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Abstract—The bosonic channel is addressed with modulation
interference and side information at the transmitter. The model
can be viewed as the quantum counterpart of the classical
random-parameter Gaussian channel. Based on Costa’s writing-
on-dirty-paper result, the effect of the interference can be
canceled. For both homodyne and heterodyne detection, we
observe the same phenomenon, as the model reduces to a classical
Gaussian channel. Then, we consider the bosonic channel with
joint detection, for which the classical results do not apply, and
derive a dirty-paper coding lower bound. We demonstrate that
the optimal coefficient for dirty paper coding is not necessarily
the MMSE estimator coefficient as in the classical setting.

Index Terms—Quantum communication, Shannon theory,
channel capacity, dirty paper coding, state information.

I. INTRODUCTION

Optical communication forms the backbone of the Inter-
net [1, 2, 3]. The bosonic channel is a simple quantum-
mechanical model for optical communication over free space
or optical fibers [4, 5]. An optical communication system
consists of a modulated source of photons, the optical channel,
and an optical detector. For a single-mode bosonic channel,
the channel input is an electromagnetic field mode with an
annihilation operator â, and the output is another mode with
the annihilation operator b̂. The input-output relation in the
Heisenberg picture is given by

b̂ =
√
η â+

√
1− η ê (1)

where ê is associated with the environment noise and the
parameter η is the transmissivity, 0 ≤ η ≤ 1, which depends
on the length of the optical fiber and its absorption length [6]
(see Figure 1). For a lossy bosonic channel, the noise mode ê
is in a Gibbs thermal state. Modulation is performed such that
the unitary displacement operator D(α) = exp(αâ†−α∗â) is
applied to the vacuum state |0〉〈0|. The bosonic channel can
be viewed as the quantum counterpart of the classical channel
with additive white Gaussian noise (AWGN) [4].

In classical communications, various settings of practical
significance can be described by a channel W (s)

Y |X that depends
on a random parameter S ∼ pS when there is channel
side information (CSI) available at the transmitter [7, 8]. For
example, a cognitive radio in a wireless system may be aware
of the channel state and network configuration [9]. Other
applications include memory storage where the writer knows
the fault locations [10], digital watermarking [11], and spread-
spectrum communication [12], where the CSI represents the
host data or a pseudo-random sequence to be modulated. The

capacity of a random-parameter classical channel with CSI at
the transmitter is given by [10]

C(W ) = max
pU,X|S

[I(U ;Y )− I(U ;S)] (2)

where U is an auxiliary random variable such that
U (X,S) Y form a Markov chain.

A random-parameter Gaussian channel is specified by the
input-output relation Y = X + Z + S, with a real-valued
Gaussian noise Z ∼ NR(0, σ

2
Z), an additive interference S

known to the transmitter, and an input power constraint P .
A well-known result by Costa [13] is that the capacity of
the random-parameter Gaussian channel is the same as if the
interference is not there, i.e. C(W ) = 1

2 log2

(
1 + P

σ2
Z

)
. Given

that Sn is not known to the receiver, it is far from obvious
that the interference can be canceled out without sacrificing
transmission power. The derivation of this result is based on
Costa’s dirty-paper coding (DPC) strategy [13]: Set

U = X + tS (3)

such that X is statistically independent of S. The optimal
choice of the coefficient t turns out to be the same as that of
the minimum mean-square error (MMSE) estimator X̂ = tV
for X given an observation of V = X + Z (see [7, Section
4.1]), namely,

t =
P

P + σ2
Z

. (4)

Explicit code constructions based on lattice codes were pro-
posed in [14, 15] and references therein.

