
1

Capacity Optimality of AMP in Coded Systems
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Abstract—This paper studies a large random matrix system
(LRMS) model involving an arbitrary signal distribution and
forward error control (FEC) coding. We establish an area
property based on the approximate message passing (AMP)
algorithm. Under the assumption that the state evolution for
AMP is correct for the coded system, the achievable rate of
AMP is analyzed. We prove that AMP achieves the constrained
capacity of the LRMS with an arbitrary signal distribution
provided that a matching condition is satisfied. As a byproduct,
we provide an alternative derivation for the constraint capacity of
an LRMS using a proved property of AMP. We discuss realization
techniques for the matching principle of binary signaling using
irregular low-density parity-check (LDPC) codes and provide
related numerical results. We show that the optimized codes
demonstrate significantly better performance over un-matched
ones under AMP. For quadrature phase shift keying (QPSK)
modulation, bit error rate (BER) performance within 1 dB from
the constrained capacity limit is observed.

Index Terms—Approximate message passing (AMP), large
random matrix system, arbitrary input distributions, channel
capacity, channel coding.

I. INTRODUCTION

A. Large Random Matrix System (LRMS) and Approximate
Message Passing (AMP)

Consider the problem of signal reconstruction for a large
random matrix system (LRMS):

y = Ax + n (1)

where A is an 𝑀 ×𝑁 matrix with independent and identically
distributed (IID) entries and x a length-𝑁 vector with IID
entries. Furthermore, we assume that the entries of A are
Gaussian, but those of x are not necessarily Gaussian. If x is
generated using a forward error control (FEC) code with rate
𝑅C , the overall rate of this scheme (per received symbol) is
𝑁𝑅C/𝑀 .

In a special case when x is un-coded, if x is Gaussian, the
optimal solution can be obtained using the linear minimum
mean square error (MMSE) methods. Otherwise, the problem
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is in general NP hard [2], [3]. Approximate message passing
(AMP), derived from belief-propagation (BP) with Gaussian
approximation and first order Taylor approximation, has at-
tracted extensive research interest for this problem [4], [5]. A
basic assumption of AMP is that A has IID Gaussian (IIDG)
entries. This assumption will hold throughout this paper.

AMP works by iterating between two local processors:
namely, a linear detector (LD) and a non-linear detector
(NLD). (An NLD is sometimes referred to as a de-noisier [6].)
There is no matrix inversion involved, so its complexity is low.
AMP has been studied for various signal processing [6]–[19]
and communication applications [20], [21]. Recently, it has
been observed that AMP and its variations such as expectation
propagation (EP) [22], [23] and orthogonal AMP (OAMP)
[24] outperform the conventional Turbo linear MMSE (Turbo-
LMMSE) in coded linear systems involving FEC coding
[25]–[27]. The applications of such systems include inter-
symbol interference (ISI) channels [25], multi-user systems
[26] and multiple-input multiple-output (MIMO) systems [27].
Most works on AMP in coded systems are simulation based
[25]–[27]. There is still a lack of rigorous analysis on the
information theoretical limits of AMP in coded systems.

B. Contributions of this Paper

In this paper, we discuss the LRMS in (1) with FEC coding.
The receiver is a variation of AMP with NLD formed by an
a posteriori probability (APP) decoder. For convenience of
discussions, we define two classes of optimality for a receiver.

• A receiver is MMSE-optimal if it can achieve MMSE
when x is an IID sequence.

• A receiver is information theoretically optimal if it can
achieve error free performance when x is coded with a
rate which equals to the mutual information 𝐼 (x;y).

The state evolution (SE) technique of AMP was originally
derived to track the mean square error (MSE) in AMP during
iterative processing. SE involves a scalar recursion of the
transfer functions of LD and NLD. It has been shown via SE
analysis that AMP can achieve MMSE asymptotically in the
un-coded case when the transfer functions of LD and NLD
have only one fixed-point [28]–[30]. In this paper, we will
show via SE analysis that AMP is information theoretically
optimal, while the conventional methods, such as the well-
known Turbo-MMSE algorithm [31], [32] (also referred to as
the Wang and Poor algorithm [27], [33], [34]), are not.

Our discussions are based on the following background
works: (i) the I-MMSE relationship between mutual infor-
mation and MMSE [35], (ii) the area property of iterative
decoding systems [36], (iii) the MMSE-optimality of AMP
[28]–[30], and (iv) the capacity of an LRMS recently derived
in [28], [29], [37]. Similarly to [31], [32], the performance of
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AMP can be optimized by matching the transfer functions
of LD and decoder. The achievable rate can be analyzed
using an area property similar to that for low density parity
check (LDPC) decoders [31], [32]. However, there is a key
difference. The area property for LDPC decoders is based on
the so-called extrinsic information, for which perfect matching
is theoretically possible [31], [32]. We will see that perfect
matching is not possible for AMP: there is an inherent gap
between the two transfer functions. Interestingly, AMP is still
information theoretically optimal despite this gap, in the sense
that its achievable rate can approach the mutual information
𝐼 (x;y).

The main contributions of this paper are summarized as
follows.

• We show that the constrained capacity of a coded LRMS
with an arbitrary input distribution (Gaussian or non-
Gaussian) can be graphically interpreted as the area
determined by the transfer functions of LD and MMSE
NLD of an AMP. We establish an area property for
AMP and derive its achievable rate under a matching
condition. We prove that this achievable rate equals to the
constrained capacity of an LRMS derived in [28], [29],
[37], thereby showing the potential information theoretic
optimality of AMP in coded linear systems.

• We develop a matching strategy for AMP. We show
the existence of a capacity approaching superposition
coded modulation (SCM) scheme for Gaussian signaling.
We also provide numerical results to demonstrate the
efficiency of the matching strategy for binary signaling.
These findings provide a promising direction to signifi-
cantly enhance the performance of coded linear systems.

• As a byproduct, we provide an alternative derivation for
the capacity of an LRMS. This capacity has been recently
derived in [28], [29], [37]. In our opinion, the approach
in this paper is more concise, taking advantage of the
available results of AMP.

C. Connection to Existing Works

In [28], the authors derived the constrained capacity and
MMSE of an LRMS by establishing some properties of the
finite-length MMSE and mutual information sequences, and
then using these properties to uniquely characterize their
limits. The authors of [29], [37] provided a rigorous proof for
the replica formula of the constrained capacity (see Theorem
2) by using a Guerra-Toninelli type interpolation method to
yield an upper bound for the capacity, and spatial-coupling
and AMP to yield a lower bound. In addition, the MMSE
optimality of AMP was rigorously proved in [29], [37]. In this
paper, we give a different concise derivation of the capacity.
Our derivations are built on existing results, namely, the I-
MMSE theorem [35], [36], the MMSE optimality of AMP
[28]–[30] and the decoupling property of AMP [38].

Sparse regression coding (SRC) [17], [18] is a special case
of (1) in which x is generated using position modulation. A
position modulation scheme of block length 𝐵 is a special form
of FEC coding with coding rate 𝑅PM = log2 (𝐵)/𝐵, which
is also equivalent to a length-𝐵 Hadamard code [19], [20].

The decoding technique for SRC [17], [18] can be regarded
as a special form of AMP, with FEC decoding implemented
by position demodulation. SRC is capacity approaching when
𝐵 → ∞ or, equivalently, 𝑅PM → 0. (Note: The overall rate
𝑅PM × 𝑁/𝑀 of SRC can remain finite even though 𝑅PM → 0
if 𝑁/𝑀 → ∞.) The cost of position demodulation grows with
𝐵. For affordable complexity (e.g. 𝐵 up to thousands), there
is a considerable gap between SRC performance and capacity.
Detailed discussions on this issue can be found in [19].

The compressed coding scheme introduced in [19] is equiv-
alent to the LRMS in (1). Arbitrary FEC coding is assumed
in [19]. The achievable rate of compressed coding using AMP
approaches Gaussian capacity in the limiting case when the
underlying FEC rate 𝑅C → 0 [19], [20], which is similar
to SRC [17], [18]. It is shown that compressed coding using
a properly designed FEC code can outperform SRC under
practical complexity constraint (i.e., a limited block length of
position modulation in SRC) [19].

Recall that the overall rate of the LRMS in (1) is 𝑁𝑅C/𝑀 . It
was proved in [17]–[19] that SRC and compressed coding are
capacity approaching when 𝑅PM→0 or 𝑅C→0. In these cases,
if the overall rate is finite, we need 𝑁/𝑀→∞ in (1), which
may incur excessively high receiver cost. In this paper, we
remove this limitation. We will show that AMP is information
theoretically optimal for any 𝑅C under a matching condition.

D. Notations

Boldface lowercase letters represent vectors and boldface
uppercase symbols denote matrices. 𝐼 (x;y) for the mutual
information between x and y, I for the identity matrix with
a proper size, |S| for the cardinality of set S, aH for the
conjugate transpose of a, ‖a‖ for the ℓ2-norm of the vector
a, det(A) for the determinant of A, Tr(A) for the trace
of A, 𝐴𝑖 𝑗 for the 𝑖th-row and 𝑗 th-column element of A,
CN(µ,𝚺) for the circularly-symmetric Gaussian distribution
with mean µ and covariance 𝚺, E{·} for the expectation
operation over all random variables involved in the brackets,
except when otherwise specified. E{𝑎 |𝑏} for the expectation of
𝑎 conditional on 𝑏, var{𝑎} for E

{
(𝑎 − E{𝑎})2 }

, mmse{𝑎 |𝑏}
for E

{
(𝑎−E{𝑎 |𝑏})2 |𝑏

}
, 〈x〉=∑𝑁

𝑖=1 𝑥𝑖/𝑁 , and 𝜂′(𝑟)= 𝜕
𝜕𝑟
𝜂(𝑟).

Capacity is defined by default as the maximum mutual
information over all possible choices of input distribution.
A constrained capacity is defined as the mutual information
under a fixed input distribution 𝑥 ∼ 𝑃𝑋 (𝑥). For the systems
considered in this paper, capacity is always achieved by
Gaussian signaling. Hence sometimes we will call it “Gaussian
capacity”. For simplicity, we will call the constrained capacity
given 𝑃𝑋 (𝑥) “capacity” if it is clear by context.

E. Paper Outline

This paper is organized as follows. Section II gives the area
property, the constrained capacity of an LRMS and the AMP
algorithm. Section III proves the capacity optimality of AMP
under Gaussian assumption. Numerical results are shown in
Section IV.
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II. PRELIMINARIES

In this section, we briefly outline some existing results
that will be used in this paper, such as the area property
for single-input-single-output additive white Gaussian noise
(SISO-AWGN) channel, the capacity of a large random matrix
system, and the AMP algorithm.

A. Area Property for SISO-AWGN Channel

A SISO-AWGN channel is defined as

𝑦 =
√
𝜌𝑥 + 𝑧, (2)

where 𝑥 ∼ 𝑃𝑋 (𝑥), 𝑧 ∼ CN(0, 1), and 𝜌 denotes the signal-to-
noise-ratio (SNR). The MMSE of (2) is denoted as

𝜔(𝜌) ≡ mmse(𝑥 |√𝜌𝑥 + 𝑧, 𝑥 ∼ 𝑃𝑋 (𝑥)). (3)

The following lemma, proved in [35], establishes the con-
nection between MMSE and the capacity given 𝑃𝑋 (𝑥) for a
SISO-AWGN channel.

