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Abstract

In this study, Nash and Stackelberg equilibria of single-stage and multi-stage quadratic signaling games between an encoder
and a decoder are investigated. In the considered setup, the objective functions of the encoder and the decoder are misaligned,
there is a noisy channel between the encoder and the decoder, the encoder has a soft power constraint, and the decoder has also
noisy observation of the source to be estimated. We show that there exist only linear encoding and decoding strategies at the
Stackelberg equilibrium, and derive the equilibrium strategies and costs. Regarding the Nash equilibrium, we explicitly characterize
affine equilibria for the single-stage setup and show that the optimal encoder (resp. decoder) is affine for an affine decoder (resp.
encoder) for the multi-stage setup. For the decoder side, between the information coming from the encoder and noisy observation
of the source, our results describe what should be the combining ratio of these two channels. Regarding the encoder, we derive
the conditions under which it is meaningful to transmit a message.

I. INTRODUCTION

Decision making has a wide-range of applications, from engineering areas (e.g. information and communication theories,
control theory, machine learning etc.) to social sciences (e.g. economics, management etc.) to interdisciplinary sciences (e.g.
cognitive science). Every decision mechanism requires some prior input/data or observation for the decision maker (DM) so
that an optimal decision can be made. The question may arise if, for instance, there are multiple observations corresponding to
the same data, are all the inputs reliable, which observation is the most usable one etc. In this paper, we search for an answer
to these questions with two observation channels under a game theoretic framework.

Consider a scenario with two DMs, an encoder and a decoder. The encoder has access to the data and transmits a message
to the decoder over a noisy channel. Besides information coming from the encoder, the decoder has also access to a noisy
observation of the original data. Based on these two observations/inputs, the decoder takes its optimal action. Here, the encoder
and the decoder are assumed to have misaligned objective functions, which makes the setting a game theoretic setup. In the
following, we make further explanations and comments:
• Our setup can be considered as a signaling game: A privately informed sender (i.e., encoder) observes the private data

and chooses a signal that is observed by the (uninformed) receiver (i.e., decoder). Upon receiving the message from the
encoder, the decoder picks an action, which determines the costs1 of the encoder and the decoder.

• From the decoder’s perspective, there are two information sources: a noisy observation of the encoder’s message and of
the original data. The considered question is then, which conditions dictate channels combining2 and what should be their
respective ratio of utilization.

• The setup can also be considered as a point-to-point communication setup with (specific type of) side information3 at the
decoder.

A. Motivational Example
When satellite navigation such as GPS is inadequate due to various reasons (e.g., signal loses significant power indoors,

multiple reflections may cause multi-path propagation or acquiring a satellite fix may take too long), additional information
such as Wi-Fi positioning systems and indoor positioning systems can be utilized. As a solution to this problem, i.e., in order to
make positioning signals ubiquitous, integration between satellite navigation and indoor positioning can be made. Accordingly,
our setup can model such a scenario: Actual location is to be estimated by the user, and satellite navigation, which contains
the location information, can be considered as the original data. An analogous of the encoder is the other positioning systems,
which transmits location related information to the user. Even though there is a direct noisy channel between the original data
(actual location) and the user due to satellite navigation, more precise location estimate can be achieved by utilizing additional
information coming from the other positioning systems.

1If the transmitted signal does not affect the costs, the game is called as cheap talk.
2The decoder utilizes the convex combination of the channels, and uses restricted gain coefficients for the utilization of channels (e.g. due to power

constraint), thus our setup is not equivalent to the case of parallel Gaussian channels, and it may not achieve maximum-ratio combining (see Remark III.1).
3Since the decoder cannot adjust the gains of the main and side channels separately, our setup is not completely equivalent to the point-to-point communication

setup with side information at the decoder.
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B. Related Literature

The studies on cheap talk and signaling games are initiated by Crawford and Sobel in [1], who showed that under some
technical conditions on the objective functions of the players, the cheap talk problem only admits quantized Nash equilibrium
strategies. Signaling games have many applications in networked systems [2], [3], recommendation systems [4], [5], and
economics [6], [7].

Starting with a seminal work [8], there are many studies that consider the Stackelberg equilibrium of signaling games [9]–
[15]. Many of these works assume that the non-alignment between the objective functions of the encoder and the decoder is a
function of a Gaussian random variable (RV) correlated with the Gaussian source and secret to the decoder (unlike the original
case where it is fixed and commonly known by the encoder and the decoder [1], which is also studied in [9], [13], [15] and
in this paper), the Stackelberg equilibrium under quadratic costs is investigated in [10]–[12]. We refer [7], [9], [13] for more
discussion on the literature and some extensions (including Nash equilibrium analyses and multi-stage extensions) on cheap
talk and signaling games.

An information theoretic formulation of the Bayesian persuasion problem [8] is studied in [11] for general (not necessarily
Gaussian) sources, including the case with side information at the decoder, and recently also in [14] with finite state and action
spaces by assuming a decoder side information, respectively. In [16], lossy source coding with side information at the decoder
only, known as the Wyner-Ziv coding, is studied in which the source is observed via a memoryless noisy channel.

Similar to our setup, the Bayesian Nash equilibrium of a finite alphabet semantic communication game is investigated in
[17]. Besides the encoder/decoder pair acting as a team, there is also an (helpful or adversarial) agent who is able to modify
the channel transition probability of the side information received by the decoder. In [18], a similar setup is considered in
which the decoder, besides receiving the message from the encoder over a noiseless channel, also observes side information
consisting of the original source subject to slow fading and noise. The source coding analysis in [18] is extended to the joint
source/channel coding analysis by assuming a noisy but static channel between the encoder and the decoder [19].

C. Contributions

The main contributions of this paper can be summarized as follows:
(i) A signaling game between an encoder and a decoder with quadratic objective functions is modeled with channel combining

and utilization at the decoder side.
(ii) Nash and Stackelberg equilibria of the single-stage and multi-stage setups are investigated, and the equilibrium strategies

and costs are characterized.
(iii) The optimality of linear strategies is proved for the single-stage Stackelberg equilibrium (Theorem III.3).
(iv) For the Stackelberg equilibrium of the multi-stage setup, it is proved that the linear strategies are optimal for both the

encoder and the decoder (Theorem IV.3), and an algorithm is provided to find the equililbrium (Algorithm 1).
(v) For the Nash equilibrium of the single-stage and multi-stage setups, it is proved that the optimal encoder (decoder) is

affine for an affine decoder (encoder) (Theorem V.1).
The remainder of the paper is organized as follows. We present the system model and problem formulation in Section II.

Stackelberg equilibria with single-stage and multi-stage are investigated in Section III and Section IV, respectively. In Section
V, we analyze Nash equilibria. Section VI concludes the paper and discusses future research directions.
Notations: N (µ, σ2) denotes a scalar Gaussian distribution with mean µ and variance σ2, and we denote random variables
by bold lower case letters, e.g., x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

For the purpose of illustration, the considered system model is depicted in Fig. 1. An informed player (encoder) observes the
realization of the scalar Gaussian RV x ∼ N (0, σ2

x) and transmits a message m to the uninformed player (decoder) through the
additive white Gaussian noise channel (AWGN). The noise v is modeled as v ∼ N (0, σ2

v), and the output y of the channel is
y = m+v. Besides the noisy message from the encoder, the decoder has also an access to the source over an AWGN channel,
i.e., the decoder can also observe z = x + w with w ∼ N (0, σ2

w). The decoder can choose to observe either of the channels
or combination of them (e.g., by using a time-sharing approach). In particular, letting α ∈ [0, 1], the combining&utilization
ratio of the channel from the encoder is α whereas of the channel from the source is 1 − α, i.e.4, r = αy + (1 − α)z. The
decoder, upon observing its input r, generates an estimate x̂ of the original source x.

4Combining&utilization of channels can be interpreted as channel gains of α and 1− α. Modifying the channels’ gains as α1 ∈ R and α2 ∈ R results in
infinitely many decoder strategies and maximum-ratio combining (see Remark III.1).
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Fig. 1. Single-stage system model.

B. Preliminaries

For the source realization x and the decoder estimate x̂, let ce(x, x̂) and cd(x, x̂) denote the corresponding cost functions of
the encoder and the decoder, respectively. Then, for the given encoder strategy m = γe(x) and the decoder strategy x̂ = γd(r),
the expected encoder and the decoder costs are Je

(
γe, γd

)
= E [ce(x, x̂)] and Jd

(
γe, γd

)
= E

[
cd(x, x̂)

]
, respectively. Since

the costs are not (essentially) equivalent/aligned, the problem is studied under a game theoretic framework, and two equilibrium
types are investigated: Stackelberg and Nash equilibria.

In the Stackelberg (leader-follower) game, the leader (encoder) commits to a particular policy and announces it to the
follower (decoder). Upon observing the encoder’s committed strategy, the decoder takes its optimal action. More precisely, a
pair of strategies (γe,∗, γd,∗) is said to be a Stackelberg equilibrium [20] if

Je(γe,∗, γd,∗(γe,∗)) ≤ Je(γe, γd,∗(γe)) ∀γe ∈ Γe ,

where γd,∗(γe) satisfies

Jd(γe, γd,∗(γe)) ≤ Jd(γe, γd(γe)) ∀γd ∈ Γd .

