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Abstract—In this paper, we obtain a single-letter character-
ization of the wiretap secret key capacity for a large class of
multiterminal source models (namely, tree-PIN models) with a
linear wiretapper that can observe arbitrary linear combinations
of the source. For this class of sources, we also show a duality
between the problems of wiretap secret key agreement and secure
omniscience, which suggests that such duality potentially holds
for more general sources.

I. INTRODUCTION

The problem of multiterminal secret key agreement was
studied by Csiszár and Narayan in [1]. They derived a single-
letter expression for the secret key capacity CS when the wire-
tapper has no side information. Remarkably, they established
a duality between the problem of secret key agreement and the
problem of communication for omniscience, which means that
attaining omniscience by users is enough to extract a secret
key of maximum rate. However, the characterization of secret
key capacity when the wiretapper has side information CW

was left open, and they only gave some upper bounds for it.
Later, Gohari and Anantharam, in [2], provided strengthened
upper bounds and lower bounds. Furthermore, they proved
a duality between secret key agreement with wiretapper side
information and the problem of communication for omni-
science by a neutral observer, where the neutral observer
attains omniscience instead of the users. But this equivalence
does not give an exact single-letter characterization of CW.
Nevertheless in some special cases, it is known exactly. In
particular, [3] studied a pairwise independent network (PIN)
source model defined on trees with wiretapper side informa-
tion obtained by passing the edge random variables through
independent channels. For this model, CW was characterized
using the conditional minimum rate of communication for
omniscience characterization given in [1] together with an
achieving scheme. The final form of CW is similar to that
of CS except for the conditioning with respect to wiretap side
information.
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Recently, Chan et al. [4] studied the problem of secure
omniscience in the context of multiterminal secure information
exchange, and explored its connection to the problem of
wiretap secret key agreement. In the secure omniscience prob-
lem, every user tries to attain omniscience by communicating
interactively using their private observations from a correlated
source; however, the goal here is to minimize the information
leakage to a wiretapper who has side information about the
source. Interestingly, in the case of a finite linear source (FLS)
involving two active users and a wiretapper, they provided
an explicit characterization of the wiretap secret key capacity
and the minimum leakage rate for omniscience RL. In fact,
the achievable communication scheme for wiretap secret key
capacity involves secure omniscience. Motivated by this result,
they conjectured that such a duality holds for the entire class of
FLSs. In this paper, we address this question and completely
resolve it in the subclass of tree-PIN model but with a linear
wiretapper, which is the most general wiretapper in the class
of FLSs.

The PIN sources have received a wide attention in the secret
key agreement problem without wiretapper side information,
see [5–7]. The main motivation for studying PIN sources
is that they model the problem of generating a global key
out of locally generated keys by user pairs. In the study of
general PIN sources, the subclass of tree-PIN sources play
an important role. For the tree-PIN model [5], secret key
capacity is achieved by using a linear and non-interactive
communication scheme that propagates a key across the tree.
This protocol indeed serves as a building block in the tree-
packing protocol for the general PIN model. It was proved
in [6] that the tree-packing protocol is even optimal for the
secrecy capacity under any given total discussion rate. The
optimality was shown by deriving a matching converse bound.
Recently, [7] identified a large class of PIN models where the
tree-packing protocol achieves the entire rate region where
each point is a tuple of achievable key rate and individual
discussion rates.

A problem that is closely related to secure omniscience is
the coded cooperative data exchange (CCDE) problem with
a secrecy constraint; see, for e.g., [8, 9]. The problem of
CCDE considers a hypergraphical source and studies one-shot
omniscience. The hypergraphical model generalizes the PIN
model within the class of FLSs. [9] studied the secret key
agreement in the CCDE context and characterized the number
of transmissions required versus the number of SKs generated.
On the other hand, [8] considered the same model but with
wiretapper side information, and explored the leakage aspect
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of an omniscience protocol. However, the security notion con-
sidered therein does not allow the eavesdropper to recover even
one hyperedge of the source from the communication except
what is already available. But the communication scheme can
still reveal information about the source. In this paper we are
interested to minimize the leakage of the total information
to the wiretapper. Though we consider the asymptotic notion,
the designed optimal communication scheme uses only a finite
number of realizations of the source. Hence this scheme can
find application even in CCDE problems.