Lemma 1 (Scalar I-MMSE): Let SNR= 𝜌∗. The capacity of
a SISO-AWGN channel equals to the area under 𝜔(𝜌) from
𝜌 = 0 to 𝜌 = 𝜌∗, i.e.,

𝐶SISO (𝜌∗) = 𝐼
(
𝑥;

√︁
𝜌∗𝑥 + 𝑧

)
=

∫ 𝜌∗

0
𝜔(𝜌)𝑑𝜌. (4)

Fig. 1 gives a graphical illustration of Lemma 1. The
following are some instances of the MMSE function 𝜔(𝜌).

• Gaussian Signaling: For 𝑥 ∼ CN(0, 1), 𝜔(𝜌) is given by

𝜔Gau (𝜌) ≡ 1/(𝜌 + 1). (5a)

The channel capacity with Gaussian signaling is given by

𝐶Gau
SISO=

∫ 𝜌∗

0
𝜔Gau (𝜌)𝑑𝜌 =

∫ 𝜌∗

0

1
1+𝜌 𝑑𝜌 = log(1+𝜌∗). (5b)

• Discrete Signaling [39]: For an arbitrary discrete constel-
lation S = {𝑠1, · · · , 𝑠 |S |} with equal probability 1/|S|,
𝜔(𝜌) is given by

𝜔S (𝜌) ≡ 1 − 1
𝜋

∫ ���∑ |S |
𝑙=1 𝑠𝑙𝑒

−|𝑦−√𝜌𝑠𝑙 |2
���2

|S|∑ |S |
𝑙=1 𝑒

−|𝑦−√𝜌𝑠𝑙 |2
𝑑𝑦. (6a)

The constrained capacity for 𝑥 ∈ S is given by∫ 𝜌∗
0 𝜔S (𝜌)𝑑𝜌. In particular, if x is un-coded, the infor-

mation rate is

𝑅S =

∫ ∞

0
𝜔S (𝜌)𝑑𝜌 = log |S|. (6b)

• QPSK Signaling [35]: As a special case of (6a), for
quadrature phase-shift keying (QPSK) signaling 𝑥 ∈
{ 1√

2
(±1 ± 𝑗)}, 𝜔(𝜌) is given by

𝜔QPSK (𝜌) ≡ 1 −
∫ ∞

−∞

𝑒−𝑦
2/2

√
2𝜋

tanh(𝜌 − √
𝜌𝑦)𝑑𝑦. (7)

• Code-Rate-MMSE Lemma [36]: Let the code length be
𝑁 and code rate 𝑅 = 𝐾/𝑁 . We treat the code-book C =

{c1, · · · , c2𝐾 } as a uniformly distributed 𝑁-dimension
constellation with 2𝐾 discrete points. When SNR→ ∞,

𝜌

𝑣

O

CSISO 𝜔

𝜌*

SISO channel

Fig. 1. Graphical illustration of the capacity of a SISO-AWGN channel. 𝜌∗
denotes the channel SNR, and 𝜔 is the MMSE of the SISO-AWGN channel.

the capacity per length-𝑁 code block approaches to
the entropy of C, i.e., log(2𝐾 ) = 𝐾 . The entropy per
dimension is 𝐾/𝑁 . Hence, we have

𝑅C =

∫ ∞

0
𝜔C (𝜌)𝑑𝜌 = 𝐾/𝑁, (8)

where 𝜔C (𝜌) ≡ 1
𝑁

mmse(x|√𝜌x + z,x ∈ C) and 𝑅C is
the rate of C.

B. LRMS Capacity

Return to the LRMS in (1): y = Ax + n, where y ∈C𝑀×1

is a vector of observations, A ∈ C𝑀×𝑁 an IIDG matrix with
𝐴𝑖 𝑗 ∼ CN(0, 1/𝑀)1, {𝑥𝑖 ∼ 𝑃𝑋 (𝑥),∀𝑖}, and n∼CN(0, 𝜎2I𝑀 )
a vector of Gaussian additive noise samples. Fig. 2(a) shows
a modulated LRMS. In this paper, we consider a large system
with 𝑀, 𝑁 → ∞ and a fixed 𝛽 = 𝑁/𝑀 . The transmit SNR is
defined as 𝑠𝑛𝑟 = E{‖𝑥𝑖 ‖2}/E{‖𝑛 𝑗 ‖2} = 𝜎−2. We assume that
A is known at the receiver, but unknown at the transmitter2.
This assumption has been widely used in multiple-input-
multiple-output (MIMO) and multi-user MIMO (MU-MIMO)
systems [26], [27], [32].

The constrained capacity of an LRMS given 𝑃𝑋 (𝑥) was
proved in [28], [29], [37].

Lemma 2 (Capacity): Assume that the signal distribu-
tion 𝑃𝑋 (𝑥) satisfies the single-crossing property, i.e., 𝜁 =

𝛽 𝑠𝑛𝑟 𝜔
(
1/[𝛽(1 + 𝜁)]

)
has exactly one positive fixed point 𝜁∗.

Then, the capacity of the LRMS in (1) is given by

𝐶= 𝛽−1 [ log(1+𝜁∗) − 𝜁∗/(1+𝜁∗)
]
+ 𝐶SISO (𝑠𝑛𝑟/(1+𝜁∗)) , (9)

where 𝐶SISO (·) is defined in (4).
The capacity in (9) is equivalent to that desired in [28]. For

the details, see APPENDIX A.

1In fact, it can be easily extended to a more general case 𝐴𝑖 𝑗 ∼
CN(0, 𝜎2

𝑎/𝑀 ) , where 𝜎2
𝑎 is finite. In this case, we can rewrite the system

to y′ = 𝜎−1
𝑎 y = A′x + n′ = 𝜎−1

𝑎 Ax + 𝜎−1
𝑎 n, where 𝐴′

𝑖 𝑗
∼ CN(0, 1/𝑀 )

and n′∼ CN(0, 𝜎2𝜎−2
𝑎 I) . Then, all the results in this paper are still valid by

replacing 𝜎2 with 𝜎2𝜎−2
𝑎 . For example, if 𝐴𝑖 𝑗 ∼ CN(0, 1/𝑁 ) , we replace

𝜎2 by 𝛽𝜎2 to make the results of this paper be valid.
2If A is also known at the transmitter, then the LRMS in (1) can be

converted to a set of parallel SISO-AWGN channels using singular value de-
composition (SVD). Then, the well-known water filling technique is capacity
approaching.
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(a) Un-coded linear system

(b) AMP receiver

 Modulate Ax n

yx

Linear interferenceModulation 

Demodulate
 LD

y

t+1 t

r
t

s
ts

t+1

NLD

E{ | }tx r

 SBS

Fig. 2. Un-coded LRMS: transmitter and AMP receiver, where “Demodulate”
and LD in (b) correspond to “Modulate” and “Ax +n” in (a) respectively.

C. Overview of AMP

AMP [4] finds an approximate MMSE solution to the
problem in (1) using the following iterative process (initialized
with 𝑡 = 0 and s0 = r0

Onsager = 0):

LD : r𝑡 = 𝑓 (s𝑡 ) ≡s𝑡+AH (y−As𝑡 )+r𝑡Onsager, (10a)

NLDSBS : s𝑡+1 = 𝜂(r𝑡 ) ≡ E{x|r𝑡 }, (10b)

where 𝜂(r𝑡 ) is a symbol-by-symbol (SBS) MMSE demodu-
late function, and r𝑡Onsager is an “Onsager term” defined by
r𝑡Onsager= 𝛽〈𝜂

′(r𝑡−1)〉(r𝑡−1−s𝑡−1) [4]. Fig. 2(b) is a graphical
illustration of AMP, where the linear detector (LD) and non-
linear detector (NLD) correspond to (10a) and (10b) respec-
tively. We define the errors at the LD and NLD respectively
as

h𝑡 ≡ r𝑡 − x and q𝑡 ≡ s𝑡 − x. (11)

Let 𝜌𝑡 be the signal-to-interference-plus-noise-ratio (SINR) for
r𝑡 and 𝑣𝑡 the MSE for s𝑡 :

𝜌𝑡 ≡ 𝑁
[
E
{
‖h𝑡 ‖2}]−1

, 𝑣𝑡 ≡ 1
𝑁

E
{
‖q𝑡 ‖2}. (12)

The following lemma summarizes the findings in [5].
Lemma 3: Let 𝑀, 𝑁 → ∞ with a fixed 𝛽 = 𝑁/𝑀 . For

AMP, h𝑡 defined in (11) can be modeled by a sequence of
IIDG samples independent of x. The LD and NLD of AMP
can be characterized by the following transfer functions [5]

LD : 𝜌𝑡 = 𝜙(𝑣𝑡 ) = (𝛽𝑣𝑡 + 𝜎2)−1, (13a)

NLDSBS : 𝑣𝑡+1 = 𝜔(𝜌𝑡 ), (13b)

where 𝜔(·) is the MMSE function given in II-A.
The iterative process in (10) can be written as (see Fig. 3)

r0= 𝑓 (s0), s1=𝜂(r0), r1= 𝑓 (s1), s2=𝜂(r1), . . . (14a)

From (12) and Lemma 3, we can track the SINR and MSE in
(14a) as

𝜌0=𝜙(𝑣0), 𝑣1=𝜔(𝜌0), 𝜌1=𝜙(𝑣1), 𝑣2=𝜔(𝜌1) . . . (14b)

Assumption 1: There is exactly one fixed point for 𝜔(𝜌) =
𝜙−1 (𝜌) for 𝜌 > 0, where 𝜙−1 (·) is the inverse of 𝜙(·).

NLD LD

(a) Detection functions (b) Transfer functions

vs

r

SBS
NLD LD

SBS

f s( t)

t

t +1

t

t +1  (vt )(rt )  (    t )

Fig. 3. Detection functions (a) and transfer functions (b).

1 

*

*v

evolution trajectory



v



1

0 snr

Fig. 4. Graphical illustration of an AMP, where 𝜙−1 is the inverse of 𝜙 given
in (13a) and 𝜔 is defined in (13b). The iterative process of AMP is illustrated
by the evolution trajectory, and the fixed point (𝜌∗, 𝑣∗) gives the MMSE.
From (13a), we have 𝜙 (0) = 𝑠𝑛𝑟 . (Figure parameters: 𝜔 (𝜌) = 𝜔QPSK (𝜌) ,
𝛽 = 0.65, 𝑠𝑛𝑟 = 5 dB, 𝜌∗ = 2.25, 𝑣∗ = 0.20.)

Fig. 4 provides a graphical illustration of Assumption 1. The
evolution trajectory of AMP converges to a unique fixed point
(𝜌∗, 𝑣∗) with 𝑣∗ = 𝜔(𝜌∗). The following theorem was first
established in [30] via replica method, and then was rigorously
proved in [28], [29].