A quantum channel with random parameters is defined by a
completely-positive trace-preserving map E(s)A→B that depends
on a classical random parameter S ∼ pS . At first, consider
finite dimensions. Recently, the author [16] has determined
that the capacity of the random-parameter quantum channel

â(s)

η

b̂ =
√
η â(s) +

√
1− η ê

ê

Fig. 1. The beam-splitter relation of the single-mode bosonic channel.
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with CSI at the transmitter is given by the regularized formula
C(E) = limn→∞

1
nC1(E⊗n), with

C1(E) = sup
pX|S , σ

x,s
A

[I(X;B)ρ − I(X;S)] (5)

where I(X;B)ρ is the Holevo information calculated with
respect to ρx,sB = E(s)A→B(σ

x,s
A ). We extend this result to the

bosonic channel with infinite-dimension Hilbert spaces based
on the discretization limiting argument by Guha et al. [17].
Related settings were also considered in [18, 19, 20].

In this work, we consider the single-mode lossy bosonic
channel with a coherent-state protocol and a non-ideal dis-
placement operation in the modulation process:

|ζ1ζ2 · · · ζn〉 = D(α1 + s1)|0〉 ⊗ · · · ⊗D(αn + sn)|0〉 (6)

where the parameter si represents classical interference in
the transmission equipment, which the transmitter becomes
aware of, while the receiver is not. Alternatively, this can
be viewed as a watermarking model with a quantum em-
bedding. Given a classical host data sequence s1, . . . , sn,
Alice encodes an authentication message m into a watermark
(αi(m, s1, . . . , sn))

n
i=1. Next, Alice performs a quantum em-

bedding of the watermark; she prepares a watermarked state
|ζ1ζ2 · · · ζn〉 as in (6), and transmits it to the authenticator
Bob through the optical fiber. The capacity of the random-
parameter bosonic channel represents the optimal rate at which
the authenticator can recover the messages with high fidelity.

First, we consider homodyne and heterodyne detection.
Both reduce to a classical random-parameter channel with
either real or complex-valued Gaussian noise. Thereby, we
observe that based on Costa’s dirty-paper solution, the effect
of the classical interference can be canceled, and the capacity
is the same regardless of the intensity of the interference.
Then, we consider joint detection, in which case, the problem
does not reduce to that of a classical description. We derive a
DPC lower bound based on the author’s previous result [16],
with a general coefficient t (see (3)). Considering the special
case of a pure-loss bosonic channel, we show that the optimal
coefficient is not necessarily the MMSE value as in (4).

II. DEFINITIONS

We use the following notation; X is a classical random
variable, pX the probability density function; α is a complex-
valued variable. X ∼ NR(0, σ

2) indicates a real Gaussian
variable, with pX(x) = 1√

2πσ2
e−x

2/2σ2

. A complex Gaussian
α ∼ NC(0, σ

2) satisfies α = X + iY with independent
X,Y ∼ NR(0, σ

2). A quantum state of a system A is denoted
ρA. A channel EA→B is a cptp map that maps an input ρA to an
output ρB . A random-parameter quantum channel E(s)A→B de-
pends on a classical parameter S ∼ pS . The channel is memo-
ryless, mapping ρA1A2...An to

(⊗n
i=1 E

(Si)
Ai→Bi

)
(ρA1A2...An),

where Si are i.i.d. ∼ pS . Given ρAB , define the von Neumann
entropy H(A)ρ = −Tr[ρA log(ρA)], and let I(A;B)ρ =
H(A)ρ+H(B)ρ−H(AB)ρ. A detailed description of bosonic
systems can be found in [4]. The vacuum state of a single-
mode electromagnetic field is denoted by |0〉〈0|. The creation

operator â† creates an excitation: â†|0〉 = |1〉, â†|1〉 =
√
2|2〉,

etc. Whereas, the annihilation operator â takes away an
excitation. A coherent state |α〉 corresponds to an oscillation
of the bosonic field, obtained by |α〉 = D(α)|0〉, where
D(α) ≡ exp(αâ†−α∗â). A thermal state with a mean photon
number N is given by τ(N) ≡

∫
C d

2α e
−|α|2/2N

πN |α〉〈α|. A
single-mode bosonic channel is described by the relation (1)
between the input and output operators, â and b̂, with an input
constraint NA. For a lossy channel, the noise mode ê is in
a thermal state τ(NE), and for a pure-loss channel, in the
vacuum state. Here, we consider the lossy bosonic channel
with a coherent-state protocol and non-ideal modulation, as
specified in (6). The coding definitions are given below.