The contribution of this paper is to show that secure
omniscience achieves wiretap secret key capacity for the entire
class of tree-PIN models with linear wiretapper. As a result
of this duality between secure omniscience and wiretap secret
key capacity problems, we could also characterize the single-
letter expressions for both RL and CW, which was an open
problem. The main novel ingredient is the construction of an
optimal linear (non-interactive) omniscience communication
scheme that completely spans the wiretapper side-information,
thereby leaking as little information as possible.

II. PROBLEM FORMULATION

In this section, we describe two different scenarios in the
context of multiterminal setting where the terminals commu-
nicate publicly using their correlated observations to perform
a task securely from the eavesdropper, who has access to
the public communication along with side information. More
precisely, let V = [m] := {1, . . . ,m} be the set of users
and w denotes the wiretapper. Let Z1, . . .Zm and Zw be the
random variables taking values in finite alphabets Z1, . . .Zm
and Zw respectively, and their joint distribution is given by
PZ1...ZmZw . Let ZV := (Zi : i ∈ V ) and Zni denote the n i.i.d.
realizations of Zi. Each user has access to the corresponding
random variable. Upon observing n i.i.d. realizations, the
terminals communicate interactively using their observations
and possibly independent private randomness on the noiseless
and authenticated channel. In other words, the communication
made by an user in any round depends on all the previous
rounds communication and user’s observations. Let F(n) de-
notes this interactive communication. We say F(n) is non-
interactive, if it is of the form (F̃

(n)
i : i ∈ V ), where F̃

(n)
i

depends only on Zni and the private randomness of user i.
Note that the eavesdropper has access to the pair (F(n),Znw).
At the end of the communication, users output a value in a
finite set using their observations and F(n). For example, user
i outputs E

(n)
i using (F(n),Zni ) and its private randomness.

A. Secure Omniscience

In the secure omniscience scenario, each user tries to
recover the observations of the other users except wiretap-
per’s. We say that (F(n),E

(n)
1 , . . . ,E

(n)
m )n≥1 is an omniscience

scheme if it satisfies the recoverability condition for omni-
science

lim inf
n→∞

Pr(E
(n)
1 = . . . = E(n)

m = ZnV ) = 1. (1)

The minimum leakage rate for omniscience is defined as

RL := inf

{
lim sup
n→∞

1

n
I(F(n) ∧ ZnV |Znw)

}
(2)

where the infimum is over all omniscience schemes. We
sometimes use RL(ZV ||Zw) instead of RL to make the source
explicit. When there is no wiretapper side information, then the
above notion coincides with the minimum rate of communica-
tion for omniscience, RCO [1]. And the conditional minimum
rate of communication for omniscience, RCO(ZV |J), is used
in the case when all the users have the shared randomness Jn

along with their private observations. This means that user i
observes (Jn,Zni ).

B. Secret Key Agreement

In the secure secret key agreement, each user tries to
recover a common randomness that is kept secure from the
wiretapper. Specifically, we say that (F(n),E

(n)
1 , . . . ,E

(n)
m )n≥1

is a secret key agreement (SKA) scheme if there exists a
sequence (K(n))n≥1 such that

lim inf
n→∞

Pr(E
(n)
1 = . . . = E(n)

m = K(n)) = 1,

lim sup
n→∞

[
log |K(n)| −H(K(n)|F(n),Znw)

]
= 0,

(3a)

(3b)

where (3a) is the key recoverability condition and (3b) is the
secrecy condition of the key and |K(n)| denotes the cardinality
of the range of K(n). The wiretap secret key capacity is defined
as