(1)

Note that the follower (decoder) takes its action after observing the strategy γe of the leader (encoder), the strategy γd(γe) of
the decoder is a function of γe.

In the Nash (simultaneous-move) game, the encoder and the decoder announce their strategies at the same time. More
precisely, a pair of policies (γe,∗, γd,∗) is said to be a Nash equilibrium [20] if

Je(γe,∗, γd,∗) ≤ Je(γe, γd,∗) ∀γe ∈ Γe ,

Jd(γe,∗, γd,∗) ≤ Jd(γe,∗, γd) ∀γd ∈ Γd .
(2)

As observed in (2), none of the players prefers to change their optimal strategies at the equilibrium, i.e., there is no unilateral
profitable deviation from any of the players.

C. Problem Formulation

We consider quadratic cost functions with a soft power constraint at the encoder side. In particular, ce(x, x̂) = (x − x̂ −
b)2 +θ(γe(x))2 and cd(x, x̂) = (x− x̂)2, where b denotes the bias term commonly known by the encoder and the decoder, i.e.,
the misalignment between the encoder and the decoder costs, and θ is a coefficient responsible for the soft power constraint.
Note that the costs simply reduce to those for a minimum mean-square estimation (MMSE) problem when b = 0. Further note
that the case with θ = 0 corresponds to the setup with no power constraint at the encoder.

The encoder aims to minimize Je
(
γe, γd

)
= E [ce(x, x̂)] by selecting an optimal encoding strategy γe(x) whereas the

decoder’s goal is to minimize Jd
(
γe, γd

)
= E

[
cd(x, x̂)

]
by choosing an optimal decoding strategy γd(r) and the channel

combining parameter α.

III. SINGLE-STAGE STACKELBERG EQUILIBRIUM

In this section, we analyze the Stackelberg equilibrium of the game between the encoder (leader) and the decoder (follower).
First, we show that the lowest estimation error is achieved when the encoder and the decoder jointly use linear strategies. Then
we characterize the (existence of) equilibria with respect to the soft power coefficient θ.

Theorem III.1. Let the encoder use a linear strategy such that m = γe(x) = Ax. Then, the optimal decoder selects the
channel combining parameter α and the linear strategy x̂ = γd(r) = Kr correspondingly. The optimal decoder strategy α∗

and K∗, and its corresponding cost Jd,∗ = E[(x− x̂)2] are characterized in Table I.



TABLE I
OPTIMAL DECODER STRATEGY FOR A LINEAR ENCODER.

Case α∗ K∗ Jd,∗

A ≥ 0
Aσ2

w
Aσ2

w+σ2
v

Aσ2
xσ

2
w+σ2

xσ
2
v

A2σ2
xσ

2
w+σ2

xσ
2
v+σ2

wσ
2
v

σ2
xσ

2
wσ

2
v

(A2σ2
w+σ2

v)σ2
x+σ2

wσ
2
v

−
√

σ2
v

σ2
w
≤ A ≤ 0 0

σ2
x

σ2
x+σ2

w

σ2
xσ

2
w

σ2
x+σ2

w

A ≤ −
√

σ2
v

σ2
w

1
Aσ2

x
A2σ2

x+σ2
v

σ2
xσ

2
v

A2σ2
x+σ2

v

Proof: See Appendix A.

Remark III.1. As it can be observed from Table I, the optimal decoder achieves maximum-ratio combining by randomizing the
channels when A > 0. However, when A < 0, since the decoder’s action space does not support maximum-ratio combining,
the decoder always selects the better channel without randomization.

Theorem III.2. The lower bound on the estimation error Jd = E[(x− x̂)2] is σ2
x

P
σ2
v

+
σ2
x

σ2
w

+1
where P , E[m2] is the power of

the transmitted signal m = γe(x) by the encoder, and this lower bound is achieved if and only if both the encoder and the
decoder jointly use linear strategies.

Proof: See Appendix B.
Regarding the encoder cost, observe the following5.

Remark III.2. Due to the Stackelberg assumption, since the encoder anticipates that the decoder will use x̂ = γd,∗(r) = E[x|r],
the bias b can be decoupled from the encoder cost [9], [13]. In particular,

Je = E[(x−E[x|r]− b)2 + θ(γe(x))2]

= E[(x−E[x|r])2 + θ(γe(x))2] + b2

= Jd + E[θ(γe(x))2] + b2 .

After finding the optimal decoder cost, we can proceed to analyze the optimum encoder strategy and characterize the
(existence of) equilibria.

Theorem III.3. The only equilibrium (affine or not) in the Stackelberg setup is the linear equilibrium with γe(x) = Ax and
γd(r) = Kr with A ≥ 0 and K ≥ 0.
In particular, at the equilibrium, the encoder cost is

Je,∗ = Jd,∗ + θA2σ2
x + b2 ,

where A is decided according to the following decision rule

A2 =


√

σ2
v

θσ2
x
− σ2

v

σ2
x

(
σ2
x

σ2
w

+ 1
)
, if θ <

σ2
x

σ2
v

(
σ2
x

σ2
w

+1

)2

0, if θ ≥ σ2
x

σ2
v

(
σ2
x

σ2
w

+1

)2

.

Then, the corresponding α, K, and Jd,∗ can be derived from Table I.

Proof: See Appendix C.

IV. MULTI-STAGE STACKELBERG EQUILIBRIUM

In this section, we consider the dynamic counterpart of Section III. We start by giving the problem statement illustrated in
Fig. 2.

In Fig. 2, an input message is formed as a Gauss-Markov model described by the following recursion:

xt+1 = βtxt + nt, t ∈ Nn0 , (3)

where {βt : t ∈ Nn0} is a deterministic coefficient, the initial message x0 ∼ N (0;σ2
x0

), σ2
x0
> 0, and {nt : t ∈ Nn−1

0 } is a
mutually independent process independent of everything with nt ∼ N (0;σ2

nt), σ
2
nt > 0.

5Since we assume a fixed and public b in contrast to a private and random b which is correlated with the source as in [10]–[12], the results obtained in the
former setup cannot be applied directly to the latter one; i.e., the Stackelberg equilibria of these two setups are different.
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Fig. 2. Multi-stage system model.

We assume a causal noisy observation of source before the decoder, modeled as a time-varying Gaussian process as follows:

zt = xt + wt, t ∈ Nn0 , (4)

where {wt : t ∈ Nn0} is an independent noise process independent of everything with wt ∼ N (0;σ2
wt), σ

2
wt > 0.

At stage t, the encoder has access to xt , {x0,x1, . . . ,xt} and rt−1 , {r0, r1, . . . , rt−1} (a noiseless feedback channel is
assumed) whereas rt , {r0, r1, . . . , rt} is available to the decoder. Then, we can define the stage-wise costs of the players
similar to the single-stage case, i.e., cet (xt, x̂t) = (xt− x̂t− bt)2 +θt(γ

e(xt, rt−1))2 and cdt (xt, x̂t) = (xt− x̂t)2, where bt ∈ R
denotes the stage-wise bias term commonly known by the encoder and the decoder, and {θt ∈ (0,∞) : t ∈ Nn0} are the
stage-wise coefficients for the soft power constraints. Assuming myopic encoder and decoder strategies, the costs are defined
as follows:

Jdt = min
γdt (rt) , αt∈[0,1]

E[(xt − x̂t)
2] ,

Jet = min
γet (xt,rt−1)

Jdt + E[θt(γ
e
t (xt, rt−1))2] + b2t

Jdaverage total =
1

n+ 1

n∑
t=0

Jdt ,

Jeaverage total =
1

n+ 1

n∑
t=0

Jet . (5)

Remark IV.1. Note that in the sequel we see that although the costs of the encoder and decoder appear to form a nested
optimization, they are not. In fact they can be decoupled to distinct time stages Je0 , J

e
1 , . . . , J

e
n for the encoder and Jd0 , J

d
1 , . . . , J

d
n

for the decoder, and solved independently moving forward in time.

Similar to the single-stage counterpart, first we show that the lowest estimation error is achieved when the encoder and the
decoder jointly utilize linear strategies. In the following, we first find the optimal decoder for a linear memoryless encoder
without any feedback.

Theorem IV.1. Let the encoder use a linear memoryless strategy such that mt = γe(xt) = Atxt, t ∈ Nn0 . Then, the optimal
decoder is obtained by a discrete time Kalman filter due to joint Gaussianity and admits closed form recursions. To present
the recursions of the filter, we need to define the following conditional mean and conditional variances6:

x̂t|t−1 , E[xt|rt−1], Σt|t−1 , E[(xt − x̂t|t−1)2|rt−1],

x̂t|t , E[xt|rt], Σt|t , E[(xt − x̂t|t)
2|rt].

6Due to joint Gaussianity, the conditional variances are equivalent to the unconditional ones.



