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Abstract—We present a new technique to obtain outer-bounds

on the capacity region of networks with ultra low-rate feedback.

We establish a connection between the achievable rates in the

forward channel and the minimum distortion that can be attained

over the feedback channel.

Index Terms—Rate-limited feedback, erasure channels, chan-

nel capacity, Shannon feedback, sub-bit feedback.

I. INTRODUCTION

The introduction of massive Machine-Type Communica-

tions (mMTC) challenges many assumptions took for granted

in network information theory. One of the main challenges is

the increased cost of learning. For instance, in current systems,

it is well justified to assume free access to small control

packets (e.g., ACK/NACK signals) when needed, as they are

much smaller is size compared to payload packets. However,

this is no longer the case in mMTC where payload and control

packets will be of comparable sizes. To make matters more

complicated, there is a growing concern about security attacks

that aim to disrupt unprotected feedback channels.

We present new outer-bounds for networks with low-rate

feedback. The outer-bound establishes a connection between

rate-distortion theory and achievable rates in multi-terminal

networks with feedback. Interestingly, we learn that the best

use of the feedback channel may not be to minimize the error

but rather the distortion in reconstructing channel information.

More specifically, we first quantify how closely the channel

state may be reconstructed using the rate-limited feedback
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link, and then, we define a space of indistinguishable channel

realizations in which the outer-bound is optimized.

To illustrate the technique, we focus on the two-user broad-

cast erasure channel (BEC) and assume a sub-bit feedback

link from only one receiver, RxF , while the other receiver,

RxN , does not share any information with the other nodes.

Receiver Rxf uses the rate-limited feedback link to causally

provide its potentially encoded channel state information (CSI)

to the other nodes. Although it remains open whether the

bound is tight, it is the first of its kind and the surprising

message is that to achieve the bound, the approach may

be to purposefully induce distortion into the encoded CSI.

We outline how existing results fall short of achieving these

bounds and provide further insights and interpretations.

Related Literature: In [1], outer-bounds for wiretap channels

with rate-limited output feedback were derived, which are tight

for physically degraded channels. Shayevitz and Wigger ob-

served in [2] that finding a general feedback capacity formula

for memoryless broadcast channels (BCs) is very hard. For

other channels such as Gaussian BCs, the capacity with single-

user feedback is still unknown [3]. The block Markov coding

of [4] provides interesting insights but involves characterizing

complicated auxiliary random variables. To further understand

how low-rate feedback affects the capacity region of multi-

terminal channels, two-user broadcast erasure channels with

intermittent [5], [6] and one-sided [7]–[9] delayed feedback

have been studied. Interestingly, it was shown in [9], [10]

that even when only one receiver provides its delayed CSI to

the transmitter, the outer-bound with global delayed feedback
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can be achieved. This latter finding motivates us to further

lower the feedback rate to sub-bit territory to understand

the fundamental limits of communications with rate-limited

feedback in its purest form. In the context of interference

channels, in [11], [12], the capacity of two-user interference

channels with rate-limited feedback was established; new cod-

ing schemes with noisy or intermittent output feedback were

proposed in [13], [14]; and [15]–[17] generalize such ideas

to two-way communications. Finally, locality of feedback was

studied under different delay assumptions in [18]–[24].

II. PROBLEM FORMULATION

We consider the two-user broadcast erasure channel (BEC)

of Fig. 1 in which a single-antenna transmitter, Tx, wishes

to communicate two independent messages, WF and WN , to

two single-antenna receiving terminals RxF and RxN (read

feedback/silent receiver), respectively, over n channel uses.

Each of the messages, WF and WN , is uniformly distributed

over
{
1, 2, . . . , 2nRF

}
and

{
1, 2, . . . , 2nRN

}
, respectively. At

time instant t, the messages are mapped to channel input

X[t] ∈ F2 (in the binary field), and the respective received

signals at RxF and RxN are:

YF [t] = SF [t]X[t] and YN [t] = SN [t]X[t], (1)

where {SF [t]} is the Bernoulli (1− δF ) process that governs

the erasure at RxF , and {SN [t]} is the Bernoulli (1 − δN )

process that governs the erasure at RxN . In this manuscript,

we assume the channels are distributed independently over

time and across users, and we limit the scope to δF = δN = δ

(i.e. homogeneous channels) where δ is known globally.

