Gaussian distribution

N(µ, σ2), by averaging the i.i.d. training samples under the

squared loss.

Example 1 (Estimating the Gaussian mean). The training

samples Z[n] are drawn i.i.d. following N(µ, σ2) for some

unknown µ. The learner deterministically estimates µ by

averaging the training samples, i.e., W = 1
n

∑n
i=1 Zi, whose

empirical error is

LZ[n]
(W ) =

1

n

n
∑

i=1

(W − Zi)
2. (15)

Bu et al. [9] showed that the mutual information term in

the IMI bound is

I(W ;Zi) =
1

2
log

n

n− 1
=

1

2(n− 1)
+ o

(

1

n

)

, (16)

and obtained the following IMI based bound

σ2

√

2(n+ 1)2

n2
log

n

n− 1
= σ2

√

2

n− 1
+ o

(

1√
n

)

. (17)

For this simple setting, the generalization error can in fact be

calculated exactly to be 2σ2

n . Though the error bound above

does not have the same order as the true generalization error,

it is consistent with the VC dimension-based bound and is

the best known for this case. Note that the MI bound will be

unbounded, since I(W ;Z[n]) is unbounded.

Next consider the CMI and CIMI bounds, and let us focus

on the mutual information terms in these bounds, which give

I(W ;R[n]|Z±
[n]) = n/ log2 e, (18)

IZ±

[n]
(W ;Ri) = 1/ log2 e, a.s.. (19)

It is seen that they are order-wise worse than (16), which

suggests that the bounds obtained from the CMI and CIMI

bounds would be order-wise worse than (17).

Theorem 3 and Theorem 4 in fact do not apply directly

in this setting, since their required conditions do not hold.

In Theorem 3, the function ∆(z1, z2) does not exist (i.e.,

unbounded); even if it existed, the term E[∆(Z1, Z2)
2] would

be a constant, thus the CMI bound would be of constant order.

Similarly, if the condition ℓ ∈ [0, 1] held, the CIIMI bound

would also be of constant order. As we shall show shortly, the

CMI and CIMI bounds can be generalized and strengthened,

yet the resultant strengthened bounds in this setting still do

not diminish as n→ ∞, and thus would be order-wise worse

than the IMI bound.

A question arises naturally: Is the looseness of the CMI and

CIMI bounds here due to the introduction of the conditioning

terms? As we shall show next, it is in fact caused by too much

information being revealed in the conditioning terms, and there

is indeed a natural way to resolve this issue.

B. A conditional decoupling lemma

Our main result relies on a key lemma. A few more

definitions are first introduced in order to present this lemma

and the main result.

For any random variables F and U , define the sample-

conditioned cumulant generating function for any realization

U = u,

ψF |U (λ, u) := lnE
[

eλ(F−E[F |U=u])
∣

∣

∣
U = u

]

, λ ∈ R.

(20)

It is straightforward to verify that for any realization U = u,

ψF |U (0, u) = ψ′
F |U (0, u) = 0 and ψ′′

F |U (0, u) > 0. Hence the

inverse of its Fenchel conjugate

ψ∗−1
F |U (η, u) := inf

λ>0

η + ψF |U (λ, u)

λ
, η ∈ [0,∞) (21)

is concave and non-decreasing; see e.g., [9] and [12]. The

unconditioned version of this function was introduced earlier

by Bu et al. [9]. When it is clear from context, we will write

ΨF |U (λ) := ψF |U (λ, U), Ψ∗−1
F |U (η) := ψ∗−1

F |U (η, U), (22)

which are functions of U , thus random. Next define the

conditional cumulant generating function

ψ̄F |U = E
[

ΨF |U
]

, (23)

and similarly its inverse Fenchel conjugate as ψ̄∗−1
F |U .

For a pair of random variables (X,Y ), its decoupled pair

conditioned on a third random variable U is a pair of random

variables (X̃, Ỹ ) , such that

(X̃, U)
D
= (X,U), (Ỹ , U)

D
= (Y, U), (24)

i.e., (X̃, U) and (X,U) are identically distributed, and (Ỹ , U)
and (Y, U) are identically distributed, and moreover

X̃ ↔ U ↔ Ỹ (25)

forms a Markov string. It follows from this definition that

IU (X ;Y ) = D(PX,Y |U ||PX̃,Ỹ |U ). (26)

We next introduce a conditional decoupling (CD) lemma,

which serves an instrumental role in our work. The uncondi-

tioned version was presented in [9].