Then, {x̂t|t−1,Σt|t−1, x̂t|t,Σt|t : t ∈ Nn0} satisfy the following scalar-valued filtering recursions:

x̂t|t−1 = βt−1x̂t−1|t−1,

Σt|t−1 = β2
t−1Σt−1|t−1 + σ2

nt−1
, Σ0|−1 = σ2

x0
,

x̂t|t = x̂t|t−1 +KtIt,

It , rt −E
[
rt|rt−1

]
= (αtAt + 1− αt)

(
xt − x̂t|t−1

)
+ (1− αt)wt + αtvt, (innovations)

σ2
It = (αtAt + 1− αt)2Σt|t−1 + (1− αt)2σ2

wt + α2
tσ

2
vt

Kt =
Σt|t−1(αtAt + 1− αt)

σ2
It

, (Kalman Gain)

Σt|t = (1−Kt(αtAt + 1− αt))Σt|t−1,

(6)

which corresponds to the optimal decoder’s strategy

γdt (rt) = x̂t|t = x̂t|t−1 +KtIt

= x̂t|t−1 +Kt(rt − (αtAt + 1− αt)x̂t|t−1 − αtCt). (7)

Then, the optimal channel combining parameter αt, Kalman gain Kt and stage-wise costs Jd,∗t (or Σ∗t|t) are characterized in
Table II. The optimal average cost is Jd,∗average total = 1

n+1

∑n
t=0 J

d,∗
t .

TABLE II
STAGE-WISE OPTIMAL DECODER STRATEGY FOR A LINEAR ENCODER.

Case α∗t K∗t Jd,∗t

At ≥ 0
Atσ

2
wt

Atσ2
wt

+σ2
vt

AtΣ
∗
t|t−1σ

2
wt

+Σ∗t|t−1σ
2
vt

A2
tΣ∗
t|t−1

σ2
wt

+Σ∗
t|t−1

σ2
vt

+σ2
wt
σ2
vt

Σ∗t|t−1σ
2
wt
σ2
vt

(A2
tσ

2
wt

+σ2
vt

)Σ∗
t|t−1

+σ2
wt
σ2
vt

−
√

σ2
vt

σ2
wt

≤ At ≤ 0 0
Σ∗t|t−1

Σ∗
t|t−1

+σ2
wt

Σ∗t|t−1σ
2
wt

Σ∗
t|t−1

+σ2
wt

At ≤ −
√

σ2
vt

σ2
wt

1
AtΣ

∗
t|t−1

A2
tΣ∗
t|t−1

+σ2
vt

Σ∗t|t−1σ
2
vt

A2
tΣ∗
t|t−1

+σ2
vt

Proof: See Appendix D.
Now assume that the encoder has a memory, and consider linear encoders with memory via noiseless feedback, i.e.,

γe(xt, rt−1) = At(xt − x̂t|t−1), t ∈ Nn0 . (8)

The following proposition shows that the memoryless encoder and the innovations encoder (i.e., encoder with a memory)
generate the same innovations process.

Proposition IV.1. The innovations process at the decoder for the class of linear encoders in (8) generates the same information
with the innovations process obtained for the class of linear memoryless encoders assumed in Theorem IV.1 at each instant
of time. Hence, the same values of α∗t , K∗t and Jd,∗t given in Table II can be derived even if the encoder is an innovations
encoder.

Proof: See Appendix E.
In what follows, we leverage Proposition IV.1 to prove a theorem that generalize Theorem III.2 to the dynamic setup.

Theorem IV.2. The lower bound on the estimation error Jdaverage total = 1
n+1

∑n
t=0 E

[
(xt − x̂t|t)

2
]

= 1
2

∑n
t=0 J

d,∗
t,LB with

{Jd,∗t,LB : t ∈ Nn0} computed forward in time as follows:

Jd,∗t,LB =
Σ∗t|t−1σ

2
wtσ

2
vt

( Pt
Σ∗
t|t−1

σ2
wt + σ2

vt)Σ
∗
t|t−1 + σ2

wtσ
2
vt

, (9)

with Σ∗t|t−1 = β2
t−1J

d,∗
t−1,LB +σ2

nt−1
, Σ0|−1 = σ2

x0
, and Pt , E

[
m̃2
]
, m̃ , mt− m̂t|t−1, m̂t|t−1 , E[mt|rt−1], is the power

of the innovation m̃ of the transmitted signal of γet (xt, rt−1) by an encoder with noiseless feedback at each instant of time.
This lower bound is achieved if and only if both the encoder and the decoder jointly use linear strategies.

Proof: See Appendix F.



Observe the following regarding the optimization problem at the encoder:

Jeaverage total = min
mt=γe(xt,rt−1)

1

n+ 1

n∑
t=0

Jd,∗t + E[θt(mt)
2] + b2t

≥ min
mt=γe(xt,rt−1)

1

n+ 1

n∑
t=0

Jd,∗t,LB + E[θt(mt)
2] + b2t

≥ min
mt=γe(xt,rt−1)

1

n+ 1

n∑
t=0

Σ∗t|t−1σ
2
wtσ

2
vt

( Pt
Σ∗
t|t−1

σ2
wt + σ2

vt)Σ
∗
t|t−1 + σ2

wtσ
2
vt

+ E[θt(mt)
2] + b2t . (10)

Here, due to Theorem IV.2, the lower bound is achievable for a linear encoder, i.e., mt = γe(xt, rt−1) = At(xt − x̂t|t−1),
which implies Pt = E

[
m̃2
]

= E
[
(mt − m̂t|t−1)2

]
= A2

tΣt|t−1. Then the optimization problem at the encoder becomes

Jeaverage total = min
At≥0, t∈Nn0

1

n+ 1

n∑
t=0

[
Σ∗t|t−1σ

2
wtσ

2
vt

(A2
tσ

2
wt + σ2

vt)Σ
∗
t|t−1 + σ2

wtσ
2
vt

+ θt
(
A2
tΣt|t−1

)
+ b2t

]
, (11)

where Σ∗0|−1 = σ2
x0

. The solution is obtained recursively, forward in time in the next theorem.

Theorem IV.3. (Recursive solution forward in time of (11)) For given {θt ∈ (0,∞) : t ∈ Nn0}, Σ∗0|−1 = σ2
x0

, the solution of
(11) is as follows:

Je,∗average total =
1

n+ 1

n∑
t=0

Je,∗t , (12)

where {Je,∗t : t = 0, 1, . . . , n} are computed forward in time by

Je,∗t =
[
Jd,∗t + θtA

2,∗
t Σ∗t|t−1 + b2t

]
, Σ∗0|−1 = σ2

x0
, (13)

Jd,∗t =
Σ∗t|t−1σ

2
wtσ

2
vt

(A2,∗
t σ2

wt + σ2
vt)Σ

∗
t|t−1 + σ2

wtσ
2
vt

, (14)

where A2,∗
t are computed according to the following decision rule

A2,∗
t =



σ2
vt√

θtΣ∗t|t−1
σ2
vt

− σ2
vt

Σ∗
t|t−1

(
Σ∗t|t−1

σ2
wt

+ 1
)
,

if θt <
Σ∗t|t−1

σ2
vt

(
Σ∗
t|t−1

σ2
wt

+1

)2

0,

if θt ≥
Σ∗t|t−1

σ2
vt

(
Σ∗
t|t−1

σ2
wt

+1

)2

. (15)

and {Σ∗t|t−1 : t = 1, . . . , n} are computed forward in time by

Σ∗t|t−1 = β2
t−1J

d,∗
t + σ2

n−1. (16)

Proof: See Appendix G.
In Algorithm 1, we summarize the previous results by providing an iterative scheme to compute the multi-stage Stackelberg

equilibrium.

V. NASH EQUILIBRIUM

In this section, we analyze the Nash equilibrium of the game between the encoder and the decoder. We consider only affine
equilibria.

Theorem V.1. Consider a single-stage scenario.
(i) If the encoder is affine, the optimal decoder is also affine.

(ii) If the decoder is affine, the optimal encoder is also affine.

(iii) For θ <
σ2
x
σ2
v(

σ2
x

σ2
w

+1

)2 , there are two affine Nash equilibria. In particular, letting A∗ ,

√√
1
θ
σ2
v

σ2
x
− σ2

v

σ2
w
− σ2

v

σ2
x

, two sets of

γe(x) = Ax + C, γd(r) = Kr + L and the channel combining parameter α are characterized as



Algorithm 1 Multi-stage Stackelberg equilibrium

Initialize: Set Σ∗0|−1 = σ2
x0

, choose {(βt, σ2
nt) : t ∈ Nn−1

0 } of (3); choose {(σ2
wt , σ

2
vt) : t ∈ Nn0}; choose {θt ∈

(0,∞) : t ∈ Nn0}.
for t = 0 : n do

if t > 0 then
Compute Σ∗t|t−1 according to (16).

end if
Compute A2,∗

t according to (15).
Compute Jd,∗t according to (14).
Compute Je,∗t according to (13).

end for
Compute Je,∗average total according to (12).
Compute Jd,∗average total = 1

n+1

∑n
t=0 J

d,∗
t .