Lemma 4 (MMSE Optimality): Let x̂MMSE = E{x|y, 𝑥𝑖 ∼
𝑃𝑋 (𝑥),∀𝑖} be the conditional mean of x given y and {𝑥𝑖 ∼
𝑃𝑋 (𝑥),∀𝑖} and suppose that Assumption 1 holds. Then

𝑣∗ = 1
𝑁

E
{
‖x−x̂MMSE‖2}, (15)

i.e., AMP converges to the MMSE of the un-coded LRMS.

III. CAPACITY OPTIMALITY OF AMP UNDER GAUSSIAN
ASSUMPTION

In this section, we investigate the achievable rate of the
AMP receiver with FEC decoding.

A. Coded System Model and AMP

Fig. 5(a) shows an LRMS involving FEC coding. We write
x ∈ C for coded x. The other conditions are the same as that
in Fig. 2. We focus on the AMP receiver in Fig. 5(b) for a
coded LRMS.

AMP: Initialized with 𝑡=0 and s0= r0
Onsager = 0,

LD : r𝑡 = 𝑓 (s𝑡 ) ≡s𝑡 +AH (y−As𝑡 ) + r𝑡Onsager, (16a)

NLDDEC : s𝑡+1 = 𝜂C (r𝑡 ) ≡ E{x|r𝑡 ,x ∈ C}. (16b)

Comparing (16) and (10), we can see that the symbol-wise
NLD in AMP for un-coded x is replaced by an a-posteriori
probability (APP) decoder in AMP for coded x.
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(a) Coded linear system

(b) AMP Receiver

ENC + Modulate Ax n

yx

Linear interferenceEncode and modulation 

Demodulate
+

APP DEC
+

Mapping

 LD

y

t+1 t

r
t

s
ts

t+1

NLDDEC

Fig. 5. Coded linear system: Transmitter and AMP receiver. “APP DEC”
(a-posteriori probability decoding), “Demodulate” and LD in (b) correspond
to “ENC” (encode), “Modulate” and “Ax +n” in (a) respectively.

Lemma 3 gives the IIDG property for AMP for un-coded
x. The discussions in this paper are based on the following
assumption for coded x.

Assumption 2: Lemma 3 still holds for AMP for coded x,
i.e., h𝑡 is IIDG and independent of x, and LD and NLD of
AMP can be characterized by

LD : 𝜌 = 𝜙(𝑣), (17a)

NLDDEC : 𝑣 =𝜔C (𝜌) ≡ 1
𝑁

mmse(x|√𝜌x+z,x∈C). (17b)

The 𝜙(𝑣) in (17a) is the same as that in (13a), and 𝜔C (𝜌)
depends on the code constraint.

B. Area Property of LRMS and Capacity Optimality of AMP

In the un-coded case in (10), as shown above, AMP con-
verges to a fixed (𝜌∗, 𝑣∗) in Fig. 4. Detection is not error free
as 𝑣∗ > 0.

In the coded case, it is possible to achieve error-free
detection using a properly designed 𝜔C (𝜌). As illustrated in
Fig. 6, the key is to create a detection tunnel that converges
to 𝑣 = 0, implying zero error rate. There should be no fixed
point between 𝜔C (𝜌) and 𝜙−1 (𝜌), since otherwise the tunnel
will be closed at 𝑣 > 0. This requires that

𝜔C (𝜌) < 𝜙−1 (𝜌), for 0 ≤ 𝜌 ≤ 𝑠𝑛𝑟. (18a)

Also, by definition, the MMSE NLDDEC in (17b) should
achieve an MSE lower than that of a symbol-by-symbol
detector, i.e.,

𝜔C (𝜌) < 𝜔S (𝜌), for 𝜌 ≥ 0. (18b)

Combining (18a) and (18b), we obtain a necessary and suffi-
cient condition for AMP to achieve error-free detection:

𝜔C (𝜌) < 𝜔∗
C (𝜌), for 0 ≤ 𝜌 ≤ 𝑠𝑛𝑟, (19a)

where

𝜔∗
C (𝜌) = min

{
𝜔S (𝜌), 𝜙−1 (𝜌)

}
, for 0 ≤ 𝜌 ≤ 𝑠𝑛𝑟. (19b)

𝜌

𝑣

0

1

R

(𝜌∗, 𝑣∗)

𝜔𝒮

𝜔𝒞

𝜙#$

snr

Fig. 6. Graphical illustration of AMP, where 𝜔S is a demodulation function
(un-coded case) and 𝜔C is a transfer function of a decoder (coded case). The
iterative process of AMP is illustrated by the evolution trajectory between
𝜙−1 and 𝜔C .

Proposition 1: Suppose that Assumption 1 holds. Then the
constrained capacity of an LRMS with the given S is

𝐶 = 𝐴𝜔∗
C
, (20a)

where 𝐴𝜔∗
C

is the area covered by 𝜔∗
C , i.e.,

𝐴𝜔∗
C
≡

∫ 𝑠𝑛𝑟

0
𝜔∗

C (𝜌)𝑑𝜌 (20b)

= 𝛽−1 [𝜌∗/𝑠𝑛𝑟−log(𝜌∗/𝑠𝑛𝑟)−1
]
+
∫ 𝜌∗

0
𝜔(𝜌)𝑑𝜌. (20c)

Proof: See APPENDIX A.
Combining (8), (19) and (20), we obtain the capacity

optimality of AMP below.
Theorem 1 (Capacity Optimality): Assume that Assump-

tions 1 and 2 hold and AMP converges to 𝑣 = 0. Then,

𝑅C → 𝐶, (21)

if 𝜔C (𝜌) → 𝜔∗
C (𝜌) in [0, 𝑠𝑛𝑟].

Fig. 7 gives a graphical illustration of Theorem 1. The
following are some notes on Theorem 1.

• Theorem 1 is based on a matching condition:

𝜔C (𝜌) → 𝜔∗
C (𝜌). (22)

A proof for the existence of a code achieving (22) can be
found in Appendix C-B for Gaussian signaling. For other
signaling, the existence of such a code is a conjecture
only. We will discuss techniques to approximately achieve
(22) for QPSK modulations in IV-A.

• The situations for multi-ary modulations are more compli-
cated. Various techniques have been developed to match
the extrinsic information transfer (EXIT) functions of
two local processors in conventional Turbo receivers
[40]–[42]. These methods can be borrowed to achieve
(22) approximately. Detailed discussions on the multi-ary
systems are beyond the scope of this paper.

• Interestingly, the discussions above provide an alternative
proof for the constraint capacity of an LRMS. The key is
to prove 𝐴𝜔∗

C
= 𝐶 without prompting the result in [28],

[29], [37]. This is indeed possible using the properties of
AMP directly. The details can be found in Appendix B.
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𝜌

𝑣

0

1

(𝜌∗, 𝑣∗)

R𝒞 = C =A𝜔𝒞∗

𝜙"#

𝜔𝒞∗ 𝜔𝒮

snr

Fig. 7. Graphical illustration of the capacity, the maximum achievable rate of
AMP and the optimal transfer function of decoder. The maximum achievable
rate of AMP equals to the capacity, which is the area covered by 𝜔∗

C .

Area Properties: Based on the above discussions, we can
obtain some interesting area properties as illustrated in Fig. 8.

(i) Area 𝐴AGPO gives the entropy of the constellation, e.g.
log |S|, as discussed in II-A, which is maximum achiev-
able rate in the noiseless case.

(ii) Area 𝐴AGQO gives the capacity of SISO-AWGN channel
as discussed in II-A (see Fig. 1).

(iii) Area 𝐴GPQ gives the rate loss after SISO coding to
combat the channel noise. As SNR goes to infinity, point
Q moves right to infinity (e.g. point P) and the SISO code
rate approaches the maximum log |S|.

(iv) Area 𝐴AFQO gives the capacity 𝐶 of an LRMS and also
the achievable rate of AMP.

(v) Area 𝐴AFHO gives the achievable rate of a receiver with
an AMP detector cascaded by a decoder [43], [44].
There is no iteration between the two. In this case, AMP
achieves the MMSE by treating the codeword as an IID
sequence. However, the overall algorithm is not capacity
optimal (see III-D).

(vi) Area 𝐴FQH gives the rate loss for the cascading receiver
in (v).

(vii) Area 𝐴AEF gives the shaping gain of Gaussian signaling.
Curve AEP denotes the un-coded Gaussian NLD for
Gaussian signaling.

(viii) Area 𝐴FGQ gives the capacity gap of LRMS and parallel
SISO channels. When 𝛽 → 0, lim𝛽→0 A

HA = I ,
indicating that the capacity of an LRMS will converge
to that of a set of parallel SISO channels in the lim-
iting case. In this case, the cross-symbol interference
disappears, so B→S and areas 𝐴FGQ and 𝐴FQH become
negligible. Then, the separate detection and decoding
strategy becomes optimal.

C. Gaussian Signaling

We now study a special case of III-B when x is Gaussian.
We show that in this case both Assumptions 1 and 2 asymp-
totically hold. In addition, the results in III-B have simpler
derivations as well as closed-form expressions.

For Gaussian signaling, 𝜔(𝜌) = 𝜔Gau (𝜌) = 1/(1 + 𝜌) [44].
Thus we can rewrite (19b) as

𝜔∗
C−Gau (𝜌)=min{1/(𝜌 + 1), 𝜙−1 (𝜌)}, 0≤ 𝜌≤ 𝑠𝑛𝑟. (23)

𝜌

𝑣

O

A B S

Q

G

H

E

F

P

non-Gaussian NLD

Gaussian NLDcascading 
NLD

matched NLD

LDLD
(β → 0)

Fig. 8. Interpretations of SINR-variance transfer charts and areas of AMP.
Curve BQ represents LD 𝜙−1. When 𝛽 → 0, it moves to the “interference-
free” SQ. AEP: un-coded Gaussian NLD 𝜔Gau; AFP: un-coded non-Gaussian
NLD 𝜔S ; AFQ: matched decoder 𝜔∗

C ; AFH: cascading decoder.

Then we have the following results for an LRMS with Gaus-
sian signaling.

• Unique Fixed Point: Assumption 1 holds. That is, equa-
tion 𝜔Gau (𝜌) = 𝜙−1 (𝜌) has a unique positive solution:

𝜌∗Gau=
(1−𝛽)𝑠𝑛𝑟−1+

√︁
[(1−𝛽)𝑠𝑛𝑟−1]2+4𝑠𝑛𝑟

2
. (24)

• Area Property: Let the area covered by 𝜔∗
C−Gau be

𝐴𝜔∗
C−Gau

≡
∫ 𝑠𝑛𝑟

0
𝜔∗

C−Gau (𝜌)𝑑𝜌 (25a)

= 𝛽−1log(1+𝛽 𝑠𝑛𝑟 𝑣∗Gau)−log(𝑣∗Gau) + 𝑣
∗
Gau−1, (25b)

where 𝑣∗Gau=𝜙
−1 (𝜌∗Gau). Then area 𝐴𝜔∗

C−Gau
equals to the

Gaussian capacity of an LRMS, i.e.,

𝐴𝜔∗
C−Gau

= 𝐶Gau. (26)

Proof: See APPENDIX C-A.
• Code Existence: For Gaussian signaling, there ex-

ists an 𝑛-layer superposition coded modulation (SCM)
code with rate 𝑅𝑛 and transfer function {𝜔C𝑛 (𝜌) <

𝜔∗
C−Gau (𝜌),∀𝜌 ≥ 0}, and as 𝑛→ ∞,

𝑅𝑛 → 𝐴𝜔∗
C−Gau

. (27)

Proof: See Appendix C-B.
That is, for Gaussian signaling, there exists an SCM code
that asymptotically matches with 𝜔∗

C−Gau and its rate →
𝐴𝜔∗

C−Gau
.