Lemma 1 (The CD lemma). For any three random variables

X,Y, U , let X̃, Ỹ be the decoupled pair of X,Y conditioned

on U . Let F := f(X,Y ) and F̃ := f(X̃, Ỹ ), for some real-

valued measurable function f . The following inequalities hold

E[F ]− E[F̃ ] ≤ E

[

Ψ∗−1

F̃ |U (IU (X ;Y ))
]

≤ ψ̄∗−1

F̃ |U (I(X ;Y |U)) , (27)

E[F̃ ]− E[F ] ≤ E

[

Ψ∗−1

−F̃ |U (IU (X ;Y ))
]

≤ ψ̄∗−1

−F̃ |U (I(X ;Y |U)) . (28)

This lemma is proved by utilizing the Donsker–Varadhan

variational representation of KL divergence and the concavity

of the inverse Fenchel conjugate function. The proof details

are deferred to Section IV-G.



C. The ICIMI bound

Let (W,Z±
[n], R[n]) be as given previously in Section III-B.

For each i = 1, . . . , n, let (W̃i, R̃i) be a decoupled pair of

(W,Ri) conditioned on Z±
i . The new bound we propose is

presented in Theorem 5.

Theorem 5. (ICIMI Bound) Given an algorithm PW |Z[n]
, the

following bounds on the generalization hold

gen(ξ, PW |Z[n]
) ≤ 1

n

n
∑

i=1

E

[

Ψ∗−1

G̃i|Z±

i

(IZ±

i
(W ;Ri))

]

(29)

≤ 1

n

n
∑

i=1

ψ̄∗−1

G̃i|Z±

i

(I(W ;Ri|Z±
i )), (30)

where G̃i = R̃i

(

ℓ(W̃i, Z
−
i )− ℓ(W̃i, Z

+
i )
)

.

There are two bounds in this theorem. The stronger bound is

in terms of the sample-conditioned mutual information, which

is different from the conventional notion of conditional mutual

information and may be more difficult to evaluate. The weaker

bound is in terms of the conventional mutual information.

In the proposed bounds, the mutual information is con-

ditioned on the individual data pair Z±
i , instead of the full

data pair set Z±
[n]. Intuitively, revealing only Z±

i makes it

more difficult, than revealing all data pairs Z±
[n], to deduce

information regarding Ri from W . As a consequence, the

mutual information I(W ;Ri|Z±
i ) is less than I(W ;Ri|Z±

[n]),
yielding a potentially tighter bound.

Proof of Theorem 5. We can rewrite the generalization error

given in (10) as

gen(ξ, PW |Z[n]
) =

1

n

n
∑

i=1

E
[

E
[

Ri

(

ℓ(W,Z−
i )− ℓ(W,Z+

i )
)

|Z±
i

]]

. (31)

Now apply the CD lemma on each individual term in (31)

by letting X = W , Yi = Ri, Ui = Z±
i , and Fi =

Ri

(

ℓ(W,Z−
i )− ℓ(W,Z+

i )
)

. Since

E[G̃i] = E[F̃i] = E

[

R̃i

(

ℓ(W̃i, Z
−
i )− ℓ(W̃i, Z

+
i )
)]

= 0,

we have

gen(ξ, PW |Z[n]
) =

1

n

n
∑

i=1

E[Fi] =
1

n

n
∑

i=1

E[Fi]− E[F̃i]

≤ 1

n

n
∑

i=1

E

[

Ψ∗−1

G̃i|Z±

i

(IZ±

i

(W ;Ri))
]

(32)

≤ 1

n

n
∑

i=1

ψ̄∗−1

G̃i|Z±

i

(I(W ;Ri|Z±
i )), (33)

which completes the proof.

We call this bound the individually conditional individual

mutual information (ICIMI) bound, since it is derived by

applying the CD lemma on the individual conditional terms in

(31).

We note that Theorem 5 implies Proposition 3 in [14], which

we state below as a corollary.

Corollary 1. Suppose ℓ ∈ [a, b] with a < b, then

gen(ξ, PW |Z[n]
) ≤ b− a

n

n
∑

i=1

EZ±

[n]

[
√

2IZ±

i

(W ;Ri)
]

(34)

≤ b− a

n

n
∑

i=1

√

2I(W ;Ri|Z±
i ). (35)

Proof of Corollary 1. When ℓ ∈ [a, b] and F̃i ∈ [a− b, b− a],

it is straightforward to verify that F̃i is
(b−a)2

2 -sub-Gaussian.

The definition of the sub-Gaussian distribution in fact gives

ΨF̃i|Z±

i

(λ) ≤ (b−a)2

2 λ2, and thus Ψ∗−1

F̃i|Z±

i

(η) ≤ (b − a)
√
2η,

from which the corollary follows.