A C K L α

A∗ −αKb
θ

√
θ
σ2
x
σ2
v

(
A∗σ2

xσ
2
w + σ2

xσ
2
v

)
α2K2b
θ

A∗σ2
w

A∗σ2
w+σ2

v

−

√√
σ2
v

θσ2
x
− σ2

v
σ2
x

−
b

√√√√√ θσ2
x

σ2
v
−θ

θ

√√
θσ2

x
σ2
v
− θ

b

(√
θσ2

x
σ2
v
−θ
)

θ
1

Furthermore, for any value of θ, the following also forms an affine Nash equilibrium:

A = 0 , C = 0 , K =
σ2
x

σ2
x + σ2

w

, L = 0 , α = 0 .

Proof: See Appendix H.

Remark V.1. Similar to the single-stage case, affine strategies constitute an invariant subspace under best response maps for
multi-stage Nash equilibria. In particular, the first and the second parts of Theorem V.1 can be extended to the multi-stage
scenario. However, since the number of equations and unknowns increase quadratically, an explicit analysis as in the third
part of Theorem V.1 becomes infeasible.

VI. CONCLUSION

In this paper, we studied Nash and Stackelberg equilibria for single-stage and multi-stage quadratic signaling games with
channel combining&utilization at the decoder. We established qualitative (e.g. linearity and informativeness) and quantitative
properties (on linearity or explicit computation) of Nash and Stackelberg equilibria under misaligned objectives.

Our model has many possible interesting extensions. Of particular interest are the case when there is a hard power constraint
for the encoder and the analysis of steady state equilibria. Scenarios with more general alternative channels/encoders, or with
more general objective functions are also under consideration.

APPENDIX A
PROOF OF THEOREM III.1

For the given encoder strategy m = γe(x) = Ax, the decoder input is

r = (αA+ 1− α)x + αv + (1− α)w

when the decoder adjusts the time-sharing parameter α of the channels. Then, the optimal decoder strategy is γd(r) = x̂ =
E[x|r], which can be expressed as

γd(r) =
(αA+ 1− α)σ2

x

(αA+ 1− α)2σ2
x + α2σ2

v + (1− α)2σ2
w︸ ︷︷ ︸

,K

r . (17)

Then, the corresponding decoder cost (namely, the estimation error) is

Jd = E[(x−Kr)2] = ((αA+ 1− α)K − 1)2σ2
x + α2K2σ2

v + (1− α)2K2σ2
w . (18)



The decoder is trying to minimize Jd by adjusting both K and α. Let t , αK and u , (1 − α)K. Then, the decoder

cost becomes Jd = (At+ u− 1)2σ2
x + t2σ2

v + u2σ2
w. Since the Hessian matrix H =

[
∂2Jd

∂t2
∂2Jd

∂t∂u
∂2Jd

∂u∂t
∂2Jd

∂u2

]
is positive semi-definite,

Jd is a convex function of t and u. Thus, at the optimum point, i.e., when ∂Jd

∂t = ∂Jd

∂u = 0, we obtain α =
Aσ2

w

Aσ2
w+σ2

v
and

K =
Aσ2

xσ
2
w+σ2

xσ
2
v

A2σ2
xσ

2
w+σ2

xσ
2
v+σ2

wσ
2
v

. By inserting these into (18), we obtain Jd =
σ2
x

A2 σ
2
x
σ2
v

+
σ2
x

σ2
w

+1
.

However, note that when A < 0, the optimal α lies outside of its feasible region [0, 1]. Thus, the extreme values of this
closed interval should be compared for A < 0.

Let α = 0. Then, the optimal decoder is γd(r) =
σ2
x

σ2
x+σ2

w
r by (17), which results in the decoder cost Jd =

σ2
xσ

2
w

σ2
x+σ2

w
by (18).

Now let α = 1, i.e., a point-to-point communication scenario is considered. Then, the optimal decoder is γd(r) =
Aσ2

x

A2σ2
x+σ2

v
r

by (17), which corresponds to the decoder cost Jd =
σ2
xσ

2
v

A2σ2
x+σ2

v
by (18).

Then, the following comparison can be made to find the optimal decoder for A < 0:

σ2
xσ

2
w

σ2
x + σ2

w

α=0

Q
α=1

σ2
xσ

2
v

A2σ2
x + σ2

v

⇒ A2
α=0

Q
α=1

σ2
v

σ2
w

. (19)

Hence, −
√

σ2
v

σ2
w
≤ A ≤ 0 corresponds to the case with α = 0, and A ≤ −

√
σ2
v

σ2
w

corresponds to the case with α = 1.
This completes the derivation.

APPENDIX B
PROOF OF THEOREM III.2

In the proof, we first obtain information theoretic lower bound on the estimation error, then show that this lower bound is
achieved when the players jointly utilize linear strategies.

Since the decoder’s received signal is r = α(m + v) + (1− α)(x + w), its power can be expressed as

E[r2] = α2P + (1− α)2σ2
x + 2α(1− α)E[mx]︸ ︷︷ ︸

signal power

+α2σ2
v + (1− α)2σ2

w︸ ︷︷ ︸
noise power

.

Since the channels are additive Gaussian, a corresponding (combined) channel/information capacity C between x and r can
be represented as

C = sup I(x; r) =
1

2
log2

(
1 +

α2P + (1− α)2σ2
x + 2α(1− α)E[mx]

α2σ2
v + (1− α)2σ2

w

)
. (20)

Then, the lower bound on the estimation error can be derived as follows:

I(x; r) = h(x)− h(x|r) = h(x)− h(x−E[x|r]|r)

≥ h(x)− h(x−E[x|r])
(a)

≥ 1

2
log2(2πeσ2

x)− 1

2
log2(2πeJd)

⇒ I(x; r) ≥ 1

2
log2(

σ2
x

Jd
)

⇒ Jd ≥ σ2
x2−2I(x;r) ≥ σ2

x2−2 sup I(x;r) (b)
= σ2

x2
−2 1

2 log2

(
1+

α2P+(1−α)2σ2
x+2α(1−α)E[mx]

α2σ2
v+(1−α)2σ2

w

)
=

σ2
x

1 +
α2P+(1−α)2σ2

x+2α(1−α)E[mx]
α2σ2

v+(1−α)2σ2
w

(c)

≥ σ2
x

P
σ2
v

+
σ2
x

σ2
w

+ 1
. (21)

Here, (a) holds since the differential entropy is h(x) = 1
2 log2(2πeσ2

x) for a Gaussian source x and maximum h(x−E[x|r])
is achieved when x−E[x|r] is Gaussian, (b) follows from (20), and (c) holds for 0 < α < 1 due to the following inequalities:

1 +
α2P + (1− α)2σ2

x + 2α(1− α)E[mx]

α2σ2
v + (1− α)2σ2

w

(a)

≤ 1 +
α2P + (1− α)2σ2

x + 2α(1− α)
√
Pσ2

x

α2σ2
v + (1− α)2σ2

w

(b)

≤ 1 +
α2P

α2σ2
v

+
(1− α)2σ2

x

(1− α)2σ2
w

,

where (a) holds due to the Cauchy-Schwarz inequality and (b) holds7 since (
√
a+
√
b)2

c+d ≤ a
c + b

d for positive a, b, c, d with
a = α2P , b = (1− α)2σ2

x, c = α2σ2
v, and d = (1− α)2σ2

w.

7Note that a
c
+ b
d
− (
√
a+
√
b)2

c+d
= ad+bc

cd
− a+b+2

√
ab

c+d
= ad2+bc2−2

√
abcd

cd(c+d)
=

(
√
ad−
√
bc)2

cd(c+d)
≥ 0.



In (21), the first inequality is tight iff x and r are jointly Gaussian, which is satisfied for a linear encoder, whereas the second
inequality (i.e., (c) of (21)) holds with equality for 0 < α < 1 when

√
ad =

√
bc ⇒ α

√
P (1 − α)2σ2

w = (1− α)σxα
2σ2

v ⇒√
P = α

1−ασx
σ2
v

σ2
w

. Since α =
Aσ2

w

Aσ2
w+σ2

v
for a linear encoder m = γe(x) = Ax as shown in Theorem III.1, we obtain

E[m2] = P = A2σ2
x, which is consistent with a linear encoder case. Note that for α = 0, (c) in (21) reduces to σ2

x
σ2
x

σ2
w

+1

with equality, and for α = 1, (c) in (21) reduces to σ2
x

P
σ2
v

+1
with equality. Thus, the information theoretic lower bound on the

estimation error is σ2
x

P
σ2
v

+
σ2
x

σ2
w

+1
and it is achievable only for jointly linear encoder and decoder with A > 0 and 0 < α < 1. This

completes the derivation.

APPENDIX C
PROOF OF THEOREM III.3

Due to Theorem III.2 and Remark III.2, the encoder cost is lower bounded by

Je ≥ σ2
x

P
σ2
v

+
σ2
x

σ2
w

+ 1
+ θP 2 + b2 , JeLB ,

where P , E[m2]. Note that the lower bound JeLB is achievable when the encoder use linear strategy. The first and second
order derivatives of the lower bound JeLB are

dJeLB

dP
= −

σ2
x

σ2
v(

P
σ2
v

+
σ2
x

σ2
w

+ 1
)2 + θ ≥ θ −

σ2
x

σ2
v(

σ2
x

σ2
w

+ 1
)2 ,

d2JeLB

dP 2
=

2
σ2
x

σ4
v(

P
σ2
v

+
σ2
x

σ2
w

+ 1
)3 > 0 .