Definition 1. An (M, n) code for the bosonic channel with
a coherent-state protocol and CSI at the encoder con-
sists of a set of M messages, an encoding map Enc :
(m, s1, . . . , sn) 7→ (αi(m, s1, . . . , sn))

n
i=1, and a measure-

ment Dec : ρB1,...,Bn 7→ M̂ . The codewords satisfy |αi|2 ≤
NA. Alice chooses a message m from the message set.
Using her access to the random parameters, she computes
(αi(m, s1, . . . , sn))

n
i=1. The modulation produces the coherent

state in (6), which is then sent through the channel. Bob
receives the channel output systems (Bi)

n
i=1 and applies a

measurement. The outcome M̂ is his estimate of the message
m. The coding rate is defined as R = log2(M)

n in units of
bits per transmission, and the maximal probability of error is
denoted by P

(n)
e = maxm Pr(M̂ 6= m|m). A rate R > 0

is called achievable if there exists a sequence of (d2nRe, n)
codes such that P (n)

e → 0 as n→∞. The operational capacity
C(E) is defined as the supremum of achievable rates.

III. RESULTS

First, we consider homodyne and heterodyne detection. A
homodyne measurement of a quadrature observable is imple-
mented in practice by combining the target quantum mode
with an intense local oscillator at a 50:50 beam splitter, and
measuring the photocurrent difference of the outgoing modes
using two photodetectors [21]. When homodyne detection is
used with a coherent-state protocol, the resulting channel Ehom
is the random-parameter classical Gaussian channel

Y =
√
η(α+ S) + Zhom (7)

with a real-valued Gaussian parameter S ∼ NR(0, NS) and
noise Zhom ∼ NR

(
0, 14 [2(1− η)NE + 1]

)
[22]. Using the

DPC scheme, we take α ∼ NR(0, NA) and U = α + t1S
with t1 = ηNA

ηNA+var(Zhom)
, such that α and S are uncorrelated.

The effect of the interference is thus removed, and the capacity
is

C(Ehom) =
1

2
log2

(
1 +

4ηNA
2(1− η)NE + 1

)
(8)

as without interference.
In heterodyne detection, two quadratures are measured by

combining the measured mode with a vacuum mode into a
50:50 beam splitter, and homodyning the quadratures of the
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Fig. 2. The DPC lower bound for the pure-loss bosonic channel with joint
detection and a coherent-state protocol, for an input constraint NA = 2,
interference mean photon number NS = 2, and transmissivity η = 1

2
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bound is based on the DPC assignment of the auxiliary random variables,
α ∼ NC(0,

1
2
NA) and γ = α + tS. The figure depicts the lower bound

RDPC(t) as a function of the DPC coefficient t ∈ [0, 1] (see (13)).

outcome modes [4]. Heterodyne detection is described by a
random-parameter channel Ehet with complex-valued Gaussian
noise, specified by

Y =
√
η(α+ S) + Zhet (9)

with a complex-valued circularly-symmetric Gaussian random
parameter S ∼ NC(0,

1
2NS) and noise Zhet ∼ NC(0,

1
2 [(1 −

η)NE+1]) [22]. Similarly, we use DPC with α ∼ NC(0,
1
2NA)

and U = α + t2S, with t2 = ηNA
ηNA+var(Zhet)

, achieving the
capacity

C(Ehet) = log2

(
1 +

ηNA
(1− η)NE + 1

)
(10)

as without interference.
For joint detection, the channel does not have a classical

description. Applying the previous result by the author [16]
for a quantum channel with random parameters, and using the
DPC strategy, we obtain the lower bound C(Ejoint) ≥ RDPC(t),

RDPC(t) ≡ I(γ;B)− I(γ;S)
∣∣∣
γ=α+tS

= g(η(NA +NS) + (1− η)NE)

− g
(
η(1− t)2NANS
NA + t2NS

+ (1− η)NE
)

− log2

(
NA + t2NS

NA

)
(11)

where g(N) is the von Neumann entropy of the thermal state
τ(N). That is, g(N) = (N +1) log2(N +1)−N log2(N) for
N > 0, and g(0) = 0. The second equality in (11) holds since
ζ ≡ α + S = γ + (1 − t)S, and the conditional variance of
the channel parameter S given γ is

var(S|γ) =
[
1− (cov(γ, S))2

var(S)var(γ)

]
var(S) =

NANS
NA + t2NS

.