D. Dichotomy and generalizations of existing bounds

The CD lemma allows us to view the existing MI, IMI, CMI,

and CIMI bounds in a unified framework. By applying the CD

lemma in different manners, these bounds can be obtained

almost directly. The technical conditions under which the

bound hold can also be generalized, and the bounds themselves

can be strengthened using the inverse Fenchel conjugate. These

results are summarized in Table I. We also provide the bounds

for bounded loss function, which eliminate the ψ̄∗−1 functions.

The CMI and CIMI results can be further strengthened by

utilizing the inverse Fenchel conjugate function together with

the sample-conditioned mutual information. More precisely,

let (R̃[n], W̃ ) be the decoupled pair of (R[n],W ) conditioned

on Z±
[n]. Further define

Ẽi = R̃i

(

ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i )
)

, Ẽ =
1

n

n
∑

i=1

Ẽi, (36)

then we have the strengthened CMI and CIMI bounds:

gen
(

ξ, PW |Z[n]

)

≤ E

[

Ψ∗−1

Ẽ|Z±

[n]

(

IZ±

[n]

(

W ;R[n]

)

)

]

, (37)

gen
(

ξ, PW |Z[n]

)

≤ 1

n

n
∑

i=1

E

[

Ψ∗−1

Ẽi|Z±

[n]

(IZ±

[n]
(W ;Ri))

]

.

(38)

E. Comparison of the bounds

We first consider the special case where the loss function

is bounded, i.e., ℓ ∈ [0, 1]. For this case, it was shown in [11]

that the CIMI bound (14) is tighter than the CMI bound (11).

We next show that the proposed bound (35) is tighter than the

CIMI bound (14) when ℓ ∈ [0, 1].

Lemma 2. For any i = 1, . . . , n, we have

I(W ;Ri|Z±
i ) ≤ I(W ;Ri|Z±

[n]).

Proof of Lemma 2. By the independence of Ri and Z±
[n], we

have

I(W ;Ri|Z±
[n]) = H(Ri)−H(Ri|W,Z±

[n]),

I(W ;Ri|Z±
i ) = H(Ri)−H(Ri|W,Z±

i ).



TABLE I
A DICHOTOMY OF SEVERAL GENERALIZATION BOUNDS USING THE CD LEMMA

Approach X Y U F Generalization bound Special case ℓ ∈ [0, 1]

MI [8] W Z[n]
1
n

∑n
i=1 ℓ(W,Zi) ψ̄∗−1

−F̃

(

I
(

W ;Z[n]

))

√

1
2n
I(W ;Z[n])

IMI [9] W Zi Fi = ℓ(W̃ , ZRi,i
) 1

n

∑n
i=1 ψ̄

∗−1

−F̃i

(I (W ;Zi))
1
n

∑n
i=1

√

1
2
I(W ;Zi)

CMI [10] W R[n] Z±
[n]

1
n

∑n
i=1Ri

(

ℓ(W,Z−
i
)− ℓ(W,Z+

i
)
)

ψ̄∗−1

F̃ |Z±

[n]

(

I
(

W ;R[n]|Z
±
[n]

)) √

2I(W ;R[n]|Z
±
[n]

)

CIMI [11] W Ri Z±
[n]

Fi = Ri

(

ℓ(W,Z−
i
)− ℓ(W,Z+

i
)
)

1
n

∑n
i=1 ψ̄

∗−1

F̃i|Z
±

[n]

(

I
(

W ;Ri|Z
±
[n]

))

1
n

∑n
i=1

√

2I(W ;R|Z±
[n]

)

ICIMI (new) W Ri Z±
i

Fi = Ri

(

ℓ(W,Z−
i
)− ℓ(W,Z+

i
)
)

1
n

∑n
i=1 ψ̄

∗−1

F̃i|Z
±

i

(

I
(

W ;Ri|Z
±
i

))

1
n

∑n
i=1

√

2I(W ;R|Z±
i
)

ICIMI (new)

IMI CIMI

MI CMI≥
≥

≥

≥

≤

Fig. 1. Relations among generalization bounds, when the inverse Fenchel
conjugate functions are assumed to be the same.

It follows that

I(W ;Ri|Z±
[n])− I(W ;Ri|Z±

i ) = I(Ri;Z
±
[n]|W,Z

±
i ) ≥ 0,

which concludes the proof.

To further understand the relation among these bounds

under more general conditions when the loss function may

not be bounded, let us assume the inverse Fenchel conjugate

functions, which roughly capture the geometry induced by the

expected loss, are the same (denoted as ψ̄∗−1) for all the five

approaches, i.e.,

ψ̄∗−1 = ψ̄∗−1

−F̃
= ψ̄∗−1

−F̃i

= ψ̄∗−1

F̃ |Z±

[n]

= ψ̄∗−1

F̃i|Z±

[n]

= ψ̄∗−1

F̃i|Z±

i

.