If θ ≥
σ2
x
σ2
v(

σ2
x

σ2
w

+1

)2 , then dJeLB
dP ≥ 0, which implies that JeLB is an increasing function of P , thus P should be selected as P = 0,

i.e., the encoder does not transmit any message.

Otherwise, i.e., if θ <

σ2
x
σ2
v(

σ2
x

σ2
w

+1

)2 , the lower bound can be minimized at the critical point , dJeLB
dP = 0, which implies

P ∗ =
√

1

θ
σ2
x
σ2
v

−
σ2
x

σ2
w

+1

σ2
x
σ2
v

. Since JeLB is achievable for a linear encoder m = γe(x) = Ax, since P ∗ , E[(A∗x)2] = (A∗)2, the

optimal A is obtained as A∗ =

√√√√√ 1

θ
σ2
x
σ2
v

−
σ2
x

σ2
w

+1

σ2
x
σ2
v

.

min
P

JeLB = min
P

σ2
x

P
σ2
v

+
σ2
x

σ2
w

+ 1
+ θP . (22)

Otherwise, i.e., if we have θ <
σ2
x
σ2
v(

σ2
x

σ2
w

+1

)2 , the critical point dJe

dP = 0 when P =
√

1

θ
σ2
x
σ2
v

−
σ2
x

σ2
w

+1

σ2
x
σ2
v

. Thus, the optimal A is

A =

√√√√√ 1

θ
σ2
x
σ2
v

−
σ2
x

σ2
w

+1

σ2
x
σ2
v

.

This completes the derivation.



APPENDIX D
PROOF OF THEOREM IV.1

From the system in Fig. 2, we know that the observations process {rt : t ∈ Nn0} is given by

rt = αtyt + (1− αt)zt
(i)
= αt(γ

ε
t (x

t) + vt) + (1− αt)(xt + wt)

= αt(Atxt + vt) + (1− αt)(xt + wt)

= (αtAt + 1− αt)xt + αtvt + (1− αt)wt, t ∈ Nn0 ,

(23)

where (i) follows from the realization in Fig. 2 and (4). Moreover, since the minimum error at the decoder at each instant of
time is E[(xt − x̂t|t)

2], then, the decoder’s cost can be modified as follows:

Jdt = E[(xt − x̂t|t)
2]

(i)
= E[(xt − xt|t−1 − kt(rt − (αtAt + 1− αt)x̂t|t−1))2]

(ii)
= E[(xt − xt|t−1 − kt((αtAt + 1− αt)(xt − x̂t|t−1) + αtvt + (1− αt)wt)

2]

= E[(1− kt(αtAt + 1− αt)(xt − x̂t|t−1)− ktαtvt − (1− αt)ktwt)
2]

=
[
(1− kt(αtAt + 1− αt))2Σt|t−1 + k2

tα
2
tσ

2
vt + (1− αt)2k2

tσ
2
wt

]
(24)

where (i) follows from (6); (ii) follows by substituting in our expression (23) and after some simple calculations.

Remark D.1. The decoder’s cost in (24) although written in different form, is precisely Σt|t ≥ 0 because the conditional
variance Σt|t is equal to the unconditional in KF algorithm.

Optimization Problem. We will solve the decoder’s optimization problem in (5) forward in time, starting at time stage zero
and moving forward to a fixed time stage n. To do it, first we re-formulate it as follows:

Jdaverage total =
1

n+ 1
min
αn

{
min
αn−1

{
. . .min

α1

{{
min
α0

J0

}
+ J1

}
+ . . .+ Jn−1

}
+ Jn

}
, (25)

where

J0 =(1− k0(α0A0 + 1− α0))2Σ0|−1 + k2
0α

2
0σ

2
v0

+ (1− α0)2k2
0σ

2
w0
, Σ0|−1 = σ2

x0
, (26)

Jt =(1− kt(αtAt + 1− αt))2Σt|t−1 + k2
tα

2
tσ

2
vt + (1− αt)2k2

tσ
2
wt . (27)

We first consider t = 0. Using the formulation in (25), we want to optimize

min
α0

J0. (28)

Observe that from (24), by optimizing w.r.t. α0, it is the same as optimizing w.r.t (k0, α0) because k0 depends on α0. Hence,
we can re-write (28) as

min
α0, k0

(1− k0(α0A0 + 1− αt))2Σ∗0|−1 + k2
0α

2
0σ

2
v0

+ (1− α0)2k2
0σ

2
w0
, Σ∗0|−1 = σ2

x0
. (29)

To solve (29), we first show that it is convex. To do it, we first introduce the auxiliary variables

φ0 = α0k0, υ0 = (1− α0)k0. (30)

For the choice of (30), (29) can be simplified to:

min
φ0, υ0

(1−A0φ0 − υ0)2σ2
x0

+ φ2
0σ

2
v0

+ υ2
0σ

2
w0
. (31)

The Hessian matrix that corresponds to the objective function of (31), hereinafter denoted by H0, can be found as follows:

∂Jd0
∂φ0

= 2(A0φ0 + υ0 − 1)A0σ
2
x0

+ 2φ0σ
2
v0
,

∂2Jd0
∂φ2

0

= 2A2
0σ

2
x0

+ 2σ2
v0

∂Jd0
∂υ0

= 2(A0φ0 + υ0 − 1)σ2
x0

+ 2υ0σ
2
w0
,

∂2Jd0
∂υ2

0

= 2σ2
x0

+ 2σ2
w0

∂Jd0
∂υ0∂φ0

=
∂Jd0

∂φ0∂υ0
= 2A0σ

2
x0
.

(32)



Based on (32), the Hessian matrix H0 is given as follows

H0 =

 ∂2Jd0
∂φ2

0

∂2Jd0
∂υ0∂φ0

∂2Jd0
∂φ0∂υ0

∂2Jd0
∂φ2

0

 =

[
2A2

0σ
2
x0

+ 2σ2
v0

2A0σ
2
x0

2A0σ
2
x0

2σ2
x0

+ 2σ2
w0

]
. (33)

It can be easily checked that for any A0, the eigenvalues of H0 are non-negative, hence the matrix is positive semi-definite.
This in turn implies that Jd0 is jointly convex on (φ0,υ0).
Therefore, the optimal solution α∗0 is as follows:

∂Jd0
∂φ0

=
∂Jd0
∂υ0

= 0
(32)⇒ −

φ0σ
2
v0

A0
= −υ0σ

2
w0
⇒

σ2
v0

A0σ2
w0

=
υ0

φ0

(30)
=

(1− α∗0)k0

α∗0k0

⇒ α∗0 =
A0σ

2
w0

A0σ2
w0

+ σ2
v0

(6)⇒ k∗0 =
A0σ

2
w0

+ σ2
v0

A2
0σ

2
w0

+ σ2
v0

+
σ2
w0
σ2
v0

σ2
x0

=
(A0σ

2
w0

+ σ2
v0

)σ2
x0

(A2
0σ

2
w0

+ σ2
v0

)σ2
x0

+ σ2
w0
σ2
v0

. (34)

Substituting (α∗0,k
∗
0) obtained in (34) to (29), we obtain Jd,∗0 =

Σ∗0|−1σ
2
w0
σ2
vt

(A2
tσ

2
w0

+σ2
v0

)Σ∗
0|−1

+σ2
w0
σ2
v0

.

Similar to the single-stage case, note that when A0 < 0, the optimal α∗0 lies outside the feasible region [0, 1]. Thus, the
extreme values of this closed interval should be compared for A0 < 0. This is done next.

Let α∗0 = 0. Then, the optimal decoder is γd0 (r0) =
Σ∗0|−1

Σ0|−1+σ2
w0

r0 by (6), which means that the decoder’s cost becomes

Jd,∗0 =
Σ0|−1σ

2
w0

Σ0|−1+σ2
w0

again from (6).
Now let α∗0 = 1, i.e., a point-to-point communication scenario is considered without side information. Then, the optimal

decoder is γd0 (r0) =
A0Σ0|−1

A2
0Σ0|−1+σ2

v0

r0 by (6), which yields a decoder’s cost Jd,∗0 =
Σ0|−1σ

2
v0

A2
0Σ0|−1+σ2

v0

by (6).
Next, we proceed to t = 1. Again, using the formulation in (25), this corresponds to the optimization problem

min
α1

{
Jd,∗0 + Jd1

}
(a)
≡ min

α1

Jd1 , (35)

where (a) follows because Jd,∗0 is a constant as it is already optimized in time stage t = 0.
Observe from (24) that by optimizing w.r.t. α1, is the same as optimizing w.r.t (k1, α1) because k1 depends on α1. Hence,
we can re-write (28) as

min
α1, k1

(1− k1(α1A1 + 1− αt))2Σ∗1|0 + k2
1α

2
1σ

2
v1

+ (1− α1)2k2
1σ

2
w1
, (36)

where Σ∗1|0 = β2
0Σ∗0|0 + σ2

n0
by (6) hence it is independent of α1. The latter observation stems from the fact that Σ0|0 = J0

(see Remark D.1). Therefore, the procedure, is precisely the same as in time stage t = 0, with σ2
x0

replaced by Σ∗1|0. The final
result is given in Table II when t = 1.
Suppose that for t = n− 1, the solution is given by Jd,∗n−1 in Table II. Then, for t = n following the approach of time stage
t = 0, the solution will be given by Jd,∗n in Table II.
Clearly, the average total cost of the decoder in (5) is the average total time stages of all individual optimal decoder’s costs.
This completes the derivation.