CW := sup

{
lim inf
n→∞

1

n
log |K(n)|

}
(4)

where the supremum is over all SKA schemes. The quantity
CW is also sometimes written as CW(ZV ||Zw). In (4), we
use CS instead of CW, when the wiretap side information
is set to a constant. Similarly, we use CP(ZV |J) in the case
when wiretap side information is Zw = J and all the users
have the shared random variable J along with their private
observations Zi. The quantities CS and CP(ZV |J) are referred
to as secret key capacity of ZV and private key capacity of
ZV with compromised-helper side information J respectively.

C. Tree PIN source with linear wirtapper

A source ZV is said to be Tree-PIN if there exists a tree
T = (V,E, ξ) and for each edge e ∈ E, there is a non-negative
integer ne and a random vector Ye = (Xe,1, . . . ,Xe,ne). We
assume that the collection of random variables X := (Xe,k :
e ∈ E, k ∈ [ne]) are i.i.d. and each component is uniformly
distributed over a finite field, say Fq . For i ∈ V ,

Zi = (Ye : i ∈ ξ(e)) .

The linear wiretapper’s side information Zw is defined as

Zw = XW ,

where X is a 1× (
∑
e∈E ne) vector and W is a (

∑
e∈E ne)×

nw full column-rank matrix over Fq . We sometimes refer to
X as the base vector. We refer to the pair (ZV ,Zw) defined
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as above as the Tree-PIN source with linear wiretapper. This
is a special case of finite linear sources [10] where both
ZV and Zw can be written as XM and XW respectively
for some matrices M and W . In the context of FLS, we
say a communication scheme F(n) is linear, if each user’s
communication is a linear function of its observations and
the previous communication on the channel. Without loss of
generality, linear communication can also be assumed to be
non-interactive. In the rest of the paper, we consider only
matrices over Fq unless otherwise specified.

D. Motivating example

The following example of a tree-PIN source with linear
wiretapper appeared in our earlier work [4], where we con-
structed an optimal secure omniscience scheme. Let V =
{1, 2, 3, 4} and

Zw = Xa + Xb + Xc,

Z1 = Xa, Z2 = (Xa,Xb), Z3 = (Xb,Xc), Z4 = Xc,

(5)
(6)

where Xa, Xb and Xc are uniformly random and independent
bits. The tree here is a path of length 3 (Fig. 1) and the
wiretapper observes the linear combination of all the edge
random variables. For secure omniscience, terminals 2 and 3,
using n = 2 i.i.d. realizations of the source, communicate
linear combinations of their observations. The communication
is of the form, F(2) = (F̃

(2)
2 , F̃

(2)
3 ), where F̃

(2)
2 = X2

a +MX2
b

and F̃
(2)
3 = (M + I)X2

b + X2
c with M :=

[
1 1
1 0

]
. Since the

matrices M and M + I are invertible, all the terminals can
recover Z2

V using this communication. For example, user 1 can
first recover X2

b from (X2
a, F̃

(2)
2 ) as X2

b = (M +I)(X2
a+ F̃

(2)
2 ),

then X2
b can be used along with F̃

(2)
3 to recover X2

c as
X2
c = (M + I)X2

b + F̃
(2)
3 . More interestingly, this commu-

nication is aligned with the eavesdropper’s observations, since
Z2
w = F̃

(2)
2 + F̃

(2)
3 . This scheme achieves RL, which is 1 bit.

For minimizing leakage, this kind of alignment must hap-
pen. For example, if Z2

w were not contained in the span of
F̃
(2)
2 and F̃

(2)
3 , then the wiretapper could infer a lot more from

the communication. Ideally if one wants zero leakage, then
F(n) must be within the span of Znw, which is not feasible in
many cases because with that condition, the communication
might not achieve omniscience in the first place. Therefore
keeping this in mind, it is reasonable to assume that there
can be components of F(n) outside the span of Znw. And we
look for communication schemes which span as much of Zw

as possible. Such an alignment condition is used to control
the leakage. In this particular example, it turned out that an
omniscience communication that achieves RCO can be made
to completely align with the wiretapper side information. With
the motivation from this example, we in fact showed that such
an alignment phenomenon holds true in the entire class of tree-
PIN with linear wiretapper.