Then we can focus on the information measure quantities, and

compare these bounds as shown in Fig. 1. Here the inequalities

given in black were proved previously (see [9] and [11]). Since

the common function ψ̄∗−1 is non-decreasing, the inequality

"CIMI ≥ ICIMI" follows from Lemma 2. The inequality "IMI

≥ ICIMI" is implied by the following lemma for the same

reason.

Lemma 3. For any i = 1, . . . , n, we have

I(W ;Ri|Z±
i ) ≤ I(W ;Zi).

Proof of Lemma 3. First Zi and ZRi

i are both the ith training

sample for the input of the algorithm, thus

I(W ;Zi) = I(W ;ZRi

i ). (39)

Then since Z−Ri

i , Ri and W are independent given ZRi

i ,

I(W ;Z±
i , Ri) = I(W ;ZRi

i , Z−Ri

i , Ri) (40)

= I(W ;ZRi

i ) + I(W ;Z−Ri

i , Ri|ZRi

i ) = I(W ;ZRi

i ). (41)

It follows that

I(W ;Zi) = I(W ;Z±
i , Ri) ≥ I(W ;Ri|Z±

i ), (42)

which concludes the proof.

The inverse Fenchel conjugate functions may indeed be

different for different bounds, thus although the above com-

parison suggests certain dominant relations, it is not clear for

any specific problem, whether any particular bound is tighter

than the other. This is particularly true if we use the bounds

based on the inverse Fenchel conjugate, however, even for the

special case of ℓ ∈ [0, 1], the different multiplicative factors

and the sum-square-root forms imply that the relation can be

less clear.

F. Revisiting the example

We now return to the problem of estimating the Gaus-

sian mean, and show that the proposed ICIMI bound can

provide scaling behavior similar to that of IMI, thus order-

wise stronger than the CMI and CIMI bounds. In fact, the

bound is also strictly better than the IMI bound given in [9]

asymptotically in this setting.

We first formally establish, as suspected previously, that the

CMI and CIMI bounds are at least of constant order for this

setting, the proof of which can be found in the appendix.

Proposition 1. The strengthened CMI and CIMI bounds, i.e.,

(37) and (38), are at least σ2

π
√
log e

in the problem of estimating

the Gaussian mean.

The next proposition establishes a generalization error

bound based on the ICIMI bound in this setting.

Proposition 2. For the the problem of estimating the mean of

the Gaussian distribution, the ICIMI bound gives

gen
(

ξ, PW |Z[n]

)

≤ 2σ2

√
π

√

1

n− 1
+ o

(

1√
n

)

. (43)

Remark: This bound scales as Θ(
√

1
n ). Compared to the IMI

bound in (17), the new ICIMI based bound is asymptotically

tighter by a factor of
√

π
2 ≈ 1.25.

Proposition 2 is proved by studying separately the sample-

conditioned individual mutual information IZ±

i

(W ;Ri) and

the inverse Fenchel conjugate functions Ψ∗−1

G̃i|Z±
. For the

former, since the algorithm here is averaging the samples

without any prior of the Gaussian distribution, without loss of

generality, we can assume the mean of the Gaussian distribu-

tion to be 0, i.e., µ = 0. Therefore, given Z±
i = z± ∈ R

2, W



is mixed-Gaussian distributed, which follows N( z+n ,
n−1
n2 σ

2)
when Ri = 1 and follows N( z−n ,

n−1
n2 σ

2) when Ri = −1.

The term IZ±

i

(W ;Ri) is thus related to the scaling behavior

of the differential entropy of a mixed Gaussian distribution,

which the following lemma makes more precise.

Lemma 4. Let R be a Rademacher random variable and V be

a mixed-Gaussian random variable, such that V ∼ N(ν, σ2)
when R = 1, and V ∼ N(−ν, σ2) when R = −1. We have

I(V ;R) =
1

2

ν2

σ2
+ o

(

ν2

σ2

)

. (44)

The next lemma gives an upper bound on the inverse

Fenchel conjugate functions.