• Capacity Optimality: Assume that Assumption 2 holds,
AMP achieves the Gaussian capacity when 𝜔C = 𝜔∗

C−Gau:

𝑅C = 𝐶Gau. (28)

D. Comparisons with Alternative Algorithms

1) Comparison with Turbo-LMMSE: It is proved in [31],
[32] that Turbo-LMMSE is capacity achieving for Gaussian
signaling. In the following, we show that Turbo-LMMSE is
sub-optimal for non-Gaussian signaling.

The main difference between AMP and Turbo-LMMSE is
as follows. To avoid the correlation problem in the iterative
process, Turbo-LMMSE uses extrinsic local processors (e.g.
an extrinsic LD and an extrinsic decoder), while AMP uses
an “Onsager”-term.
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Fig. 9. Comparison between the capacity and the achievable rates of AMP
and Turbo-LMMSE of an LRMS with 𝛽 = 𝑁 /𝑀 = {1, 1.5}, where 𝐶Gau
denotes the Gaussian capacity and also the achievable rates of AMP and
Turbo-LMMSE with Gaussian signaling, 𝑅AMP and 𝑅T−LMMSE respectively
denote the achievable rates of AMP and Turbo-LMMSE with QPSK, 16QAM
and 8PSK modulations.

Assume that the transfer functions of the detector and the
decoder in Turbo-LMMSE are matched. The achievable rate
of Turbo-LMMSE is given in [31]

𝑅LMMSE = log |S| −
∫ +∞

0
𝜔S

(
𝜌 + 𝜙

(
𝜔S (𝜌)

) )
𝑑𝜌. (29)

Fig. 9 shows the capacity and the achievable rates of AMP
and Turbo-LMMSE. The capacity for Gaussian signaling is
achieved by both AMP and Turbo-LMMSE. For QPSK, 8PSK
and 16QAM modulation, the achievable rate of AMP equals
to capacity when Assumption 1 holds, while Turbo-LMMSE
always has rate loss. Similar results can be obtained for other
non-Gaussian signaling. In addition, the gap between AMP
and Turbo-LMMSE increases with 𝛽. This gap → 0 when
𝛽 → 0. The reason why Turbo-LMMSE has performance loss
is that extrinsic update leads to performance loss for non-
Gaussian signal processing, which was first pointed out in [27].
For more details, please refer to [27].

2) Comparison with Cascading AMP and Decoding: We
define a cascading AMP and decoding (AMP-DEC) scheme
[43], [44] as follows. We run AMP until it converges. The
result is used by decoder. There is no iteration between
AMP and the decoder. The area 𝐴AFHO in Fig. 8 shows the
achievable rate of AMP-DEC, i.e.,

𝑅AMP−DEC = 𝐴AFHO =

∫ 𝜌∗

0
𝜔S (𝜌)𝑑𝜌. (30)

For Gaussian signaling, 𝜔Gau (𝜌) = 1/1 + 𝜌. Hence,

𝑅AMP−DEC = log(1 + 𝜌∗Gau), (31)

where 𝜌∗Gau=0.5
[
(1−𝛽)𝑠𝑛𝑟−1+

√︁
[(1−𝛽)𝑠𝑛𝑟−1]2+4𝑠𝑛𝑟

]
(see

(24)). If 𝛽 > 1, when 𝑠𝑛𝑟 → ∞, we have

𝜌∗Gau → (𝛽 − 1)−1, (32)

and
𝑅AMP−DEC → − log(1 − 𝛽−1). (33)

That is, the achievable rate of AMP-DEC converges to a finite
value, and it goes to zero as 𝛽 → ∞. This is very different
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Fig. 10. Comparison between the capacity, the achievable rates of AMP, and
separate optimal MMSE detection and ideal SISO decoding in [43], [44] with
𝛽 = 𝑁 /𝑀 = {1, 1.5}, where 𝐶Gau denotes the Gaussian capacity and also
the achievable rates of AMP with Gaussian signaling, 𝑅AMP and 𝑅AMP−DEC
respectively denote the achievable rates of AMP and “cascading AMP and
decoding” scheme with QPSK, 16QAM and 8PSK modulations.

v

0
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snrmin snrmax
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NLDSBS

snr maxsnr >

LD: snrmax< snr <snr min

LD: snr maxsnr =

LD: = snr minsnr

LD: < snr minsnr

A

B

Worst fixed point jumps 

from A to B at                        snrmaxsnr =

Fig. 11. Multiple fixed points illustration of AMP with QPSK modulation,
𝛽 = 𝑁 /𝑀 = 2, 𝑠𝑛𝑟min = 9.05 dB, 𝑠𝑛𝑟max = 15.77 dB. Assumption 1 holds
when 𝑠𝑛𝑟 < 𝑠𝑛𝑟min or 𝑠𝑛𝑟 > 𝑠𝑛𝑟max; Three fixed points for 𝑠𝑛𝑟min <
𝑠𝑛𝑟 < 𝑠𝑛𝑟max. Besides, the first fixed point jumps from Point A to Point B
at 𝑠𝑛𝑟 = 𝑠𝑛𝑟max. “semilogy”-plot is used to see the cross points clearly.

from the Gaussian system capacity that 𝐶 → ∞ as 𝑠𝑛𝑟 → ∞.
Fig. 10 compares AMP and AMP-DEC. For QPSK, 8PSK

and 16QAM modulations, the achievable rate of AMP-DEC
is lower than that of AMP. This gap increases with 𝛽, but is
negligible if 𝛽 is small (e.g. 𝛽 < 0.5 based on our experimental
findings). Furthermore, different from the rate of AMP that
always increases with the size of constellation, the rate of
AMP-DEC decreases with the increasing of the constellation
size for large 𝛽.

As shown Fig. 10, the achievable rate of AMP-DEC jumps
at certain 𝑠𝑛𝑟 values. This happens when the number of fixed
points changes. Fig. 11 illustrates this phenomenon for 𝛽 = 2.
For 𝑠𝑛𝑟 = 𝑠𝑛𝑟max, the number of fixed points is 3 at the left
vicinity and 1 at the right vicinity. While increasing 𝑠𝑛𝑟, the
worst fixed point jumps from Point A to Point B at 𝑠𝑛𝑟 =

𝑠𝑛𝑟max, resulting in rate jump of AMP-DEC in Fig. 10.
3) Comparison with AMP with Internal Iteration: Fig. 12

illustrates an alternative for AMP. It involves the iteration of a
decoder (DEC) module and an AMP module. In each global
iteration, there are multiple internal iteration within the AMP
module. The scheme in Fig. 12 may have the advantage of low
cost if the overall complexity is dominated by that of DEC.
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DEC LDNLD    

AMP

SBS

Fig. 12. AMP with internal iteration, in which “DEC” denotes decoder, and
AMP is discussed in II-C with SBS-NLD being the demodulation for the
constellation constraint S.

However, if the decoding complexity (e.g. sum-product LDPC
decoding) is lower than that of AMP, the scheme in Fig. 12
may have higher complexity due to the internal iteration. Since
there is no closed-form transfer function for the AMP module,
it makes the achievable rate analysis and optimization more
difficult. We conjecture that the scheme in Fig. 12 has the
same overall performance of AMP without internal iteration.
However, we do not have a proof of this conjecture.

IV. LDPC CODE DESIGN AND SIMULATION RESULTS

This section discusses matching techniques using optimized
LDPC codes and QPSK modulation. Simulation results will be
provided.

A. LDPC Code Optimization for AMP

According to the code design principle in Section III, the
object of code optimization is to design an code with an a-
posterior variance transfer function 𝑣 = 𝜔C (𝜌) satisfying the
following matching condition:

𝑣 = 𝜔C (𝜌) = 𝜔∗
C (𝜌), 0 ≤ 𝜌 ≤ 𝑠𝑛𝑟, (34)

with a coding rate equal to the capacity.
The extrinsic information transfer (EXIT) chart matching

techniques [45]–[47] can be used for this purpose by choosing
optimized degree distributions. The discussions below follow
[47, Appendix 5G] to design irregular LDPC codes. The
difference is that mutual information is used instead of log
likelihood ratio (LLR) in tracking the evolution process.

According to [46], the decoder characteristic for an LDPC
code can be computed as

𝐼E,V=
𝑑𝑣,max∑
𝑖=1

𝜆𝑖 · 𝐽
(√︃

(𝑖−1)
[
𝐽−1 (

𝐼E,C
) ]2+4𝜌

)
, (35a)

𝐼E,C=1−
𝑑𝑐,max∑
𝑗=1

𝜂 𝑗 · 𝐽
(√︁
𝑗−1 · 𝐽−1 (

1−𝐼E,V
) )
, (35b)

where

• 𝐼E,V (resp., 𝐼E,C) is the extrinsic information from variable
node (resp., check node) to check node (resp., variable
node),

• 𝑑𝑣,max (resp., 𝑑𝑐,max) is the maximum variable node
(resp., check node) degree,

• 𝜆𝑖 (resp., 𝜂𝑖) is the fraction of edges in the bipartite graph
of the LDPC code connected to variable nodes (resp.,
check node) with degree 𝑖,

• the function 𝐽 (·) is

𝐽 (𝜎𝑐ℎ)=1−
∫ ∞

−∞

𝑒
−

(𝑦−𝜎2
𝑐ℎ

/2)2

2𝜎2
𝑐ℎ√︃

2𝜋𝜎2
𝑐ℎ

log2 (1+𝑒−𝑦) 𝑑𝑦, (36)

and 𝐽−1 (·) is the inverse of 𝐽 (·),
• 𝜌 is the decoder input SNR.

Substituting (35b) into (35a), we can charaterize the LDPC
code by one single variable 𝐼E,V using

𝐼E,V=

𝑑𝑣,max∑︁
𝑖=1

𝜆𝑖𝐽

(√︃
(𝑖−1)

[
𝐽−1 (𝐼E,C (𝐼E,V)) ]2 + 4𝜌

)
. (37)

To satisfy (34), the converged extrinsic information 𝐼E,V
of the LDPC decoder, denoted as 𝐼𝐸,𝑉 ,fin (𝜌), should lead
to an output a posterior variance 𝑣 = 𝜔C (𝜌), i.e., given 𝜌,
𝐼𝐸,𝑉 ,fin (𝜌) should satisfy the following equation.