APPENDIX E
PROOF OF PROPOSITION IV.1

Observe that if the linear encoder is of the class (8), then, by definition, the innovations process is obtained as follows:

It , rt −E[rt|rt−1], t ∈ Nn0
= αtAt(xt − x̂t|t−1) + (1− αt)xt + αtvt + (1− αt)wt

−E[αtAt(xt − x̂t|t−1) + (1− αt)xt + αtvt + (1− αt)wt|rt−1]

(i)
= αtAt(xt − x̂t|t−1) + (1− αt)xt + αtvt + (1− αt)wt

− αtAtxt|t−1 − αtAtE[x̂t|t−1|rt−1] + (1− αt)xt|t−1

(ii)
= αtAt(xt − x̂t|t−1) + (1− αt)xt + αtvt + (1− αt)wt − (1− αt)x̂t|t−1

= innovations in (6),

(37)

where (i) follows from the fact that the expectation is a linear operator, Ct is a constant and that the noise process {vt : t ∈ Nn0}
and {wt : t ∈ Nn0} are zero mean mutually independent processes independent of everything; (ii) follows from the tower



property of conditional expectation or simply because x̂t|t−1 is rt−1-measurable. Since the innovations process generates the
same information with a linear memoryless encoder, then, the results obtained in Table II will also applied for this class of
linear encoders.

APPENDIX F
PROOF OF THEOREM IV.2

The proof is obtained using first an information theoretic lower bound on the estimation error, and then, by showing that
this lower bound is achievable when the players jointly utilize linear strategies.

Since the decoder’s received signal at each instant of time is rt = αt(mt + vt) + (1− αt)(xt + wt), the conditional mean
and conditional variance (power) of {rt : t ∈ Nn0} are as follows:8

E[rt|rt−1] = αtm̂t|t−1 + (1− αt)x̂t|t−1 (38)

E
[
(rt −E[rt|rt−1])2|rt−1

]
≡ E

[
(rt −E[rt|rt−1])2

]
= α2

tE
[
(mt − m̂t|t−1)2

]
+ (1− αt)2E

[
(xt − x̂t|t−1)2

]
+ α2

tE
[
v2
t

]
+ (1− αt)2E

[
w2
t

]
+ 2αt(1− αt)E

[
(mt − m̂t|t−1)(xt − x̂t|t−1)|rt−1

]
= α2

tPt + (1− αt)2Σt|t−1 + 2αt(1− αt)E
[
(mt − m̂t|t−1)(xt − x̂t|t−1)

]︸ ︷︷ ︸
signal power

+ α2
tσ

2
vt + (1− αt)2σ2

wt︸ ︷︷ ︸
Gaussian noise power

. (39)

Next, we give the information theoretic characterization of the average total feedback capacity and the corresponding information
feedback capacity per time instant between {xt : t ∈ Nn0} and {rt : t ∈ Nn0}, denoted hereinafter by Cfbaverage total({Pt}nt=0)

and Cfbt (Pt), respectively.

Cfbaverage total({Pt}
n
t=0) = sup

E[(mt−m̂t|t−1)2]=Pt, ∀t

1

n+ 1
I(xn → rn)

(i)
= sup

E[(mt−m̂t|t−1)2]=Pt, ∀t

1

n+ 1

n∑
t=0

I(xt; rt|rt−1)

= sup
E[(mt−m̂t|t−1)2]=Pt, ∀t

1

n+ 1

n∑
t=0

[
h(rt|rt−1)− h(rt|rt−1,xt)

]
(ii)
= sup

E[(mt−m̂t|t−1)2]=Pt, ∀t

1

n+ 1

n∑
t=0

[
hG(rt|rt−1)− hG(rt|rt−1,xt)

]
(iii)
=

1

n+ 1

n∑
t=0

Cfbt (Pt), (40)

where

Cfbt (Pt) =
1

2
log

(
1 +

α2
tPt + (1− αt)2Σt|t−1 + 2αt(1− αt)E

[
(mt − m̂t|t−1)(xt − x̂t|t−1)

]
α2
tσ

2
vt + (1− αt)2σ2

wt

)
, t ∈ Nn0 , (41)

h(·|·) <∞ is the conditional differential entropy that is assumed to be finite, (i) follows by definition of directed information
[21]; (ii) follows because the noise is additive Gaussian; (iii) follows because hG(rt|rt−1) can be computed from (39) and
hG(rt|rt−1,xt) = 1

2 log(2πe)
(
α2
tσ

2
vt + (1− αt)2σ2

wt

)
for each time instant.

Next, we describe an interesting structural result of both Cfbaverage total({Pt}nt=0) and Cfbt (Pt).

Proposition F.1. (Structural result) Define the following information characterization of the information feedback capacity

C̄fbaverage total({Pt}
n
t=0) = sup

E[(mt−m̂t|t−1)2]=Pt, ∀t

1

n+ 1

n∑
t=0

I(xt; rt|rt−1). (42)

Then, for the same {xt : t ∈ Nn0} and {rt : t ∈ Nn0} used to obtain Cfbaverage total({Pt}nt=0) and Cfbt (Pt), we have that
C̄fbaverage total({Pt}nt=0) = Cfbaverage total({Pt}nt=0) = 1

n+1

∑n
t=0 C

fb
t (Pt) where Cfbt (Pt)=(41) for any t.

Proof. This follows by computing C̄fb[0,n] at each instant of time.

8Recall that conditional variance is equivalent with the unconditional for jointly Gaussian processes.



Next, we derive the lower bound on the average total estimation error. Before doing it, we first consider a lower bound on
the estimation error at each time instant obtained forward in time. To do it, we consider the following inequality:

I(xn → rn) =

n∑
t=0

I(xt; rt|rt−1)
(∗)
≥

n∑
t=0

I(xt; rt|rt−1) (43)

where (∗) follows by definition of directed information. Observe that per time instant, the following series of inequalities hold:

I(xt; rt|rt−1) = h(xt|rt−1)− h(xt|rt) = h(xt|rt−1)− h(xt −E[xt|rt]|rt)
(?)

≥ h(xt|rt−1)− h(xt −E[xt|rt])
(??)
=

1

2
log 2πeΣt|t−1 −

1

2
log 2πeJdt =

1

2
log

(
Σt|t−1

Jdt

)
, Σ0|−1 = σ2

x0
, ∀t,

=⇒Jdt ≥ Σt|t−12−2I(xt;rt|rt−1)
(???)

≥ Σt|t−12−2Cfbt

(????)
= Σt|t−12

−2 1
2 log

(
1+

α2
t Pt+(1−αt)2Σt|t−1+2αt(1−αt)E[(mt−m̂t|t−1)(xt−x̂t|t−1)]

α2
t σ

2
vt

+(1−αt)2σ2
wt

)

=
Σt|t−1

1 +
α2
tPt+(1−αt)2Σt|t−1+2αt(1−αt)E[(mt−m̂t|t−1)(xt−x̂t|t−1)]

α2
tσ

2
vt

+(1−αt)2σ2
wt

(?????)

≥ eq. (9), for any t (44)

where (?) follows because conditioning reduces entropy; (??) follows because the source process is Gauss-Markov driven by
additive Gaussian noise whereas h(xt− x̂t|t) is maximized if and only if h(xt− x̂t|t) = hG(xt− x̂t|t); (???) follows because
I(xt; rt|rt−1) ≤ supE[(mt−m̂t|t−1)2]=Pt I(xt; rt|rt−1) for any t; (? ? ??) follows from Proposition (F.1) and (41); (? ? ? ? ?)
is obtained using the following series of inequalities:

1 +
α2
tPt + (1− αt)2Σt|t−1 + 2αt(1− αt)E

[
(mt − m̂t|t−1)(xt − x̂t|t−1)

]
α2
tσ

2
vt + (1− αt)2σ2

wt

(p1)

≤ 1 +
α2
tPt + (1− αt)2Σt|t−1 + 2αt(1− αt)

√
PtΣt|t−1

α2
tσ

2
vt + (1− αt)2σ2

wt

(p2)

≤ 1 +
αtPt
α2
tσ

2
vt

+
(1− αt)2Σt|t−1

(1− αt)2σ2
wt

,

where (p1) holds due to the Cauchy-Schwarz inequality; (p2) holds because of the inequality in the derivation of Theorem III.2 ,
i.e., ηtυt + θt

φt
≥ (
√
ηt+
√
θt)

2

υt+φt
for positive ηt, θt, υt, φt with ηt = α2

tPt, θt = (1−αt)2Σt|t−1, υt = α2
tσ

2
vt , and φt = (1−αt)2σ2

wt .
In (44), the first inequality holds with equality if and only if (xn, rn) are jointly Gaussian which is the case when the encoder

is linear with noiseless feedback; (?????) holds with equality for 0 < αt < 1 when
√
ηtφt =

√
θtυt ⇒ αt

√
Pt(1−αt)2σ2

wt =

(1−αt)Σt|t−1α
2
tσ

2
vt ⇒

√
Pt = αt

1−αtΣt|t−1
σ2
vt

σ2
wt

for any t. Since from Proposition IV.1 we showed that α∗t =
A∗tσ

2
wt

A∗tσ
2
wt

+σ2
vt

(from

Table II) for an innovations encoder γet (xt, rt−1) = At(xt− x̂t|t−1), we obtain E
[
(mt − m̂t|t−1)2

]
= Pt = A2

tΣt|t−1, which
is consistent with a linear encoder with a noiseless feedback (innovations encoder). Note that for αt = 0, inequality (? ? ? ? ?)

in (44) reduces to Σt|t−1
Σt|t−1

σ2
wt

+1
that also holds with equality, and for αt = 1, (? ? ? ? ?) in (44) reduces to Σt|t−1

Pt
σ2
vt

+1
that also holds

with equality. Thus, the information theoretic lower bound on the estimation error at each instant of time is given by (9) and
it is achievable at each instance of time only for jointly linear encoder and decoder with At > 0 and 0 < αt < 1.