Lemma 5. For the problem of estimating the mean of the

Gaussian distribution, and any realization of Z±
i = z± ∈ R

2

with |z+| 6= |z−|,

Ψ∗−1

G̃i|Z±

i
=z±

(η) ≤ Bz±,n(η) = |z2+ − z2−|
√

2η +Θ

(

1

n

)

,

where

Bz±,n(η) := |z2+ − z2−|
√

2η

+
2σ2(z+ − z−)2

n|z2+ − z2−|
√

2η +
4max

(

z2+, z
2
−
)

n
; (45)

and for |z+| = |z−|,

Ψ∗−1

G̃i|Z±

i
=z±

(η) ≤ 4σ

√

2η

n
|z+|+

4max
(

z2+, z
2
−
)

n
. (46)

The proofs of these two lemmas are relegated to the

appendix. With these lemmas, Proposition 2 can be proved

as follows.

Proof of Proposition 2. First by Lemma 4, we have

IZ±

i

(W ;Ri) =
(Z−

i − Z+
i )2

8σ2

1

n− 1
+ o

(

1

n

)

. (47)

Then Theorem 5 and Lemma 5 imply

gen(ξ, PW |Z[n]
) ≤ 1

n

n
∑

i=1

E

[

Ψ∗−1

G̃i|Z±

i

(

IZ±1,i(W ;Ri)
)

]

(48)

≤ 1

n

n
∑

i=1

E

[

(Z−
i − Z+

i )2|Z−
i + Z+

i |
2σ

√
n− 1

+ o

(

1√
n

)]

(49)

=
2σ2

√
π

√

1

n− 1
+ o

(

1√
n

)

, (50)

which proves the proposition.

G. Proof of the CD lemma

Proof of Lemma 1. The definition of sample-conditioned cu-

mulant generating function implies that

ΨF̃ |U (λ) = lnE
[

eλF̃ |U
]

− E[λF̃ |U ]. (51)

By the Donsker–Varadhan variational representation of KL

divergence, for any λ ∈ R

E[λF |U ]− lnE
[

eλF̃ |U
]

≤ D(PX,Y |U ||PX̃,Ỹ |U ) (52)

= IU (X ;Y ), (53)

where the equality is due to (26). It follows that for λ > 0

E[F |U ]− E[F̃ |U ] ≤ inf
λ>0

IU (X ;F ) + ΨF̃ |U (λ)

λ
(54)

= Ψ∗−1

F̃ |U (IU (X ;Y )) . (55)

Moreover

E[F ]− E[F̃ ] ≤ E

[

Ψ∗−1

F̃ |U (IU (X ;Y ))
]

(56)

= E

[

inf
λ>0

IU (X ;F ) + ΨF̃ |U (λ)

λ

]

(57)

≤ inf
λ>0

I(X ;F |U) + E

[

ΨF̃ |U (λ)
]

λ
(58)

= ψ̄∗−1

F̃ |U (IU (X ;Y )) , (59)

where the last inequality is by exchanging the order of

expectation and infimum. Similarly, since

Ψ−F̃ |U (−λ) = lnE
[

eλF̃ |U
]

− E[λF̃ |U ], (60)

with λ < 0, we have

E[F̃ |U ]− E[F |U ] ≤ inf
λ<0

IU (X ;F ) + Ψ−F̃ |U (−λ)
−λ (61)

= Ψ∗−1

−F̃ |U (IU (X ;Y )) , (62)

and

E[F̃ ]− E[F ] ≤ E

[

Ψ∗−1

−F̃ |U (IU (X ;Y ))
]

(63)

≤ ψ̄∗−1

−F̃ |U (I(X ;Y |U)) , (64)

which concludes the proof.

V. CONCLUSION

We propose a new information theoretic generalization error

bound, referred to as the ICIMI bound, based on a combination

of the error decomposition technique and the conditional

mutual information structure. Due to the reduced information

content in the conditioning term, the proposed bound can be

significantly tighter than several existing bounds. Particularly,

when the loss function is bounded, it can be shown that the

proposed bound is always tighter than the CMI and the CIMI

bounds. A conditional decoupling lemma is provided which

leads to a unified framework to study and compare these

bounds, and it may be of independent interest.
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APPENDIX

Proof of Proposition 1. For the special case n = 1, i.e., there

is only one training sample, the CMI based bound and CIMI

based bound, i.e., (37), (38), are equal. It is straightforward

to verify that conditioned on Z±
1 , Ẽ = Ẽ1 and Ẽ takes

(Z−
1 −Z+

1 )2 with probability 1
2 and takes −(Z−

1 −Z+
1 )2 with

probability 1
2 . Then we have

ΨẼ|Z±

[1]
(λ) = ln cosh

(

(Z−
1 − Z+

1 )2λ
)

. (65)

Their inverse Fenchel conjugate functions are equal and by

the lower bound of ln cosh(·) function in Lemma 6,

Ψ∗−1

Ẽ|Z±

[1]