We assume that at time instant t, each receiver knows its

channel value instantly, e.g., at time instant t, RxF knows the

realization of SF [t]. When the channel realization is 1, the

corresponding terminal receives X[t] noiselessly, and when it

is 0, the terminal understands an erasure has occurred.

We further assume a one-sided feedback structure in which

at time instant t, RxN knows SN [t] but does not share this

information with the other nodes. On the other hand, we

Tx

RxF

RxN

SF[t]

SN[t]

CFB

Fig. 1. Two-user BEC with rate-limited one-sided feedback.

assume RxF shares its channel state with receiver RxN and the

transmitter through a rate-limited feedback channel of capacity

CFB. We assume the feedback encoder at RxF sends back

feedback symbol K[t] ∈ K[t] at time t and this information

becomes available to the other nodes at time t + 1. Here,

K[t] is the feedback alphabet at time t. The feedback symbol

depends causally on SF [t], and the cardinality of the feedback

alphabets satisfies

1

t

t∑
`=1

log2 (|K[`]|) ≤ CFB, ∀ 1 ≤ t ≤ n. (2)

The constraint imposed at the encoding function ft(.) at

time index t is

X[t] = ft
(
WF ,WN ,K

t−1) . (3)

Receivers RxF and RxN use decoding functions

ϕF,n (Y
n
F , S

n
F ) and ϕN,n (Y

n
2 ,K

n, Sn
N ) to get estimates

ŴF of WF and ŴN of WN , respectively. An error occurs

whenever the estimate does not match the corresponding

message. The average probabilities of error are given by

λF,n = E[P (ŴF 6=WF )], λN,n = E[P (ŴN 6=WN )], (4)

where the expectations are taken with respect to the random

choice of the transmitted messages.

We say that a rate pair (RF , RN ) is achievable if there

exists a block encoder at the transmitter, and a block decoder

at each receiver, such that the average probabilities of error

go to zero as the block length n goes to infinity. The capacity

region, C, is the closure of the set of achievable rate pairs.



III. MAIN RESULTS

In this section, we provide the new distortion-based outer-

bound for the two-user BEC with rate-limited feedback. Define

0 ≤ D∗ ≤ min {δ, 1− δ} to be the unique value to satisfy

H (D) = (H (δ)− CFB)
+
, (5)

and γout to be

γout
4
=

D∗

min {δ, 1− δ}
. (6)

Theorem 1. The capacity region, C, of the two-user BEC with

one-sided rate-limited feedback is included in

Cout
4
=

{
(RF , RN )

∣∣∣∣∣RF + βoutRN ≤ βout (1− δ)

βoutRF +RN ≤ βout (1− δ)

}
,

(7)

where

βout = γout + (1− γout) (1 + δ) . (8)

Similar to the findings of [9], although only RxF provides

feedback, the outer-bounds are symmetric. The results could

also provide new capacity bounds for erasure interference

channels based on their connection to BECs [25]–[28].

Figure 2 plots the outer-bound on the maximum sum-rate

point for δ = 0.4. When CFB ≥ H (δ), this outer-bound

matches the capacity region of the two-user BEC with global

delayed feedback [29]. This recovers the results of [9], [10]

where it is shown that perfect one-sided feedback is as good as

global feedback. The interesting distinction between the results

in [9], [10] and prior results is the fact that delayed CSI is

harnessed at every step of the achievability. One can envision

a Markov block structure to interleave different blocks and

compress the feedback to H (δ)n bits and mimic the results

of [9] to achieve of point A in Figure 2 where H (δ) = CFB.