𝑑𝑣,max∑︁
𝑖=1

Λ𝑖𝜔QPSK

(
𝑖[𝐽−1 (𝐼𝐸,𝐶,fin)]2+4𝜌

4

)
= 𝜔C (𝜌), (38)

where
• Λ𝑖 is the fraction of variable node of degree 𝑖 and is

computed as

Λ𝑖 = 𝜆𝑖/𝑖
/
𝑑𝑣,max∑
𝑖=1

𝜆𝑖/𝑖 , (39a)

• 𝜔QPSK (·) is the MMSE function of QPSK demodulation
given in (7),

• 𝐼𝐸,𝐶,fin is the converged check node to variable node
message and is computed as

𝐼𝐸,𝐶,fin=1−
𝑑𝑐,max∑
𝑗=1

𝜂 𝑗𝐽

(√︁
𝑗−1𝐽−1 (

1−𝐼E,V,fin
) )
. (39b)

The optimization problem can be formulated to maximize the
code rate under the constraint (38):

max
{𝜆𝑖 }

𝑑𝑣,max∑
𝑖=1

𝜆𝑖/𝑖 s.t.
𝑑𝑣,max∑
𝑖=1

𝜆𝑖 = 1, {𝜆𝑖} ∈ Ξ. (40)

where Ξ is defined as the constraint:
𝑑𝑣,max∑︁
𝑖=1

𝜆𝑖𝐽

(√︃
(𝑖−1)

[
𝐽−1 (𝐼E,C (𝐼E,V))]2+ 4𝜌

)
> 𝐼E,V, (41a)

for ∀0 < 𝜌 < ∞ and 𝐼E,V,ini (𝜌) ≤ 𝐼E,V ≤ 𝐼E,V,fin (𝜌), and
𝐼E,V,ini (𝜌) is the initial extrinsic information given by the
channel:

𝐼E,V,ini (𝜌)=
𝑑𝑣,max∑
𝑖=1

𝜆𝑖𝐽

(√︃
(𝑖−1)

[
𝐽−1 (0)

]2+4𝜌
)
= 𝐽 (2√𝜌). (41b)

The optimization problem in (40) is non-convex. However,
given {𝜂𝑖 , 𝑖 = 1, 2, . . . , 𝑑𝑐,max}, the problem in (40) can be
solved using a standard linear programming technique. In this
paper, an iterative way to optimize {𝜆𝑖 , 𝑖 = 1, 2, . . . , 𝑑𝑣,max}
with {𝜂𝑖 , 𝑖 = 1, 2, . . . , 𝑑𝑐,max} fixed is used (see Algorithm 1).
In Algorithm 1, degree distributions are denoted as

𝜆(𝑥) =
𝑑𝑣,max∑
𝑖=1

𝜆𝑖𝑥
𝑖−1 and 𝜂(𝑥) =

𝑑𝑐,max∑
𝑖=1

𝜂𝑖𝑥
𝑖−1. (42)
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We observed that a maximum trial 𝑇 = 5 and a threshold
𝜖 = 10−3 are good choice for Algorithm 1. Also, we force
the degree-1 fraction 𝜆1 = 0. For results given in Table I,
Algorithm 1 is repeated by manually tuning check edge
distribution 𝜂(𝑥) and maximum variable degree 𝑑𝑣,max until
a matching code is found. For the LDPC code optimization
for Turbo-LMMSE, we only need to change (38) into to

𝑑𝑣,max∑
𝑖=1

Λ𝑖 · 𝜔QPSK

(
𝑖 · [𝐽−1 (𝐼𝐸,𝐶,fin) ]2

4

)
= 𝜔ext

C (𝜌), (43)

where 𝜔ext
C (𝜌) is matched to the Turbo-LMMSE LD transfer

function.
With the optimized degree distributions 𝜂(𝑥) and 𝜆 (𝑇 ) (𝑥),

a parity-check matrix for simulation is generated as follows:

• Set a code length to 105.
• Randomly generate a parity-check matrix of columns

equal to the code length according to the optimized degree
distributions 𝜂(𝑥) and 𝜆 (𝑇 ) (𝑥).

• Remove cycle-4 loops in the generated parity-check ma-
trix by removing one edge in every founded cycle-4 loop
in the parity-check matrix.

Removing cycle-4 loops using the above method will slightly
change the degree distributions. However, for a code length of
105, this change has negligible effect on overall performance.

The high error floors in Fig. 13 are due to the fixed points
of 𝜙−1 (·) and 𝜔C (𝜌). More research effort is still required to
improve this problem.

Related Works: Recently, LDPC codes are optimized to
support much higher sum spectral efficiency and user loads
for linear systems [47]–[49]. Based on the EXIT analysis [45],
[46], a LDPC code is constructed to obtain a near capacity
performance [50], [51]. To support massive users, an irregular

Algorithm 1 Algorithm for LDPC Code Optimization
Input: Target decoder transfer 𝑣 = 𝜔C (𝜌), check edge distri-

bution 𝜂(𝑥), maximum trial 𝑇 , Threshold 𝜖 and maximum
variable degree 𝑑𝑣,max.

Output: The optimized variable edge distribution 𝜆 (𝑇 ) (𝑥).

1: Initialize 𝜆 (0) (𝑥) = 𝑥.

2: for 𝑡 = 1 to 𝑇 do

3: Solve (40) by linear programming to obtain 𝜆 (𝑡) (𝑥),
where 𝐼

𝐸,𝑉 ,fin (𝜌) in (40) is obtained by solving (38)
using 𝜆 (𝑡−1) (𝑥).

4: if 1-

𝑑𝑣,max∑
𝑖=1

𝜆
(𝑡 )
𝑖
𝜆
(𝑡−1)
𝑖√√(

𝑑𝑣,max∑
𝑖=1

(𝜆(𝑡 )
𝑖

)2

) (
𝑑𝑣,max∑
𝑖=1

(𝜆(𝑡−1)
𝑖

)2

) ≤ 𝜖 then

5: 𝜆 (𝑇 ) (𝑥) = 𝜆 (𝑡) (𝑥).

6: return 𝜆 (𝑇 ) (𝑥).

7: end if
8: end for
9: return 𝜆 (𝑇 ) (𝑥).

repeat-accumulate (IRA) code is optimized in [52], [53]. More
recently, a Turbo-LMMSE receiver with an optimized IRA
code approaches the capacity for various of system loads [54].
However, the results in [54] mainly focused on low-rate coding
schemes (e.g. 𝑅C = 0.1 or 0.2). In these cases, Turbo-LMMSE
is near-optimal (see the region of 𝑅C ≤ 0.5 in Fig. 9). In this
paper, we will show that AMP performs much better than
Turbo-LMMSE in high transmission rate.

For higher order modulation, the design of a curve-matching
code is more complicated. Irregular bit-interleaved coded
modulation (Ir-BICM) was developed for high-order modu-
lation [40]–[42]. These methods can be borrowed to design
curve-matching codes for high-order modulations. Detailed
discussions on the high-order modulations are beyond the
scope of this paper. We leave it as our future work.

B. BER Comparison with AWGN Irregular LDPC Code and
Regular LDPC Code

Fig. 13 provides the BER simulations for an LRMS,
in which x is generated using optimized irregular LDPC
codes [47], [48] with code length = 105. The AMP
(see Fig. 5) for an optimized LDPC coding (see IV-A)
LRMS is denoted as “Opt-Irreg”. The APP decoder is
implemented using a standard sum-product decoder. The
channel loads are 𝛽 = {0.1, 0.5, 1, 2} with (𝑁, 𝑀) =

(250, 2500), (250, 500), (500, 500) and (500, 250), respec-
tively. The corresponding optimized code parameters are given
in Table I, which illustrates that these decoding thresholds are
very close (about 0.1 dB∼0.2 dB away) to the Shannon limits.

To verify the finite-length performance of the irregular
LDPC codes with code rate ≈ 0.5, we provide the BER
performances of the optimized codes. QPSK modulation is
used. The rate of each symbol is 𝑅C ≈ 1 bits/symbol, and the
sum rate is 𝑅𝑠𝑢𝑚 ≈ 𝑁 bits per channel use. The maximum
iteration number is 200 ∼ 700. Fig. 13 shows that for all 𝛽,
gaps between the BER curves of the codes at 10−5 and the
corresponding Shannon limits are within 0.7 ∼ 1 dB.

To validate the advantage of matching principle, we provide
AMP for a standard regular (3, 6) LDPC code (denoted
as “(3, 6)”) [55], and a SISO irregular LDPC code [56]
(denoted as “SISO-Irreg”), corresponding to 𝑅AMP−DEC dis-
cussed in Section III-D. The parameters of “SISO-Irreg” are
𝜆(𝑥) = 0.170031𝑥 + 0.160460𝑥2 + 0.112837𝑥5 + 0.047489𝑥6 +
0.011481𝑥9 + 0.091537𝑥10 + 0.152978𝑥25 + 0.036131𝑥26 +
0.217056𝑥99 and 𝜂(𝑥) = 0.0625𝑥9 + 0.9375𝑥10, whose rate is
0.50004 and decoding threshold is 0.0247 dB away from the
binary input AWGN capacity.

As shown in Fig. 13, when the BER curves of three
systems are at 10−5, the optimized irregular LDPC codes have
0.8 ∼ 2 dB performance gains over the un-optimized regular
(3, 6) LDPC code for 𝛽 = {0.1, 0.5, 1, 2}, and 0.5 ∼ 6 dB
performance gains over “SISO-Irreg” for 𝛽 = {0.5, 1, 2}. For
small 𝛽 (e.g. 𝛽 = 0.1), the “SISO-Irreg” is good enough, since
the interference is negligible in this case (see Fig. 8). These
results demonstrate that code optimization provides attractive
performance improvement, especially for the large 𝛽.
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Fig. 13. Transfer function matching and BER performances of AMP, where “𝜔∗
C” denotes the fully matched transfer function of AMP (target), “𝜔C” the

optimized transfer function of decoder of AMP, 𝐶 the capacity limit, “Thre” the BER threshold, “Opt-Irreg” the BER of AMP-optimized irregular LDPC
codes, “SISO-Irreg” the BER with SISO-optimized irregular LDPC codes, “(3, 6)” the BER of AMP with regular (3, 6) LDPC code. Code length = 105, code
rate ≈ 0.5, QPSK modulation, iterations = 200 ∼ 700, and 𝛽 = 𝑁 /𝑀 = {0.1, 0.5, 1, 2}. For more details, refer to Table I.
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(a) Small β case: “SISO-Irreg” matches better than “Regular”.
Thus, “SISO-Irreg” converges to a lower fixed point.

(b) Large β case: “Regular” matches better than “SISO-Irreg”.
Thus, “Regular” converges to a lower fixed point.

Fig. 14. Graphical illustration of AMP with the regular (3, 6) LDPC code and the SISO-Irreg LDPC code.

Stability of Regular LDPC Code, SISO-Irregular LDPC
Code and the Optimized Code:

• When 𝛽 is small, the curve of “SISO-Irreg” matches
the target curve 𝜔∗

C better than the regular LDPC code.
Therefore, for 𝛽 = {0.1, 0.5}, “SISO-Irreg” outperforms
the regular LDPC code. (See Fig. 14(a).)

• When 𝛽 is moderately large, the (3, 6) regular LDPC
code matches the target curve 𝜔∗

C better than “SISO-
Irreg”. Therefore, for 𝛽 = {1, 2}, the regular LDPC code
outperforms “SISO-Irreg”. (See Fig. 14(b).)

• The optimized code always has the best performance
following the matching principle.