(η) = inf
λ>0

η +ΨẼ|Z±

[1]
(λ)

λ
(66)

≥ inf
λ>0

η +min
(

(Z−

1 −Z+
1 )2λ

2 ,
(Z−

1 −Z+
1 )4λ2

4

)

λ
(67)

≥ min

(

1

2
,
√
η

)

(Z−
1 − Z+

1 )2. (68)

Since IZ±

1
(W ;R1) = 1/ log e, a.s.,, we have

E

[

Ψ∗−1

Ẽ|Z±

[1]

(

IZ±

1
(W ;R1)

)

]

≥ σ2 >
σ2

π
√
log e

. (69)

For n ≥ 2, denote the mean of Z±
[n] as Z̄, from which we

have

Z̄ = E

[

W̃ |Z±
[n]

]

. (70)

For each i = 1, . . . , n, let ∆i = ℓ(Z̄, Z−
i ) − ℓ(Z̄, Z+

i ). It

follows that

∆i =
(

Z−
i − Z+

i

) (

Z−
i + Z+

i − 2Z̄
)

(71)

=

(

1− 1

n

)

(

(

Z−
i

)2 −
(

Z+
i

)2
)

−
∑

j 6=i(Z
−
j + Z+

j )

n
(Z−

i − Z+
i ). (72)

Thus

E[|∆i|] = E
[

E
[

|∆i||Z±
i

]]

≥ E
[∣

∣E
[

∆i|Z±
i

] ∣

∣

]

=

(

1− 1

n

)

E

[

∣

∣

(

Z−
i

)2 −
(

Z+
i

)2 ∣
∣

]

(73)

≥ 1

2
E
[

|Z−
i − Z+

i |
]

E
[

|Z−
i + Z+

i |
]

=
2σ2

π
, (74)

where the first inequality is by applying Jensen’s inequality

with respect to convex function | · |; the last inequality is

because n ≥ 2 and Z−
i −Z+

i and Z−
i +Z+

i are independent.

In addition, we can write

E

[

ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i )|Z±
[n]

]

= E

[

(

Z−
i − Z+

i

)

(

Z−
i + Z+

i − 2W̃
)

|Z±
[n]

]

=
(

Z−
i − Z+

i

)

(

Z−
i + Z+

i − 2E
[

W̃ |Z±
[n]

])

=
(

Z−
i − Z+

i

) (

Z−
i + Z+

i − 2Z̄
)

= ∆i, (75)

where the last equality is by the representation of Z̄ in (70).

We can then lower-bound the CMI based bound (37) for this

problem. The sample-conditioned cumulant generating func-

tion satisfies the bound shown in (76-82). The first equality

(76) is the definition of ΨẼ|Z±

[n]
(λ); the second inequality

(77) is by E[Ẽ] = 0; the third equality (78) is by the total

expectation; the first inequality (79) is by Jenson’s inequality

with respect to convex function exp(·); the fourth equality

(80) is by (75); the fifth equality (81) is by the independence

of R̃[n] conditioned on Z±
n ; and the last inequality is due to

Lemma 6. Its inverse Fenchel conjugate function can thus be

lower bounded as follows.

Ψ∗−1

Ẽ|Z±

[n]

(η) = inf
λ>0

η +ΨẼ|Z±

[n]
(λ)

λ
(83)

≥ inf
λ>0

n
∑

i=1

1
nη +min

(

1, λ|∆i|
2n

)

λ|∆i|
2n

λ
(84)

≥
n
∑

i=1

inf
λ>0

1
nη +min

(

1, λ|∆i|
2n

)

λ|∆i|
2n

λ
(85)

≥
n
∑

i=1

min

( |∆i|
2n

,

√
η|∆i|
n3/2

)

. (86)

Then since IZ±
n
(W ;R[n]) = n/ log e, a.s. and Ψ∗−1

Ẽ|Z±

[n]

is non-

negative, the CMI based bound satisfies

E

[

Ψ∗−1

Ẽ|Z±

[n]

(IZ±

[n]
(W ;R[n]))

]

(87)

≥
n
∑

i=1

E

[

min

( |∆i|
2n

,
|∆i|√
log en

)]

(88)
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ΨẼ|Z±

[n]
(λ) = lnE

[

exp
(

λẼ − λE[Ẽ]
)
∣

∣

∣
Z±
i

]

(76)

= lnE

[

exp

(

λ

n

n
∑

i=1

R̃i(ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i ))

)

∣

∣

∣
Z±
[n]

]

(77)

= lnE

[

E

[

exp

(

λ

n

n
∑

i=1

R̃i(ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i ))

)

∣

∣

∣
Z±
[n], R̃[n]