However, below this limit, the achievability can no longer be

derived from such arguments. In fact, the argument presented

above requires perfect delayed CSI, and for CFB < H (δ),

if we attempt to send perfectly a part of CSI back to the

transmitter, we deviate from this outer-bound as in Figure 2.

This suggests the possibility of new achievability ideas that

purposefully induce distortion in the encoded CSI.
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Fig. 2. Sum-rate outer-bound for δ = 0.4. Point A is where H (δ) = CFB.

IV. PROOF OF THEOREM 1

Overview: The proof is based on the following three key

ingredients: (1) for RxF , we find a set of channels realizations

that result in the same feedback sequence as the original

channel; (2) within this set, we find a candidate that has the

same marginal distribution as Sn
F but is maximally correlated

with Sn
N ; (3) as further discussed later, we use the fact that:

H(Xn|Sn
F ,K

n) = H(Xn|Kn). (9)

Derivation: To derive the outer-bounds, we enhance the

knowledge at RxN by providing it with St−1
F rather than Kt−1.

The transmitter is still informed causally of the CSI associated

with RxF through a rate-limited feedback link of capacity CFB.

The proof is broken into several steps as discussed below.

Step 1: From Rate-Distortion Theory, we know that for a

binary source distributed as i.i.d. B (1− δ), given a channel

capacity of CFB, the minimum attainable Hamming distortion,

0 ≤ D∗ ≤ min {δ, 1− δ}, between the source Sn
F and the

estimate Ŝn
F , is the solution to (5).

Fix the feedback strategy mapping Sn
F to Kn, and suppose

this strategy results in distortion, DFB ≥ D∗, between Sn
F

and the estimate Ŝn
F . We further denote the fraction of time

instants in which SF [t] = 1 and ŜF [t] = 0 by D10. Similarly,

D01 is the fraction of time instants in which SF [t] = 0 and

ŜF [t] = 1. Thus, we have

D10 +D01 = DFB. (10)



Claim 1. There exists S̃n
F such that: (1) we have

S̃F [t]
i.i.d.∼ B (1− δ) and E

(
d
(
Ŝn
F , S̃

n
F

))
≤ DFB, (11)

where d (·, ·) is the Hamming distance; (2) the feedback

encoder maps S̃n
F to the same feedback sequence Kn for Sn

F .

Proof. Suppose no such sequence exists. Then, the transmitter

could have an estimate of Sn
F with a distortion smaller than

DFB, which would be in contradiction with Rate-Distortion

Theory, thus, proving the result.

As noted, S̃F [t]
i.i.d.∼ B (1− δ). Denote the fraction of time

instants in which S̃F [t] = 1 and ŜF [t] = 0 by D̃10, and the

fraction of time instants in which S̃F [t] = 0 and ŜF [t] = 1

by D̃01. We have D̃10 + D̃01 ≤ DFB.

Step 2: In this step, we claim if we replace sequence Sn
F with

S̃n
F , the capacity region remains unchanged.

Claim 2. Any achievable (RF , RN ) is included in the capacity

region of a BEC with S̃n
F instead of Sn

F while other parameters

are kept the same and vice versa.

Proof. I (WF ;Y
n
F |Sn

F ) = I (WF ;Y
n
F |Sn

F ,K
n)

= I
(
WF ; Ỹ

n
F |S̃n

F ,K
n
)
= I

(
WF ; Ỹ

n
F |S̃n

F

)
, (12)

and I (WN ;Y n
N |Sn

F , S
n
N ) = I (WN ;Y n

N |Sn
F , S

n
N ,K

n)

= I (WN ;Y n
N |Sn

N ,K
n) = I

(
WN ;Y n

N |S̃n
F , S

n
N ,K

n
)
. (13)

Step 3: In the rate-limited broadcast channel of Section II,

SF [t] and SN [t] are distributed as independent Bernoulli

random variables, and the feedback encoder at RxF is unaware

of Sn
N . In this step, we create a “worst-case” scenario by

creating maximum correlation between Sn
N and S̃n

F .