In particular, consider the special case of a pure-loss bosonic
channel, where NE = 0. In this case,

RDPC(t) =g(η(NA +NS))− g
(
η(1− t)2NANS
NA + t2NS

)
− log2

(
NA + t2NS

NA

)
. (12)

To demonstrate, suppose that NA = NS = 2 and η = 1
2 . Then,

we have

RDPC(t) = g(2)− g
(
(1− t)2
1 + t2

)
− log2(1 + t2) . (13)

Ignoring the CSI, we obtain a rate RDPC(t = 0) = g(2) −
g(1) = 3 log2 3−4 = 0.7549. Whereas, using the DPC scheme
with the MMSE coefficient t0 = 2

2+0 = 1, we obtain a better
rate: RDPC(t = 1) = 3 log2 3 − 2 − log2 2 = 1.7549. The
optimal value for DPC turns out to be tmax = 0.8065, for
which

RDPC(tmax) = 1.8750. (14)

See Figure 2. The rate above is higher than the homodyne
and heterodyne-detection capacities, C(Ehom) = 1.1609 and
C(Ehet) = 1, respectively. However, this rate is lower than the
joint-detection capacity without interference (NS = 0), which
is given by g(1) = 2.

Our results can be further extended to other optical channels.
In particular, the random-parameter thermal amplifier channel
A with an amplification gain κ > 1 has the input-output
relation b̂ =

√
κ â(s) +

√
κ− 1 ê† [23]. In a similar manner,

we obtain the DPC lower bound

C(A) ≥ max
t∈[0,1]

[
g(κ(NA +NS) + (κ− 1)NE)

− g
(
κ(1− t)2NANS
NA + t2NS

+ (κ− 1)NE

)
− log2

(
NA + t2NS

NA

)]
. (15)

IV. DISCUSSION

We conclude with the following remarks on the comparison
between the classical and quantum settings:

1) Costa [13] provided the intuitive analogy of ‘writing on
dirty paper’. When a writer (Alice) is given a dirty paper,
she knows the location and intensity of the dirt spots
before writing. On the other hand, the reader (Bob) sees
a mixture of the written text (channel input) and the
dirt (channel parameter) without prior knowledge. In our
setting, the dirt is the interference si in the modulation
displacement D(αi + si). Alternatively, in the quantum
watermarking scheme that we have described in the
introduction, the dirt is the host covertext.

2) The classical capacity result can be derived using the
DPC strategy in (3)-(4) following the observation that
U − tY = X − t(X + Z) is the error of the MMSE
estimation of X given V = X+Z, hence it is statistically



independent of the observation. Thereby, (U − tY ) is
jointly independent of (V, S). This in turn implies that
(U − tY ) and Y = V + S are statistically independent,
leading to H(U |Y ) = H(U−tY ) = H(X|V ) which can
be used in order to show that

I(U ;Y )− I(U ;S) = H(U |S)−H(U |Y ) = I(X;V )

(see further details in [7] [24, Section 7.7]). For a bosonic
channel with joint detection, we can also write the capac-
ity in terms of H(X|S)−H(X|B)ρ, with conditioning on
the channel output. However, conditioning on a quantum
system does not necessarily carry the meaning of an
observation as in the classical setting [25].

3) While DPC was originally introduced to treat a chan-
nel with random parameters [13], the technique is use-
ful in multi-user setups of wireless communications as
well, such as the multiple-input multiple-output (MIMO)
broadcast fading channel [26]. It is only natural to apply
and extend our results to multi-mode bosonic networks.
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