III. MAIN RESULTS

The following two propositions give upper and lower
bounds on minimum leakage rate for a general source

(ZV ,Zw). The lower bound on RL in terms of wiretap
secret key capacity is obtained by using the idea of privacy
amplification on the recovered source, while the multi-letter
upper bound is given in terms of any communication made
using first n i.i.d. realizations.

Proposition 1 ([4], Theorem 1) For the secure omniscience
scenario with |V | ≥ 2,

RL ≥ H(ZV |Zw)− CW. (7)

Proposition 2 ([4], Theorem 2) For the secure omniscience
scenario,

RL ≤
1

n
[RCO(Z

n
V |F(n)) + I(ZnV ∧ F(n)|Znw)] ≤ RCO, (8)

where the inequality holds for any integer n and valid public
discussion F(n) for block length n. 2

Before we present our result, we will discuss some notions
related to Gács-Körner common information, which play an
important role in proving the result. The Gács-Körner common
information of X and Y with joint distribution PX,Y is defined
as

JGK(X,Y) := max {H(G) : H(G|X) = H(G|Y) = 0} (9)

A G that satisfies the constraint in (9) is called a common
function (c.f.) of X and Y. An optimal G in (9) is called a max-
imal common function (m.c.f.) of X and Y, and is denoted by
mcf(X,Y). Similarly, for n random variables, X1,X2, . . . ,Xn,
we can extend these definitions by replacing the condition
in (9) with H(G|X1) = H(G|X2) = . . . = H(G|Xn) = 0.
For a finite linear source pair (Z1,Z2), i.e., Z1 = XM1 and
Z2 = XM2 for some matrices M1 and M2 where X is a
1×n row vector uniformly distributed on Fnq , it was shown in
[11] that the mcf(Z1,Z2) is a linear function of X. This means
that there exists a matrix Mg such that mcf(Z1,Z2) = XMg .

The main result of this paper is the following theorem.

Theorem 1 For a Tree-PIN source ZV with linear wiretapper
observing Zw,

CW = min
e∈E

H(Ye|mcf(Ye,Zw)),

RL =

(∑
e∈E

ne − nw

)
log2 q − CW bits.

In fact, a linear non-interactive scheme is sufficient to achieve
both CW and RL simultaneously. 2

The above theorem shows that the intrinsic upper bound
on CW holds with equality. In the multiterminal setting, the
intrinsic bound that follows from [1, Theorem 4] is given by

CW(ZV ||Zw) ≤ min
J−Zw−ZV

CP(ZV |J).

This is analogous to the intrinsic bound for the two terminal
case [12]. For the class of tree-PIN sources with linear
wiretapper, when J∗ = (mcf(Ye,Zw))e∈E , it can be shown
that CP(ZV |J∗) = mine∈E H(Ye|mcf(Ye,Zw)). This can be
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derived using the characterization in [1] of the conditional min-
imum rate of communication for omniscience, RCO(ZV |J∗).
In fact, the same derivation can also be found in [3] for a J
that is obtained by passing the edge random variables through
independent channels. In particular, J∗ is a function of edge
random variables (Ye)e∈E because mcf(Ye,Zw) is a function
of Ye. Therefore, we can see that CP(ZV |J∗), which is an
upper bound on minJ−Zw−ZV

CP(ZV |J), matches with the CW

obtained from Theorem 1.
Furthermore, the theorem guarantees that in the tree-PIN

case with linear wiretapper, we can achieve the wiretap secret
key capacity through a linear secure omniscience scheme,
which establishes the duality between the two problems. This
shows that omniscience can be useful even beyond the case
when there is no wiretapper side information.