Claim 3. Under the conditions expressed in Claim 1, we have

max
D̃10+D̃01≤DFB

Pr
(
S̃F [t] = SN [t] = 0

)
=

 δ2 +DFB (1− δ) , min {δ, 1− δ} = δ,

δ2 +DFBδ, min {δ, 1− δ} = 1− δ.
(14)

Proof. We divide the proof into two parts based on δ.

Tx

RxF

RxN

Tx

RxF

RxN

Tx

RxF

RxN

Tx

RxF

RxN

(a) (b) (c) (d)

Fig. 3. Four possible channel realizations at each time.

• min {δ, 1− δ} = δ : In this case, to maximize

Pr
(
S̃F [t] = SN [t] = 0

)
, the transition from Sn

F to Ŝn
F

would be such that to minimize the times in which ŜF [t] = 1

and SN [t] = 0 by setting D10 (1− δ)n ones to zeros when

SF [t] = 1 and SN [t] = 0. The transition from Ŝn
F to S̃n

F

would be such that to maximize the times in which S̃F [t] = 1

and SN [t] = 1 by changing D10 (1− δ)n zeros in Ŝn
F to ones

when SF [t] = 0 and SN [t] = 1. In effect, such transition from

Sn
F to S̃n

F , increases the probability of S̃F [t] = SN [t] = 0 by

D10 (1− δ), and since D10 ≤ DFB, the maximum occurs at

D10 = DFB. Based on Figure 3, the discussion above can be

explained as follows. The transition from Sn
F to Ŝn

F removes

realizations from state (b) and adds them to state (d), while

transition from Ŝn
F to S̃n

F moves realizations from state d to

(c). Thus, end-to-end transitions are from state (b) to (c).

• min {δ, 1− δ} = 1− δ : In this case, to maximize

Pr
(
S̃F [t] = SN [t] = 0

)
, the transition from Sn

F to Ŝn
F would

be such that to maximize the times in which SF [t] = 1 and

SN [t] = 1 by changing D01δn zeros to ones when SF [t] = 0

and SN [t] = 1. The transition from Ŝn
F to S̃n

F would be such

that to minimize the times in which S̃F [t] = 1 and SN [t] = 0

by changing D01δn ones in Ŝn
F to zeros when SF [t] = 1 and

SN [t] = 0. In effect, such transition from Sn
F to S̃n

F , increase

the probability of S̃F [t] = SN [t] = 0 by D01δ, and since

D01 ≤ DFB, the maximum occurs at D01 = DFB.

To prepare for the final step, we define

γ̃out
4
=

DFB

min {δ, 1− δ}
. (15)



Based on this definition and (14), we have

min
D̃10+D̃01≤DFB

Pr
(
{S̃F [t] = SN [t] = 0}c

)
= γ̃out (1− δ) + (1− γ̃out)

(
1− δ2

)
. (16)

Further, from rate-distortion theory, we have DFB ≥ D∗. Thus,

for any feedback strategy, we have

A
4
= max

DFB≥D∗
min

D̃10+D̃01≤DFB

Pr
(
{S̃F [t] = SN [t] = 0}c

)
= γout (1− δ) + (1− γout)

(
1− δ2

)
, (17)

where γout is defined in (6), and this bound is attained for a

code that achieves the rate-distortion bound. In other words,

for any feedback strategy, we have

Pr
(
{S̃F [t] = SN [t] = 0}c

)
≤ γout (1− δ) + (1− γout)

(
1− δ2

)
(18)

where S̃n
F satisfies the conditions in (11).

Step 4: For the final step, we first prove the following result.

Claim 4. For the two-user BEC with rate-limited feedback as

described in Section II and for any input distribution, we have

H (Y n
F |WN , S

n
F , S

n
N )− βoutH (Y n

N |WN , S
n
F , S

n
N ) ≤ 0,

(19)

where βout is given in (8).

Proof.