Thus, we have proved that at each instant of time going forward in time, the information theoretic lower bound on the
estimation error is achievable only for jointly linear encoder and decoder.

The final result is obtained once we take the average total value of the estimation error at each instant of time. This completes
the derivation.

APPENDIX G
PROOF OF THEOREM IV.3

We observe that the optimization variables of interest in (11) are {A2
t : t ∈ Nn0} hence we can introduce the decision

variables {µt = A2
t : t ∈ Nn0} which are non-negative variables. Hence, (11) can be cast as follows:

Jeaverage total = min
µt≥0, t∈Nn0

1

n+ 1

n∑
t=0

[
Σ∗t|t−1σ

2
wtσ

2
vt

(µtσ2
wt + σ2

vt)Σ
∗
t|t−1 + σ2

wtσ
2
vt

+ θtµtΣt|t−1 + b2t

]
, Σ∗0|−1 = σ2

x0
. (45)



To solve (45), we employ again Lagrange multipliers and forward induction. First, we write the augmented Lagrangian problem
as follows

Leaverage total({ft}nt=0, {µt}nt=0) =
1

n+ 1

n∑
t=0

[ Σ∗t|t−1σ
2
wtσ

2
vt

(µtσ2
wt + σ2

vt)Σ
∗
t|t−1 + σ2

wtσ
2
vt

+ θtµtΣt|t−1 + b2t − ftµt
]
, Σ∗0|−1 = σ2

x0
.

(46)

The first order derivative test, the complementary slackness and the primal and dual feasibility conditions, respectively, are
derived as follows:

∂Leaverage total({ft}nt=0, {µt}nt=0)

∂µt

∣∣∣∣∣µt=µ∗t
ft=f

∗
t

= 0, t = 0, 1, . . . , n (47)

ftµt = 0, ∀t, (48)
µt ≥ 0, ∀t, (49)
ft ≥ 0, ∀t. (50)

Next, we optimize forward in time Leaverage total(·) and study every possible scenario depending of the active variables.
t=0:

∂Leaverage total({µt}nt=0)

∂µ0

∣∣∣∣∣µ0=µ∗0
f0=f∗0

= 0

=⇒

− 1

σ2
v0

(
µ∗0
σ2
v0

+ 1
σ2
w0

+ 1
σ2
x0

)2

+ θ0σ
2
x0
− f∗0 = 0 =⇒ θ0 =

f∗0
σ2
x0

+

 1

σ2
v0
σ2
x0

(
µ∗0
σ2
v0

+ 1
σ2
w0

+ 1
σ2
x0

)2

 .
(51)

Next, we check possible cases to obtain our results when θt > 0 is given.
Case 1: Let µ∗0 = 0. Then from (48), f∗0 ≥ 0, which in turn implies from (51) that

θ0 =
f∗0
σ2
x0

+

 1

σ2
v0
σ2
x0

(
1
σ2
w0

+ 1
σ2
x0

)2

 ≥ 1

σ2
v0
σ2
x0

(
1
σ2
w0

+ 1
σ2
x0

)2 ≡ θ
′
0. (52)

Case 2: Now assume that µ∗0 > 0. Then, from (48) we obtain that f∗0 = 0, which implies from (51) that

θ0 =
1

σ2
v0
σ2
x0

(
µ∗0
σ2
v0

+ 1
σ2
w0

+ 1
σ2
x0

)2 < θ′0. (53)

Moreover, solving in (53) the equation w.r.t. µ∗0 we obtain

µ∗0 =
σ2
v0√

θ0σ2
x0
σ2
v0

−
σ2
v0

σ2
x0

(
σ2
x0

σ2
w0

+ 1

)
. (54)

Clearly, from the first order derivative in (51), we can easily see that the second derivative w.r.t. to µ∗0 is positive hence the
function is convex and the optimal solution at this stage is global.
t=1:

∂Leaverage total(µ∗0, {µt}nt=1)

∂µ1

∣∣∣∣∣µ1=µ∗1
f1=f∗1

= 0

=⇒

− 1

σ2
v1

(
µ∗1
σ2
v1

+ 1
σ2
w1

+ 1
Σ∗

1|0

)2

+ θ1Σ∗1|0 − f
∗
1 = 0 =⇒ θ1 =

f∗1
Σ∗1|0

+

 1

σ2
v0

Σ∗1|0

(
µ∗1
σ2
v1

+ 1
σ2
w1

+ 1
Σ∗

1|0

)2

 .
(55)

At this stage we note that Σ∗1|0 is independent of µ∗1 because its optimal solution depends on µ∗0 that is already obtained at
time stage 0. Hence, under this observation, we can follow precisely the approached followed in time stage zero which will



give Next, we check possible cases to obtain our results.
Case 1: Let µ∗1 = 0. Then from (48), f∗1 ≥ 0, which in turn implies from (55) that

θ1 =
f∗1

Σ∗1|0
+

 1

σ2
v1

Σ∗1|0

(
1
σ2
w1

+ 1
Σ∗

1|0

)2

 ≥ 1

σ2
v1

Σ∗1|0

(
1
σ2
w1

+ 1
Σ∗

1|0

)2 ≡ θ
′
t. (56)

Case 2: Now assume that µ∗1 > 0. Then, from (48) we obtain that f∗1 = 0, which implies from (55) that

θ1 =
1

σ2
v1

Σ∗1|0

(
µ∗1
σ2
v1

+ 1
σ2
w1

+ 1
Σ∗

1|0

)2 < θ′1. (57)

Moreover, solving the equality in (57) w.r.t. µ∗1 we obtain

µ∗1 =
σ2
v1√

θ1Σ∗1|0σ
2
v1

−
σ2
v1

Σ∗1|0

(
Σ∗1|0

σ2
w1

+ 1

)
. (58)

Clearly, from the first order derivative in (55), we can easily see that the second derivative w.r.t. to µ∗1 is positive hence the
function is convex and the optimal solution at this stage is global.
Now suppose that at time n− 1 the optimal solution of µ∗n−1, for the possible cases is as follows:
Case 1: Let µ∗n−1 = 0. Then from (48), f∗n−1 ≥ 0, which in turn implies that

θn−1 =
f∗n−1

Σ∗n−1|n−2

+

 1

σ2
vn−1

Σ∗n−1|n−2

(
1

σ2
wn−1

+ 1
Σ∗
n−1|n−2

)2

 ≥ 1

σ2
vn−1

Σ∗n−1|n−2

(
1

σ2
wn−1

+ 1
Σ∗
n−1|n−2

)2 ≡ θ
′
n−1. (59)

Case 2: Now assume that µ∗n−1 > 0. Then, from (48) we obtain that f∗n−1 = 0, which implies that

θn−1 =
1

σ2
vn−1

Σ∗n−1|n−2

(
µ∗n−1

σ2
vn−1

+ 1
σ2
wn−1

+ 1
Σ∗
n−1|n−2

)2 < θ′n−1. (60)

Moreover, solving the equation in(60) w.r.t. µ∗n−1 we obtain

µ∗n−1 =
σ2
vn−1√

θn−1Σ∗n−1|n−2σ
2
vn−1

−
σ2
vn−1

Σ∗n−1|n−2

(
Σ∗n−1|n−2

σ2
wn−1

+ 1

)
. (61)

Then, at time stage t = n, we can obtain following the same argument as in time t = 1 that the followin cases hold.
Case 1: Let µ∗n = 0. Then from (48), f∗n ≥ 0, which in turn implies that

θn =
f∗n

Σ∗n|n−1

+

 1

σ2
vnΣ∗n|n−1

(
1

σ2
wn

+ 1
Σ∗
n|n−1

)2

 ≥ 1

σ2
vnΣ∗n|n−1

(
1

σ2
wn

+ 1
Σ∗
n|n−1

)2 ≡ θ
′
n. (62)

Case 2: Now assume that µ∗n > 0. Then, from (48) we obtain that f∗n = 0, which implies that

θn =
1

σ2
vnΣ∗n|n−1

(
µ∗n
σ2
vn

+ 1
σ2
wn

+ 1
Σ∗
n|n−1

)2 < θ′n. (63)

Moreover, solving (63) w.r.t. µ∗n we obtain

µ∗n =
σ2
vn√

θnΣ∗n|n−1σ
2
vn

−
σ2
vn

Σ∗n|n−1

(
Σ∗n|n−1

σ2
wn

+ 1

)
. (64)

Hence, we proved that by optimizing forward in time, we obtain the optimal {µ∗t : t ∈ Nn0}. The problem is solved once we
replace µ∗t = A2,∗

t , for t = 0, 1, . . . , n, in (11) which leads to (12), (13), (14), (15) and (16). This completes the derivation.