Our proof of Theorem 1 is through a reduction to the
particular subclass of irreducible sources, which we defined
next.

Definition 1 A Tree-PIN source with linear wiretapper is said
to be irreducible iff mcf(Ye,Zw) is a constant function for
every edge e ∈ E . 2

Whenever there is an edge e such that Ge := mcf(Ye,Zw)
is a non-constant function, the user corresponding to a ver-
tex incident on e can reveal Ge to the other users. This
communication does not leak any additional information to
the wiretapper, because Ge is a function of Zw. Intuitively,
for the further communication, Ge is not useful and hence
can be removed from the source. After the reduction the
m.c.f. corresponding to e becomes a constant function. In
fact, we can carry out the reduction until the source becomes
irreducible. This idea of reduction is illustrated through the
following example.

Example 1 Let us consider a source ZV defined on a path
of length 3, which is shown in Fig. 1. Let Ya = (Xa1,Xa2),
Yb = Xb1 and Yc = Xc1, where Xa1, Xa2, Xb1 and Xc1 are
uniformly random and independent bits. If Zw = Xb1 + Xc1,

1 2 3 4

a b c

Fig. 1. A path of length 3

then the source is irreducible because mcf(Ye,Zw) is a con-
stant function for all e ∈ {a, b, c}.

However if Zw = (Xa1 + Xa2,Xb1 + Xc1), then the source
is not irreducible, as mcf(Ya,Zw) = Xa1 + Xa2, which
is a non-constant function. An equivalent representation of
the source is Ya = (Xa1,Ga), Yb = Xb1, Yc = Xc1 and
Zw = (Ga,Xb1 + Xc1), where Ga = Xa1 + Xa2, which is also
a uniform bit independent of (Xa1,Xb1,Xc1). So, for omni-
science, user 2 initially can reveal Ga without affecting the
information leakage as it is completely aligned to Zw. Since
everyone has Ga, users can just communicate according to the
omniscience scheme corresponding to the source without Ga.
Note that this new source is irreducible. 2

The next lemma shows that the kind of reduction to an
irreducible source used in the above example is indeed optimal
in terms of RL and CW for all tree-PIN sources with linear
wiretapper.

Lemma 1 If the Tree-PIN source with linear wiretapper
(ZV ,Zw) is not irreducible then there exists an irreducible
source (Z̃V , Z̃w) such that

CW(ZV ||Zw) = CW(Z̃V ||Z̃w),

RL(ZV ||Zw) = RL(Z̃V ||Z̃w),

H(Ye|mcf(Ye,Zw)) = H(Ỹe),

for all e ∈ E. 2

Note that, in the above lemma, the scheme that achieves
RL(ZV ||Zw) involves revealing the reduced m.c.f. components
first and then communicating according to the scheme that
achieves RL(Z̃V ||Z̃w). As a consequence of Lemma 1, to
prove Theorem 1, it suffices to consider only irreducible
sources. For ease of reference, we re-state the theorem for
irreducible sources below.

Theorem 2 If Tree-PIN source with linear wiretapper is irre-
ducible then

CW = min
e∈E

H(Ye) = CS,

RL =

(∑
e∈E

ne − nw

)
log2 q − CS bits,

where CS is the secret key capacity of Tree-PIN source without
the wiretapper side information [1]. 2

Theorem 2 shows that, for irreducible sources, even when
the wiretapper has side information, the users can still extract
a key at rate CS. In terms of secret key generation, the users
are not really at a disadvantage if the wiretapper has linear
observations.

IV. PROOFS

In this section we provide the essential proof ideas while
the full proofs are available in the longer version [13, Sec.
IV].