]

∣

∣

∣
Z±
[n]

]

(78)

≥ lnE

[

exp

(

λ

n
E

[

n
∑

i=1

R̃i(ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i ))
∣

∣

∣
Z±
[n], R̃[n]

])

∣

∣

∣
Z±
[n]

]

(79)

= lnE

[

n
∏

i=1

exp

(

λ

n
R̃i∆i

)

∣

∣

∣
Z±
[n]

]

(80)

=
n
∑

i=1

lnE

[

exp

(

λ

n
R̃i∆i

)

∣

∣

∣
Z±
[n]

]

(81)

=

n
∑

i=1

ln cosh

(

λ

n
∆i

)

≥
n
∑

i=1

min

(

1,
λ|∆i|
2n

)

λ|∆i|
2n

. (82)

≥
n
∑

i=1

E

[ |∆i|
2
√
log en

]

≥ σ2

π
√
log e

, (89)

where the last equality is by (74).

Similarly, we can lower-bound the CIMI based bound (38).

The sample-conditioned cumulant generating function satisfies

ΨẼi|Z±

[n]
(λ)

= lnE
[

exp
(

λR̃i(ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i ))
) ∣

∣

∣
Z±
[n]

]

(90)

= ln cosh(λ∆i) ≥ min

(

1,
|λ∆i|
2

) |λ∆i|
2

. (91)

The inverse Fenchel conjugate functions can be lower bounded

as

Ψ∗−1

Ẽi|Z±

[n]

(η) ≥ inf
λ>0

η +min
(

1, |λ∆i|
2

)

|λ∆i|
2

λ
(92)

= min

(

inf
λ>0

η + λ |∆i|
2

λ
, inf
λ>0

η + λ2
∆2

i

4

λ

)

(93)

= min

(

1

2
,
√
η

)

|∆i|. (94)

Since Ψ∗−1

Ẽi|Z±

[n]

(η) is non-negative, and IZ±
n
(W ;Ri) =

1/ log e, a.s., the CIMI based bound satisfies

1

n

n
∑

i=1

E

[

Ψ∗−1

Ẽi|Z±

[n]

(IZ±

[n]
(W ;Ri))

]

≥ 1

2
√
log en

n
∑

i=1

E[|∆i|] =
σ2

π
√
log e

. (95)

We can now conclude that the CMI and CIMI bounds in

this setting are both at least σ2

π
√
log e

.

Proof of Lemma 4. By the representation of the differential

entropy of mixed Gaussian distribution in [13], we can write

I(V ;R) = h(V )− h(V |R) = α2 − I(α), (96)

where α = |ν|
σ and

I(α) =
2√
2π
e−α2/2

∫ ∞

0

e−t2/2cosh(αt) ln(cosh(αt))dt.

Since for any x ∈ R, by the Taylor expansion,

1 + x2/2 ≤ cosh(x) =
1

2
(ex + e−x) ≤ ex

2/2, (97)

it follows that for any α < 1,

2√
2π

∫∞
0 e−t2/2cosh(αt) ln(cosh(αt))dt

α2
(98)

≤
2√
2π

∫∞
0 e−t2/2eα

2t2/2 α2t2

2 dt

α2
(99)

=
1√
2π

∫ ∞

0

t2e−t2(1−α2)/2dt =
1

2
√
1− α2

, (100)

and take the limit of α2 → 0 on both side,

lim
α2→0

2√
2π

∫∞
0 e−t2/2cosh(αt) ln(cosh(αt))dt

α2
≤ 1

2
. (101)

In addition,

2√
2π

∫∞
0 e−t2/2cosh(αt) ln(cosh(αt))dt

α2
(102)

≥
2√
2π

∫∞
0 e−t2/2

(

1 + α2t2

2

)

ln
(

1 + α2t2

2

)

dt

α2
(103)

take the limit of α2 → 0 on both side,

lim
α2→0

2√
2π

∫∞
0
e−t2/2cosh(αt) ln(cosh(αt))dt

α2
(104)



≥ lim
α2→0

2√
2π

∫∞
0 e−t2/2

(

1 + α2t2

2

)

ln
(

1 + α2t2

2

)

dt

α2
(105)

=
2√
2π

∫ ∞

0

e−t2/2 lim
α2→0

(

1 + α2t2

2

)

ln
(

1 + α2t2

2

)

α2
dt

(106)

=
1√
2π

∫ ∞

0

t2e−t2/2dt =
1

2
, (107)

where the first equality is by exchanging the limit and integral

because function
(1+x) ln(1+x)

x is monotonically increasing for

x ≥ 0. Thus the Taylor expansion of I(α) is

I(α) =
1

2
α2 + o(α2), (108)

plugging which in equation (96) completes the proof.