Number of Iterations: The number of iterations mainly
depends on 𝛽. AMP has lower convergence speed when 𝛽 is
large since the AMP LD decreases more slowly. Consequently,
it needs more iterations to converge. In our simulations, for
𝛽 = {0.1, 0.5, 1, 1.5}, 200 iterations is sufficient, while more
iterations (e.g. 700) for higher 𝛽 (e.g. 𝛽 = 2).

SE of AMP with LDPC Code: Fig. 15 compares the simu-
lated and predicted BER performances of AMP with optimized
irregular LDPC code. As we can see, the SE predictions are
accurate when the number of iterations is small (e.g. Ite ≤ 30).
The gap increases with the number of iterations. For Ite = 200,
the simulated BER is about 0.5 dB away from the SE curve.
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TABLE I
OPTIMIZED IRREGULAR LDPC CODES FOR AMP AND TURBO-LMMSE UNDER QPSK MODULATION

Methods AMP Turbo-LMMSE
𝛽 0.1 0.5 1 1.5 2 1.5
𝑁 250 250 500 500 500 500
𝑀 2500 500 500 333 250 333

Code length 105

Target Code rate 0.5 0.75 0.5 0.75
Capacity limit 0.110 0.572 1.206 5.384 2.669 7.994

Designed
Code rate 0.5000 0.5013 0.5029 0.7370 0.5021 0.7369

𝑅C 1.0000 1.0026 1.0058 1.4741 1.0042 1.4738
Rsum 249.99 250.67 502.90 737.06 502.10 736.91

Iterations 200 200 200 200 700 200
Check edge
distribution 𝜂10 = 1 𝜂9 = 1 𝜂8 = 1 𝜂8 = 0.5

𝜂20 = 0.5 𝜂7 = 1 𝜂12 = 0.8
𝜂80 = 0.2

𝜆2 = 0.1922 𝜆2 = 0.2254 𝜆2 = 0.2746 𝜆2 = 0.5546 𝜆2 = 0.4655 𝜆2 = 0.4882
𝜆3 = 0.1694 𝜆3 = 0.2066 𝜆3 = 0.2622 𝜆3 = 0.1450 𝜆3 = 0.1183 𝜆19 = 0.3228

Variable 𝜆7 = 0.2201 𝜆7 = 0.1101 𝜆10 = 0.2098 𝜆40 = 0.1750 𝜆20 = 0.1020 𝜆65 = 0.0002
edge 𝜆8 = 0.0511 𝜆8 = 0.1377 𝜆40 = 0.1950 𝜆45 = 0.1255 𝜆21 = 0.1827 𝜆67 = 0.0002

distribution 𝜆26 = 0.0759 𝜆27 = 0.1294 𝜆45 = 0.0223 𝜆140 = 0.1315 𝜆100 = 0.1201
𝜆27 = 0.1315 𝜆50 = 0.0969 𝜆90 = 0.0361 𝜆110 = 0.0685
𝜆80 = 0.0351 𝜆60 = 0.0939
𝜆90 = 0.1247

𝑠𝑛𝑟∗dB 0.3 0.69 1.33 5.62 2.77 8.5
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Fig. 15. Comparison of simulation and SE predictions for AMP with
optimized irregular LDPC code under QPSK modulation. The curves from
right to left correspond to iterations ite = [1, 5, 10, 15, 20, 30, 200]. Other
parameters are the same as those of the case 𝛽 = 1 in Fig. 13 and Table I.

C. BER Comparison with Optimized Turbo-LMMSE

We now compare AMP and Turbo-LMMSE [54]. We con-
sider a 500 × 333 QPSK LRMS with 𝛽 = 1.5. As shown in
Fig. 9(b), the SNR limits of AMP and Turbo-LMMSE for
the target rate 𝑅C = 1.48 ≈ 1.5 are 5.38 dB and 7.99 dB
respectively. Fig. 16(a) shows the transfer functions of AMP
and Turbo-LMMSE after optimization. The parameters of the
optimized LDPC codes are listed in Table I. The output of the
DEC transfer function is an a-posteriori variance, while that
of Turbo is an extrinsic variance. Fig. 16(b) shows the BER
performances of AMP and Turbo-LMMSE (with iterations
= 200) using optimized LDPC codes. As we can see, the
thresholds of AMP and Turbo-LMMSE are 5.62 dB and

8.50 dB respectively, 0.24 dB and 0.51 dB away from the
corresponding achievable rate limits, and 0.6 dB and 1.2 dB
away from their respective thresholds. We can see that, AMP
has 3.5 dB improvement in BER over Turbo-LMMSE.

Complexity Comparison: The overall complexity of
an iterative receiver including an LD and a DEC is
O ((Ξ𝐿𝐷+Ξ𝐷𝐸𝐶 )𝑁𝑖𝑡𝑒), where 𝑁𝑖𝑡𝑒 is the number of iterations,
Ξ𝐿𝐷 and Ξ𝐷𝐸𝐶 are complexities of LD and DEC per iteration
respectively. For an LDPC decoder, Ξ𝐷𝐸𝐶 ≈ 4𝑑𝑣𝑁𝑐 , where
𝑁𝑐 is the code length and 𝑑𝑣 =

[ ∑
𝑖 𝜆𝑖/𝑖

]−1 denotes the
averaged variable-node degree. For AMP, ΞAMP

𝐿𝐷
= O(𝑀𝑁).

For Turbo-LMMSE, ΞTurbo
𝐿𝐷

= O(𝑀𝑁2) since it involves matrix
inverse. Thus, AMP has much lower cost than Turbo-LMMSE.

V. CONCLUSION

This paper is on an AMP based scheme for a coded
LRMS with arbitrary input distributions. We show that AMP
is information theoretically optimal using a curve matching
principle and the IIDG assumption. In addition, a code design
principle is provided for AMP, and the irregular LDPC codes
are considered for binary signaling as an example. The nu-
merical results show that AMP is capacity-approaching (i.e.
within 1dB away from the limit) based on optimized irregular
LDPC codes, and significant performance improvements (0.8
dB ∼ 4 dB) are observed over the system without code
optimization. Apart from that, AMP has lower complexity
and better performance that the well-known Turbo-LMMSE
algorithm.

The proof of Assumption 2 is an interesting future work.
A rigorous SE proof for a certain kind of non-separable (e.g.
uniformly Lipschitz) functions was established in [59], which
may be used to prove Assumption 2 in this paper.
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Fig. 16. Transfer function matching (left) and BER performances (right) of AMP and Turbo-LMMSE [32], [54] with optimized irregular LDPC codes,
where “DET” denotes the LD transfer function of AMP/Turbo-LMMSE, “DEC” the optimized decoding transfer function of AMP/Turbo-LMMSE, 𝐶Gau the
Gaussian capacity, “SE” the state evolution, “lim” the QPSK achievable rate limits of AMP/Turbo-LMMSE, “sim” the simulated BERs. Code length = 105,
code rate ≈ 0.74, QPSK modulation, iterations = 200, and 𝛽 = 1.5 with 𝑁 = 500 and 𝑀 = 333, irregular LDPC codes are optimized for both AMP and
Turbo-LMMSE. For more details, refer to Table I.

APPENDIX A
PROOF OF PROPOSITION 1

In this appendix, we will first show the consistency between
the capacity given in (9) and that derived in [28]. We then show
𝐴𝜔∗

C
= 𝐶, where 𝐴𝜔∗

C
is given in (20) and 𝐶 in (9).

A. Consistency Between (9) and the Results in [28]

Reference [28] is based on the following system model:

y = Ax + n (44)

where A is an IIDG matrix with 𝐴𝑖 𝑗 ∼ N(0, 1/𝑁), n ∼
N(0, I𝑀 ), and 𝑀, 𝑁 → ∞ with a fixed 𝛿 = 𝑀/𝑁 . Note that
(44) is a real system, which is different from (1). The capacity
of (44) was derived in [28] as follows.

Lemma 5: Assume that 𝜁 = mmse𝑋 (𝛿/(1 + 𝜁)) has one
positive fixed point 𝜁∗. The capacity of the LRMS in (44)
is given by

𝐶=
𝛿

2
[
log(1 + 𝜁∗) − 𝜁∗/(1 + 𝜁∗)

]
+ 𝐼 (𝛿/(1 + 𝜁∗)) , (45)

where 𝐼 (𝑠)= 𝐼 (𝑥;
√
𝑠𝑥 + 𝑛), mmse𝑋 (𝑠) = mmse(𝑥 |

√
𝑠𝑥 + 𝑛).

Note that the following:

(i) In (9), 1/2 is removed as (1) is a complex LRMS, while
(44) is a real one.

(ii) Let 𝑣𝑥 be the variance of 𝑥𝑖 in (45), we have

mmse𝑋 (𝑠) = 𝑣𝑥𝜔(𝑣𝑥𝑠), (46a)

𝐼 (𝑠) = 𝐼
(
𝑥;
√
𝑠𝑥 + 𝑧)

)
= 𝐶SISO (𝑣𝑥𝑠). (46b)

(iii) We have 𝑣𝑥 = 𝛿−1𝜎−2 = 𝛽𝑠𝑛𝑟 with 𝛽 = 𝛿−1 =

𝑁/𝑀 , since (45) considers n ∼ N(0, I𝑀 ) and 𝐴𝑖 𝑗 ∼

CN(0, 1/𝑁). Combining 𝑣𝑥 = 𝛽𝑠𝑛𝑟 and (46), we have

mmse𝑋
(
𝛿/(1+𝜁)

)
= 𝛽𝑠𝑛𝑟 𝜔

(
𝑠𝑛𝑟/(1 + 𝜁)

)
, (47a)

𝐼 (𝛿/(1 + 𝜁∗)) = 𝐶SISO
(
𝑠𝑛𝑟/(1 + 𝜁∗)

)
. (47b)

Following (i)-(iii), we can see the consistency between the
capacities in (9) and (45).

B. Proof of Proposition 1

We now show 𝐴𝜔∗
C
= 𝐶, where 𝐴𝜔∗

C
is given in (20) and 𝐶

in (9).
Let 𝜌∗ = 𝑠𝑛𝑟/(1+ 𝜁∗), i.e. 𝜁∗ = 𝑠𝑛𝑟/𝜌∗−1. Then the fixed

point function in (9) is rewritten to

𝑠𝑛𝑟/𝜌∗ − 1 = 𝛽𝑠𝑛𝑟 𝜔(𝜌∗), (48)

which is equivalent to the fixed point function 𝜔(𝜌) = 𝜙−1 (𝜌).
Substituting (4) and 𝜌∗ = 𝑠𝑛𝑟/(1 + 𝜁∗) into (20), we have

𝐴𝜔∗
C
= 𝛽−1 [𝜌∗/𝑠𝑛𝑟−log(𝜌∗/𝑠𝑛𝑟)−1

]
+
∫ 𝜌∗

0
𝜔(𝜌)𝑑𝜌 (49a)

= 𝛽−1
[
log(1+𝜁∗) − 𝜁∗

1+𝜁∗

]
+ 𝐶SISO

(
𝑠𝑛𝑟

1+𝜁∗

)
. (49b)

This is the same as the capacity 𝐶 in (9). Hence, we complete
the proof of Proposition 1.