H (Y n
N |WN , S

n
F , S

n
N )

= H (Y n
N |WN , S

n
F ,K

n, Sn
N )

(a)
= H (Y n

N |WN ,K
n, Sn

N )

= H
(
Y n
N |WN , S̃

n
F ,K

n, Sn
N

)
+ I

(
Y n
N ; S̃n

F |WN ,K
n, Sn

N

)
(b)
= H

(
Y n
N |WN , S̃

n
F ,K

n, Sn
N

)
(c)
= H

(
Y n
N |WN , S̃

n
F , S

n
N

)
(d)
=

n∑
t=1

H
(
YN [t]|Y t−1

N ,WN , S̃
t
F , S

t
N

)
(e)
=

n∑
t=1

(1− δ)H
(
X[t]|Y t−1

N ,WN , S̃
t
F , SN [t] = 1, St−1

N

)
(f)
=

n∑
t=1

(1− δ)H
(
X[t]|Y t−1

N ,WN , S̃
t
F , S

t
N

)
(g)

≥
n∑

t=1

(1− δ)H
(
X[t]|Ỹ t−1

F , Y t−1
N ,WN , S̃

t
F , S

t
N

)
(h)

≥
n∑

t=1

(1− δ)
A

H
(
ỸF [t], YN [t]|Ỹ t−1

F , Y t−1
N ,WN , S̃

t
F , S

t
N

)

(17)
≥

n∑
t=1

(1− δ)H
(
ỸF [t], YN [t]|Ỹ t−1

F , Y t−1
N ,WN , S̃

t
F , S

t
N

)
γout (1− δ) + (1− γout) (1− δ2)

(8)
=

n∑
t=1

1

βout
H
(
ỸF [t], YN [t]|Ỹ t−1

F , Y t−1
N ,WN , S̃

t
F , S

t
N

)
(i)
=

n∑
t=1

1

βout
H
(
ỸF [t], YN [t]|Ỹ t−1

F , Y t−1
N ,WN , S̃

n
F , S

n
N

)

=
H
(
Ỹ n
F , Ỹ

n
N |WN , S̃

n
F , S

n
N

)
βout

(j)

≥
H
(
Ỹ n
F |WN , S̃

n
F , S

n
N

)
βout

Claim 2
≥ 1

βout
H (Y n

F |WN , S
n
F , S

n
N ) , (20)

where (a) & (b) hold since conditioned on Kt−1, X[t] is

independent of all other channel parameters; (c) follows the

fact that S̃n
F results in Kn; (d) follows from the chain rule

and the causality of the channel; (e) holds since SN [t] is a

Bernoulli (1− δ) process; (f) is true since X[t] is independent

of channel realizations at time instant t; (g) holds since

conditioning reduces entropy; (h) follows by the definition

of A in (17), normalizing by the probability that at least one

signal is not erased, and ensuring the inequality holds for any

feedback strategy; (i) follows the causality assumption; and

(j) holds as the discrete entropy function is non-negative.

Finally, we are ready to prove the outer-bounds.

n (RF + βoutRN ) = H (WF ) + βoutH (WN ) (21)

= H (WF |WN , S
n
F , S

n
N ) + βoutH (WN |Sn

F , S
n
N )

Fano
≤ I (WF ;Y

n
F |WN , S

n
F , S

n
N )

+ βoutI (WN ;Y n
N |Sn

F , S
n
N ) + nεn

= H (Y n
F |WN , S

n
F , S

n
N )−H (Y n

F |WF ,WN , S
n
F , S

n
N )︸ ︷︷ ︸

= 0

+ βoutH (Y n
N |Sn

F , S
n
N )− βoutH (Y n

N |WN , S
n
F , S

n
N ) + nεn

Claim 4
≤ βoutH (Y n

N |Sn
F , S

n
N ) + nεn ≤ nβout(1− δ) + nεn,

where εn → 0 as n → ∞. Dividing both sides by n and

taking the limit for n → ∞ completes the proof. The other

outer-bound in Theorem 1 can be obtained similarly.
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