APPENDIX H
PROOF OF THEOREM V.1

(i) For the given affine encoder strategy m = γe(x) = Ax + C, the decoder input is

r = (αA+ 1− α)x + αv + (1− α)w + αC

when the decoder adjusts the time-sharing parameter α of the channels. Then, similar to Theorem III.1, the optimal
decoder strategy is γd(r) = x̂ = E[x|r]. For A > 0, it can be expressed as

γd(r) =
Aσ2

xσ
2
w + σ2

xσ
2
v

A2σ2
xσ

2
w + σ2

xσ
2
v + σ2

wσ
2
v

(r− αC) (65)

with the channel combining parameter α =
Aσ2

w

Aσ2
w+σ2

v
.

For −
√

σ2
v

σ2
w
≤ A ≤ 0, we have γd(r) =

σ2
x

σ2
x+σ2

w
r and α = 0.

For A ≤ −
√

σ2
v

σ2
w

, we have γd(r) =
Aσ2

x

A2σ2
x+σ2

v
(r− C) and α = 1.

(ii) For the given affine decoder strategy x̂ = γd(r) = Kr + L and the nonzero channel combining parameter α, since
r = α(γe(x) + v) + (1 − α)(x + w), we have x̂ = αKγe(x) + (1 − α)Kx + αKv + (1 − α)Kw + L. Then, the
corresponding encoder cost is

Je = E[(x− x̂− b)2] + θE[(γe(x))2]

= E
[
(−αKγe(x) + (1− (1− α)K)x− L− b)2 + θ(γe(x))2

]
+ α2K2σ2

v + (1− α)2K2σ2
w

= E
[
(α2K2 + θ)(γe(x))2 − 2αK((1− (1− α)K)x− L− b)γe(x) + ((1− (1− α)K)x− L− b)2

]
+ α2K2σ2

v + (1− α)2K2σ2
w

= (α2K2 + θ)E

[(
γe(x)− αK((1− (1− α)K)x− L− b)

α2K2 + θ

)2

−
(
αK((1− (1− α)K)x− L− b)

α2K2 + θ

)2
]

+ (1− (1− α)K)2σ2
x + (L+ b)2 + α2K2σ2

v + (1− α)2K2σ2
w

= (α2K2 + θ)E

[(
γe(x)− αK((1− (1− α)K)x− L− b)

α2K2 + θ

)2
]

+ θ

(
(1− (1− α)K)2σ2

x + (L+ b)2

α2K2 + θ

)
+ α2K2σ2

v + (1− α)2K2σ2
w .

Thus, the optimal encoder strategy that minimizes the encoder cost is

γe(x) =
αK((1− (1− α)K)x− L− b)

α2K2 + θ
. (66)

(iii) In order to have an affine Nash equilibrium, the best responses of the encoder and the decoder must match each other. In
particular, for A > 0, (65) and (66) must be simultaneously satisfied:

A =
αK(1− (1− α)K)

α2K2 + θ
, C = −αK(L+ b)

α2K2 + θ
, K =

Aσ2
xσ

2
w + σ2

xσ
2
v

A2σ2
xσ

2
w + σ2

xσ
2
v + σ2

wσ
2
v

, L = −αKC , α =
Aσ2

w

Aσ2
w + σ2

v

.

Notice the following:

A =
αK(1− (1− α)K)

α2K2 + θ
=

Aσ2
w

A2σ2
w+σ2

v+
σ2
wσ

2
v

σ2
x

(
1− σ2

v

A2σ2
w+σ2

v+
σ2
wσ

2
v

σ2
x

)
(

Aσ2
w

A2σ2
w+σ2

v+
σ2
wσ

2
v

σ2
x

)2

+ θ

=
Aσ2

w

(
A2σ2

w +
σ2
wσ

2
v

σ2
x

)
A2σ4

w + θ
(
A2σ2

w + σ2
v +

σ2
wσ

2
v

σ2
x

)2

⇒ θ

(
A2σ2

w + σ2
v +

σ2
wσ

2
v

σ2
x

)2

=
σ4
wσ

2
v

σ2
x

⇒
(
A2 +

σ2
v

σ2
w

+
σ2
v

σ2
x

)2

=
1

θ

σ2
v

σ2
x

⇒ A =

√√√√√1

θ

σ2
v

σ2
x

− σ2
v

σ2
w

− σ2
v

σ2
x

. (67)



Then, by utilizing (67), K and α can be decided correspondingly. In order to have a valid encoder strategy, i.e., A > 0,
it must be satisfied that√

1

θ

σ2
v

σ2
x

− σ2
v

σ2
w

− σ2
v

σ2
x

> 0⇒ 1

θ

σ2
v

σ2
x

>

(
σ2
v

σ2
w

+
σ2
v

σ2
x

)2

⇒ θ <

σ2
v

σ2
x(

σ2
v

σ2
w

+
σ2
v

σ2
x

)2 =

σ2
x

σ2
v(

σ2
x

σ2
w

+ 1
)2 .

Thus, the linear part of the strategies (i.e., A and K) construct consistent equations. Regarding the translation parts,
observe the following:

L = −αCK = α
αK(L+ b)

α2K2 + θ
K =

α2K2(L+ b)

α2K2 + θ
⇒ L

(
1− α2K2

α2K2 + θ

)
=

α2K2b

α2K2 + θ

⇒ L =
α2K2b

θ
⇒ C = −αKb

θ
.

As a result, when θ <
σ2
x
σ2
v(

σ2
x

σ2
w

+1

)2 , the jointly affine encoder and decoder strategies γe(x) = Ax+C and γd(r) = Kr+L

and the channel combining parameter α form a Nash equilibrium.
Now consider the case when A ≤ −

√
σ2
v

σ2
w

, which implies the following must be simultaneously satisfied:

A =
αK(1− (1− α)K)

α2K2 + θ
, C = −αK(L+ b)

α2K2 + θ
, K =

Aσ2
x

A2σ2
x + σ2

v

, L = −KC , α = 1 .

Notice the following:

AK =
K2

K2 + θ
=

A2σ2
x

A2σ2
x + σ2

v

⇒ θ

K2 + θ
=

σ2
v

A2σ2
x + σ2

v

=
σ2
v

Aσ2
x

K

=
σ2
v
σ2
x

K2+θ

⇒ (K2 + θ)2 =
θσ2

x

σ2
v

⇒ K = ±

√√√√√θσ2
x

σ2
v

− θ ⇒ A = ±

√√√√√ σ2
v

θσ2
x

− σ2
v

σ2
x

.

Note that in order to have valid strategies, it must hold that
√

θσ2
x

σ2
v
− θ > 0⇒ θ <

σ2
x

σ2
v

. Due to the assumption, we have

θ <

σ2
x
σ2
v(

σ2
x

σ2
w

+1

)2 <
σ2
x

σ2
v

, which satisfies the validity of strategies. Furthermore, we must also have A ≤ −
√

σ2
v

σ2
w

, thus the

negative solution of A (which also implies the negative solution of K) will be preferred. In particular, the following must
hold:

A = −

√√√√√ σ2
v

θσ2
x

− σ2
v

σ2
x

≤ −

√
σ2
v

σ2
w

⇒

√
σ2
v

θσ2
x

− σ2
v

σ2
x

≥ σ2
v

σ2
w

⇒ θ ≤
σ2
v

σ2
x

σ2
v

σ2
w

+
σ2
v

σ2
x

,

which is satisfied by the assumption. Thus, the linear parts of the strategies (i.e., A and K) construct consistent equations.
Regarding the translation parts, observe the following:

L = −KC =
K2(L+ b)

K2 + θ
⇒ L =

K2b

θ
⇒ C = −Kb

θ
.

If −
√

σ2
v

σ2
w
≤ A ≤ 0 holds, then the decoder does not utilize any information from the encoder, which implies the following

must be simultaneously satisfied:

A =
αK(1− (1− α)K)

α2K2 + θ
, C = −αK(L+ b)

α2K2 + θ
, K =

σ2
x

σ2
x + σ2

w

, L = 0 , α = 0 .

Thus, A = C = 0 is obtained. Note that, in this particular case, since the encoder has no effect on the estimation
performance of the decoder, the encoder prefers not to transmit any message to minimize its cost (by avoiding transmission
cost).

This completes the derivation.
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