APPENDIX B
AN ALTERNATIVE PROOF OF THE CAPACITY OF AN LRMS

In this appendix, we provide an alternative proof for the
capacity of an LRMS using the properties of AMP. We call
M𝑥 (𝑠𝑛𝑟) ≡ 1

𝑁
E
{
‖x− x̂MMSE‖2} the MMSE of an LRMS

and M𝐴𝑥 (𝑠𝑛𝑟) ≡ 1
𝑁

E{‖Ax − Ax̂MMSE‖2} the measurement
MMSE of the LRMS. The following lemma gives the capacity
of an LRMS.
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Lemma 6 (Measurement MMSE and Capacity): Assuming
𝜔(𝜌) = 𝜙−1 (𝜌) has a unique positive solution 𝜌∗. The
measurement MMSE of an LRMS is given by

M𝐴𝑥 (𝑠𝑛𝑟) = 𝜌∗𝜔(𝜌∗)/𝑠𝑛𝑟 = 𝜌∗M𝑥 (𝑠𝑛𝑟)/𝑠𝑛𝑟, (50a)

and the capacity is given by

𝐶= 𝐴𝜔∗
C
, (50b)

where 𝐴𝜔∗
C

is defined in (20).
The next two subsections respectively give the proofs of

(50a) and (50b) in Lemma 6.
• In B-A, we prove the measurement MMSE in (50a) of

an LRMS using the MMSE optimality [28]–[30] and the
decoupling property [38] of AMP.

• In B-B, we prove the capacity in (50b) of an LRMS based
on the measurement MMSE in (50a) using the vector-I-
MMSE theorem [35].

A. Proof of the Measurement MMSE in (50a)
As 𝑡 → ∞, the AMP in (10) converges to

s∗ = s∞, r∗ = r∞, 𝜌∗ = 𝜌∞, 𝜔
∗ = 𝜔(𝜌∗) = 𝑣∞. (51)

If Assumption 1 holds, from Lemma 4, we have s∗ =

x̂(y; 𝑠𝑛𝑟) and M𝑥 (𝑠𝑛𝑟) = 𝜔(𝜌∗). The following proposition
is proved for AMP in [38] (see Theorem 1(A-a) in [38]).

Proposition 2: Note that 〈𝜂′(r∗)〉 = 𝜌∗𝜔∗. Define

s̃ =
[
𝜔∗−1 − 𝜌∗

]−1 [
𝜔∗−1

s∗ − 𝜌∗r∗
]
, (52a)

z̃ = s̃ − x, (52b)

where the entries of z̃ are IID with zero mean and variance
(𝜔∗−1 − 𝜌∗)−1. Then, z̃ can be treated as a random variable
that is asymptotically independent3 with n and A.

Using Proposition 2, we have the following lemma.
Lemma 7: The following equation asymptotically holds for

the fixed point of AMP:

1
𝑁

E
{
(x−s∗) (x−s∗)H}

= 1
𝑁

[ (
𝜔∗−1−𝜌∗

)
I+𝑠𝑛𝑟AHA

]−1
. (53)

Proof: We rewrite (52) in Proposition 2 as

r∗ =
s∗

𝜌∗𝜔∗ +
(
1 − 1

𝜌∗𝜔∗

)
s̃. (54)

The output of AMP LD in (10) converges to

r∗ = s∗ +AH (y −As∗) + 𝛽〈𝜂′(r∗)〉(r∗ − s∗). (55)

For MMSE function 𝜂 [5],

〈𝜂′(r∗)〉 = 𝜌∗𝜔∗. (56)

With (56) and the fixed point function 𝑠𝑛𝑟 =

𝜌∗
[
1 − 𝛽𝜌∗𝜔(𝜌∗)

]−1, (55) can be rewritten to

r∗ =
[
I − 𝑠𝑛𝑟AHA/𝜌∗

]
s∗ + 𝑠𝑛𝑟AHy/𝜌∗. (57)

From (54) and (57), we have

Bs∗ = 𝑠𝑛𝑟AHy +
(
𝜔∗−1 − 𝜌∗

)
s̃, (58)

3Let A = U𝚲V . In [38], it is proved that the entries of b = V z̃ are IIDG
and independent with n and U𝚲. Based on this, substituting A = U𝚲V
and b = V z̃ into (60b), we obtain (60c), which is the same as that z̃ is
independent with n and A.

where B =
(
𝜔∗−1 − 𝜌∗

)
I + 𝑠𝑛𝑟AHA. Thus,

s∗ = B−1 [𝑠𝑛𝑟AHy +
(
𝜔∗−1 − 𝜌∗

)
s̃
]
. (59)

Substituting (52) and y = Ax + n into (59), we have
1
𝑁

E
{
(x − s∗) (x − s∗)H}

(60a)

= 1
𝑁

[
B−1 [𝑠𝑛𝑟AHn +

(
𝜔∗−1 − 𝜌∗

)
z̃]

]2
(60b)

= 1
𝑁

[ (
𝜔∗−1 − 𝜌∗

)
I + 𝑠𝑛𝑟AHA

]−1
, (60c)

where (60c) follows Proposition 2. Thus, we complete the
proof of Lemma 7.

Based on Lemma 7, the MSE of AMP is given by

M𝑥 (𝑠𝑛𝑟) = 1
𝑁

E
{
‖x − s∗‖2} = 𝜔(𝜌∗) (61a)

= 1
𝑁

Tr
{[ (
𝜔∗−1 − 𝜌∗

)
I + 𝑠𝑛𝑟AHA

]−1
}

(61b)

= E𝜆
AHA

{[ (
𝜔∗−1−𝜌∗

)
+ 𝑠𝑛𝑟𝜆AHA

]−1
}
, (61c)

where 𝜆AHA is the eigenvalue of AHA. Also, the measurement
MMSE is derived as

M𝐴𝑥 (𝑠𝑛𝑟) (62a)

= 1
𝑁

E
{
‖Ax −As∗‖2} (62b)

= 1
𝑁

Tr
{
‖A(x − s∗) (x − s∗)HA𝐻

}
(62c)

= 1
𝑁

Tr
{
A

[
(𝜔∗−1 − 𝜌∗)I + 𝑠𝑛𝑟AHA

]−1
A𝐻

}
(62d)

= E𝜆
AHA

{
𝜆AHA

[
(𝜔∗−1 − 𝜌∗) + 𝑠𝑛𝑟𝜆AHA

]−1
}

(62e)

= 𝑠𝑛𝑟−1
[
1−E𝜆

AHA

{[
1+𝑠𝑛𝑟 (𝜔∗−1−𝜌∗)−1𝜆AHA

]−1
}]

(62f)

= 𝜌∗𝜔(𝜌∗)/𝑠𝑛𝑟 (62g)
= 𝜌∗M𝑥 (𝑠𝑛𝑟)/𝑠𝑛𝑟, (62h)

where (62d) follows (53), and (62g) and (62h) follows (61).
Therefore, we obtain (50a).

B. Proof of the Capacity in (50b)

The connection between the measurement MMSE and the
capacity of an LRMS is given by Lemma 8 proven in [35].

Lemma 8 (Vector I-MMSE): Consider a system y =√
𝑠𝑛𝑟Ax + z where x ∼ 𝑃x and z ∼ CN(0, I). Then, the

capacity of this system is given by

𝐶 = 1
𝑁
𝐼 (x;

√
𝑠𝑛𝑟Ax + z) =

∫ 𝑠𝑛𝑟

0
M𝐴𝑥 (𝜌) 𝑑 𝜌. (63)

From (50a) and Lemma 8, we have

𝐶 =

∫ 𝑠𝑛𝑟

0
M𝐴𝑥 (𝑠) 𝑑 𝑠 (64a)

=

∫ 𝑠𝑛𝑟

0
𝜌𝜔(𝜌)/𝑠 𝑑 𝑠 (64b)

=

∫ 𝜌∗

0
[1 − 𝛽𝜌𝜔(𝜌)]𝜔(𝜌) 𝑑 𝜌

1 − 𝛽𝜌𝜔(𝜌) , (64c)

where (64a) follows (63), (64b) follows (50a), and (64c)
follows the fixed point function. The following manipulations
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show that 𝐶 = 𝐴𝜔∗
C
.

𝐶 =

∫ 𝜌∗

0

𝜔 + 𝛽𝜌2𝜔𝜔′

1 − 𝛽𝜌𝜔 𝑑 𝜌 (65a)

=

∫ 𝜌∗

0

𝜔 + 𝜌𝜔′ − 𝜌𝜔′(1 − 𝛽𝜌𝜔)
1 − 𝛽𝜌𝜔 𝑑 𝜌 (65b)

= −
∫ 𝜌∗

0
𝜌 𝑑 𝜔 +

∫ 𝜌∗

0

𝜔 + 𝜌𝜔′

1 − 𝛽𝜌𝜔 𝑑 𝜌 (65c)

=

∫ 𝜌∗

0
𝜌∗ 𝑑 𝜔 + 𝛽−1

∫ 𝜌∗

0
𝑑 log(1 − 𝛽𝜌𝜔) (65d)

=
[
−𝜌𝜔 − 𝛽−1 log(1 − 𝛽𝜌𝜔)

]𝜌=𝜌∗
𝜌=0 +

∫ 𝜌∗

0
𝜔𝑑𝜌 (65e)

= 𝛽−1 [𝜌∗/𝑠𝑛𝑟 − log(𝜌∗/𝑠𝑛𝑟) − 1] +
∫ 𝜌∗

0
𝜔(𝜌)𝑑𝜌 (65f)

= 𝐴𝜔∗
C
, (65g)

where 𝜔′ is the derivative of 𝜔(𝜌), (65e) follows the fixed
point function, and (65g) follows (20). Thus, we obtain (50b).

APPENDIX C
GAUSSIAN SIGNALING

We now study a special case of Gaussian x. In C-A, we
will show a simpler proof as well as a closed-form expression
of the area property. In C-B, we will show the curve matching
condition asymptotically holds, i.e., there exists an 𝑛-layer
SCM code whose transfer function matches with the desired
𝜔∗

C−Gau (𝜌) as 𝑛→ ∞.

A. Gaussian Area Property

The following lemma gives an explicit form of the mea-
surement MMSE for Gaussian signaling.