Proof of Lemma 5. Given Z±
i = z± ∈ Z2, W̃i and W are

identically distributed. Drop the index i and write W̃i as W̃ for

simplicity. With probability 1/2, W̃ ∼ N
( z+

n ,
n−1
n2 σ

2
)

, and

with probability 1/2, W̃ ∼ N
( z−

n ,
n−1
n2 σ

2
)

. For any λ > 0,

exp
(

ΨG̃i|Z±

i
=z±

(λ)
)

(109)

=E

[

exp
(

λR̃
(

ℓ(W̃ , z−)− ℓ(W̃ , z+)
))]

(110)

=E

[

exp
(

λR̃
(

z2− − z2+ + 2(z+ − z−)W̃
))]

(111)

=
1

2
E

[

exp
(

2λ(z+ − z−)W̃
)]

exp
(

λ(z2− − z2+)
)

+
1

2
E

[

exp
(

2λ(z− − z+)W̃
)]

exp
(

−λ(z2− − z2+)
)

(112)

≤
(

1

2
exp

(

2λ|z+ − z−|
|z−|
n

+ 2λ2(z+ − z−)
2n− 1

n2
σ2

)

+
1

2
exp

(

2λ|z+ − z−|
|z+|
n

+ 2λ2(z+ − z−)
2n− 1

n2
σ2

)

)

·
(

1

2
exp(λ(z2− − z2+)) +

1

2
exp(λ(z2+ − z2−))

)

(113)

≤ exp

(

2σ2λ2(z+ − z−)
2

(

1

n
− 1

n2

))

· exp
(

2λ|z+ − z−|
max(|z+|, |z−|)

n

)

·
(

1

2
exp(λ(z2− − z2+)) +

1

2
exp(λ(z2+ − z2−))

)

(114)

≤ exp

(

2σ2λ2(z+ − z−)
2 1

n

)

· exp
(

2λ|z+ − z−|
max(|z+|, |z−|)

n

)

· exp
(

λ2

2
(z2− − z2+)

2

)

, (115)

where the last inequality is from 1
2 (e

x + e−x) ≤ ex
2/2. We

have for any η > 0,

Ψ∗−1

G̃i|Z±

i

(η) = inf
λ>0

{

1

λ

(

η +ΨG̃i|Z±

i

(λ)
)

}

(116)

≤ inf
λ>0

{

1

λ
η +

λ

2

(

(

Z+
i

)2 −
(

Z−
i

)2
)2

(117)

+
2σ2λ

n
(Z+

i − Z−
i )2 +

4max(Z+
i , Z

−
i )2

n

}

(118)

It follows that if |Z+
i | 6= |Z−

i |, take λ =
√
2η

|(Z+
i )

2−(Z−

i )
2|

Ψ∗−1

G̃i|Z±

i

(η) ≤ BZ±

i
,n(η), (119)

and if Z+
i = Z−

i , take λ→ +∞,

Ψ∗−1

G̃i|Z±

i

(η) ≤
4max

(

(

Z+
1

)2
,
(

Z−
i

)2
)

n
, (120)

and if Z+
i = −Z−

i 6= 0, take λ = 1
2σ|Z+

i
|
√

nη
2 ,

Ψ∗−1

G̃i|Z±

i

(η) ≤ 4σ

√

2η

n
|Z+

i |+ 4
(

Z+
1

)2

n
. (121)

Lemma 6. The function ln cosh(x) is lower bounded as

ln cosh(x) ≥ min

(

1,
|x|
2

) |x|
2
. (122)

Proof. When |x| ≥ 2,

1

2

(

ex + e−x
)

>
1

2
e|x| =

e|x|/2

2
e|x|/2 > e|x|/2. (123)

Take ln on both,

ln cosh(x) ≥ |x|
2
, |x| ∈ [2,∞). (124)

When |x| ≤ 2,

It is straightforward to verify by calculating derivatives

that the function tanh(x) − x
2 for x ≥ 0 is increasing then

decreasing. Since tanh(0) = 0, ln cosh(x) − x2

4 , whose

derivative is tanh(x) − x
2 , for x ≥ 0 is increasing (then

decreasing but is not needed here). Since ln cosh(0) = 0 and

ln cosh(2) − 1 > 0, by the fact that ln cosh(x) − x2

4 is even

function, we know

ln cosh(x) ≥ x2

4
, |x| ∈ [0, 2]. (125)

Then combine both results. It follows that

ln cosh(x) ≥ min

(

1,
|x|
2

) |x|
2
. (126)
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