Lemma 9 (Gaussian Measurement MMSE): For Gaussian
signaling, the measurement MMSE of an LRMS is given by

M𝐴𝑥 (𝑠𝑛𝑟) = 𝑠𝑛𝑟−1𝜌∗Gau/(1 + 𝜌∗Gau), (66)

where 𝜌∗Gau is given in (24).
Proof: For x ∼ CN(0, I), the following LMMSE detec-

tion is a global MMSE estimation of an uncoded LRMS.

s∗ = (AHAH + 𝑠𝑛𝑟−1I)−1AHy. (67)

Its average MSE is the corresponding MMSE, i.e.,

M𝑥 (𝑠𝑛𝑟) = 1
𝑁

Tr
{
(s∗ − x) (s∗ − x)H}

(68a)

= 1
𝑁

Tr
{
(𝑠𝑛𝑟AHA + I)−1} (68b)

= E𝜆
AHA

{(
1 + 𝑠𝑛𝑟𝜆AHA

)−1
}
. (68c)

Then, we obtain the measurement MMSE as

M𝐴𝑥 (𝑠𝑛𝑟) = 1
𝑁

Tr
{
A(s∗ − x) (s∗ − x)HAH}

(69a)

= 1
𝑁

Tr
{
AHA(𝑠𝑛𝑟AHAH + I)−1} (69b)

= E𝜆
AHA

{
𝜆AHA

(
1 + 𝑠𝑛𝑟𝜆AHA

)−1
}

(69c)

= 𝑠𝑛𝑟−1 (1 −M𝑥 (𝑠𝑛𝑟)
)
. (69d)

In addition, according to (15) and M𝑥 (𝑠𝑛𝑟) = 𝜔Gau (𝜌∗Gau) =
1/(1 + 𝜌∗Gau), we have

M𝐴𝑥 (𝑠𝑛𝑟) = 𝜌∗GauM𝑥 (𝑠𝑛𝑟)/𝑠𝑛𝑟 (70a)

= 𝑠𝑛𝑟−1𝜌∗Gau/(1+𝜌
∗
Gau). (70b)

Thus, we obtain Lemma 9.
Now we are ready to prove (26). The Gaussian capacity of

an LRMS is [57]

𝐶Gau = 1
𝑁
𝐼 (x;y) = 1

𝑁
log det(I + 𝑠𝑛𝑟AHA), (71a)

which is achieved by x ∼ CN(0, I). For IIDG A with 𝐴𝑖 𝑗 ∼
CN(0, 1/𝑀), we have [58]

𝐶Gau → log[1 + 𝑠𝑛𝑟 − F ]
+ 𝛽−1 log[1 + 𝑠𝑛𝑟𝛽 − F ] − 𝑠𝑛𝑟−1𝛽−1F , (71b)

where F =0.25
(√︁
𝑠𝑛𝑟 (1+

√
𝛽)2+1 −

√︁
𝑠𝑛𝑟 (1−

√
𝛽)2+1

)2
.

Next, we show that 𝐴𝜔∗
C−Gau

is equal to the Gaussian capacity
𝐶Gau. From (25),

𝐴𝜔∗
C−Gau

= 𝛽−1 log(1+𝛽𝑠𝑛𝑟 𝑣∗Gau)−log(𝑣∗Gau)+𝑣
∗
Gau−1, (72a)

with

𝑣∗Gau= 𝜙
−1 (𝜌∗Gau) (73a)

=
𝛽−1−𝑠𝑛𝑟−1+

√︁
(𝛽−1)2+2(𝛽+1)𝑠𝑛𝑟−1+𝑠𝑛𝑟−2

2𝛽
(73b)

= 1−𝑠𝑛𝑟−1F/𝛽. (73c)

Therefore,
𝐴𝜔∗

C−Gau
=−log

(
1− F

𝛽𝑠𝑛𝑟

)
+ 1
𝛽

log(1+𝛽𝑠𝑛𝑟−F )− 𝑠𝑛𝑟F
𝛽

(74a)

= log(1+𝑠𝑛𝑟−F )+ 1
𝛽

log(1+𝛽𝑠𝑛𝑟−F )− F
𝛽𝑠𝑛𝑟

, (74b)

where the second equation follows from (1 − 𝑠𝑛𝑟−1F/𝛽) (1 +
𝑠𝑛𝑟 − F ) = 1. From (74) and (71), we have (26):

𝐶Gau = 𝐴𝜔∗
C−Gau

. (75)

B. Code Existence for Gaussian Signaling

It was proved in [31] that there exists an infinite-layer SCM
code whose extrinsic decoding transfer function asymptotically
approaches a target monotonically decreasing curve. In this
subsection, we extend this result to the APP decoding transfer
function. We will show that there is an SCM code whose
transfer function 𝜔𝐶𝑛 (𝜌) asymptotically approaches 𝜔∗

C−Gau.
Then, we will then show that the rate of this SCM code
asymptotically approaches to 𝐴𝜔∗

C−Gau
.

We first show that 𝑅AMP can be approached with an infinite-
layer SCM code. It is easy to verify that 𝜙−1 (𝜌) satisfies the
following regularity conditions:

(a) 𝜙−1 (𝜌) ≥ 0, for 𝜌 ∈ [0, 𝑠𝑛𝑟];
(b) monotonically decreasing in 𝜌 ∈ [0,∞);
(c) equation (𝑝−1 + 𝜌)𝜙−1 (𝜌) = 1 has only one positive

solution 𝜌∗𝑝 for any 𝑝 ∈ (0, 1];
(d) continuous and differentiable in [𝜌∗Gau,∞) except for a

countable set of values of 𝜌.
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Fig. 17. An illustration of the transfer function of AMP LD 𝑣 = 𝜙−1 (𝜌)
and the corresponding transfer function 𝑣 = 𝜔𝐶𝑛 (𝜌) of the asymptotically
matched 𝑛-layer SCM decoder.

Consider an 𝑛-layer SCM code 𝑥 =
∑𝑛−1
𝑖=0 𝑥𝑖 and the power

of 𝑥𝑖 is 𝑝𝑥𝑖 = 1/𝑁 . In addition, 𝑥𝑖 is encoded using an idea
random code with code rate4

𝑅𝑛,𝑖 = log
(
1 + 1/𝑛

𝜌∗
−1

1−𝑖/𝑛+(𝑛−𝑖−1)/𝑛

)
, (76)

where 𝑖 ∈ {0, · · · , 𝑛 − 1}, and 𝜌∗
𝑖/𝑛 is the positive solution of

(𝜌 + 𝑛/𝑖)𝜙−1 (𝜌) = 1. Condition (c) ensures the existence of
{𝜌∗
𝑖/𝑛}, and condition (b) ensures 𝜌∗1 < · · · < 𝜌∗2/𝑛 < 𝜌

∗
1/𝑛.

For any 𝑖 ∈ {0, . . . , 𝑛 − 1} and the decoder’s input 𝜌 ∈
[𝜌∗1−𝑖/𝑛, 𝜌

∗
1−(𝑖+1)/𝑛), the first 𝑖 + 1 layers [𝑥0, · · · , 𝑥𝑖] can be

successively decoded in the order from 𝑥0 to 𝑥𝑖 . Thus, under

APP decoding, the transfer function of 𝑥 =
𝑛−1∑
𝑖=0
𝑥𝑖 for input

𝑥 + 𝜌−1/2𝑧 with 𝑧 ∼ CN(0, 1) is

𝜔𝐶𝑛 (𝜌)=


1
𝜌+1 , 0 ≤ 𝜌 < 𝜌∗1

1
𝜌+𝑛/(𝑛−𝑖) , 𝜌∗1−𝑖/𝑛 ≤ 𝜌 < 𝜌∗1−(𝑖+1)/𝑛
0, 𝜌∗1/𝑛 < 𝜌 < ∞

, (77)

where 𝑖 = 1, · · · , 𝑛 − 2.

Fig. 17 shows the transfer functions of 𝑛-layer-SCM decoder
(𝑣 = 𝜔C𝑛 (𝜌)) and LD (𝑣 = 𝜙−1 (𝜌)). Conditions (a)-(c) ensure
that the decoder transfer function lies below that of LD, i.e.,

𝜔C𝑛 (𝜌) ≤ 𝜙−1 (𝜌), ∀𝜌 ≥ 0. (78)

Define 𝑣 ≡ 𝑓 (𝜌) = [1/𝜙−1 (𝜌) − 𝜌]−1, and we have 𝜌∗𝑣 =

𝑓 −1 (𝑣), where 𝑓 −1 (·) is the inverse function of 𝑓 (·). Then, as

4Note that (76) considers Gaussian signaling for each 𝑥𝑖 . For discrete
signaling, from Lemma 1 in [35], we can complete the proof by replacing
(76) with

𝑅𝑛,𝑖 =
1/𝑛

𝜌∗
−1

1−𝑖/𝑛 + (𝑛 − 𝑖 − 1)/𝑛
+ 𝑜 ©­« 1/𝑛

𝜌∗
−1

1−𝑖/𝑛 + (𝑛 − 𝑖 − 1)/𝑛
ª®¬ ,

for all 𝑖 ∈ {0, · · · , 𝑛 − 1}.

𝑛→ ∞, the sum rate of the SCM code is given by

𝑅𝑛= lim
𝑛→∞

𝑛−1∑︁
𝑖=0

log

(
1 + 1/𝑛

𝜌∗
−1

1−𝑖/𝑛 + (𝑛 − 𝑖 − 1)/𝑛

)
(79a)

= lim
𝑛→∞

1/𝑛
𝜌∗

−1

1−𝑖/𝑛 + (𝑛 − 𝑖 − 1)/𝑛
(79b)

=

∫ 1

0
[𝜌∗−1

𝑣 + 𝑣]−1𝑑𝑣 (79c)

=

∫ 1

0

[
[ 𝑓 −1 (𝑣)]−1 + 𝑣

]−1
𝑑𝑣 (79d)

=

[[
𝜌−1+ 𝑓 (𝜌)

]−1
𝑓 (𝜌)

]𝜌=𝜌∗1
𝜌=𝜌∗0

+
∫ 𝜌∗0

𝜌∗1

𝑓 (𝜌)𝑑 [𝜌−1+ 𝑓 (𝜌)]−1 (79e)

=
[
𝜌𝜙−1 (𝜌)

]𝜌=𝜌∗1
𝜌=𝜌∗0

+
∫ 𝜌∗0

𝜌∗1

𝜙−1 (𝜌)
1−𝜌𝜙−1 (𝜌)

𝑑 𝜌
(
1−𝜌𝜙−1 (𝜌)

)
(79f)

=
[
log(1 − 𝜌𝜙−1 (𝜌))

]𝜌=𝜌∗0
𝜌=𝜌∗1

+
∫ 𝜌∗0

𝜌∗1

𝜙−1 (𝜌) 𝑑𝜌 (79g)

= log(1 + 𝜌∗1) +
∫ ∞

𝜌∗1

𝜙−1 (𝜌) 𝑑𝜌 (79h)

= 𝐴𝜔∗
C−Gau

, (79i)

where (79e) follows the inverse integral lemma below∫
𝑔
(
𝑦, 𝑓 −1 (𝑦)

)
𝑑𝑦 (80a)

= 𝑔
(
𝑓 (𝑥), 𝑥

)
𝑓 (𝑥) −

∫
𝑓 (𝑥) 𝑑 𝑔

(
𝑓 (𝑥), 𝑥

)
+ Constant, (80b)

(79f) from 𝑓 (𝜌) = [1/𝜙−1 (𝜌) − 𝜌]−1, (79i) follows (20) and
𝜔Gau (𝜌) = 1/(1 + 𝜌), and (79h) utilizes the following facts:

• 1 − 𝜌∗1𝜙
−1 (𝜌∗1) = 1/(1 + 𝜌∗1);

• 𝜌∗0𝜙
−1 (𝜌∗0) = 0 from 𝜙−1 (𝜌∗0) = 0 if 𝜌∗0 is finite;

• 𝜙−1 (𝜌) = 0 for any 𝜌 > 𝜌∗0 if 𝜌∗0 is finite, since 𝜙−1 (𝜌∗1) =
0, and 𝜙−1 (𝜌) is positive and monotonically decreasing
in 𝜌 ∈ [0,∞).

Thus, we obtain the desired result: 𝑅𝑛 = 𝐴𝜔∗
C−Gau

.
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