A. Proof sketch of Lemma 1

First we identify an edge e such that Ge := mcf(Ye,Zw)
is a non-constant function. Then, by appropriately transform-
ing the random vector Ye, we can separate out Ge from
the random variables corresponding to the edge and the
wiretapper. Later we argue that the source (ZV ,Zw) can
be reduced into (Z̃V , Z̃w) by removing Ge entirely without
affecting CW and RL. And we repeat this process until
the source becomes irreducible. At each stage, to show that
mcf(Ỹb, Z̃w) = mcf(Yb,Zw), for b 6= e, and mcf(Ỹe, Z̃w)
is a constant function, we use the following lemma which is
proved in [13, Appendix].

Lemma 2 If (X,Y) is independent of Z, then
mcf(X, (Y,Z)) = mcf(X,Y) and mcf((X,Z), (Y,Z)) =
(mcf(X,Y),Z). 2
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B. Proof sketch of Theorem 2

Converse part. An upper bound on CW is CS. It was shown
in [1, Example 5] that if the random variables of a source form
a Markov chain on a tree, then CS = min(i,j):{i,j}=ξ(e) I(Zi∧
Zj). In the tree-PIN case, which satisfies the Markov property,
this turns out to be CS = mine∈E H(Ye). As consequence, we
have CW ≤ mine∈E H(Ye) , which implies that

RL ≥
(∑
e∈E

ne − nw
)
log2 q −min

e∈E
H(Ye) (10)

where the inequality follows from Proposition 1 and the full
column-rank assumption on W .

Achievability part. The achievable communication scheme
for irreducible sources involves the following key components:

1) Perfect omniscience [14]: For a fixed n ∈ N, F(n) is said
to achieve perfect omniscience if terminals can recover
the source ZnV perfectly, i.e., H(ZnV |F(n),Zni ) = 0 for all
i ∈ V . If we do not allow any private randomness, then
H(F(n)|ZnV ) = 0, which implies 1

nI(Z
n
V ∧ F(n)|Znw) =

1
nH(F(n)|Znw).

2) Perfect alignment: For an n ∈ N, we say that F(n) perfectly
aligns with Znw if H(Znw|F(n)) = 0. Note that Znw is only
recoverable from F(n) but not the other way around. In
this case, H(F(n)|Znw) = H(F(n)) − H(Znw). In an FLS,
the wiretapper side information is Znw = XnW (n) where
X is the base vector. Suppose the communication is of the
form F(n) = XnF (n), for some matrix F (n). Then, the
condition of perfect alignment is equivalent to the condition
that the column space of F (n) contains the column space
of W (n). This is in turn equivalent to the condition that the
left nullspace of W (n) contains the left nullspace of F (n),
i.e., if yF (n) = 0 for some vector y then yW (n) = 0.

As a consequence, the leakage rate of a perfect omniscience
and alignment scheme (deterministic) is 1

nI(Z
n
V ∧F(n)|Znw) =

1
nH(F(n)|Znw) = 1

n [H(F(n)) − H(Znw)] = 1
nH(F(n)) −

nw log2 q. To show the desired rate (10), it is enough to have
1
nH(F(n)) =

(∑
e∈E ne

)
log2 q − mine∈E H(Ye). We show

the existence of a scheme with that rate in the sub-case of
PIN model defined on a path graph with ne = s for all e ∈ E.
This can be extended to the tree-PIN case by using the fact that
there exists a unique path from any vertex to a distinguished
root node of the tree. The full proof of this case along with
the most general model can be found in [13, Sec. IV].

Consider a PIN model defined on a path with length L and
ne = s for all e ∈ E. Let V = {0, 1, . . . , L} be the set of
vertices and E = {1, . . . , L} be the edge set such that edge
i is incident on vertices i − 1 and i. Since ne = s for all
e ∈ E, mine∈E H(Ye) = s log2 q. Fix the number of i.i.d.
realization of the source n > logq(sL). The communication
made by the terminals is as follows. Leaf nodes 0 and L do
not communicate. The internal node i communicates F̃

(n)
i =

Yni + Yni+1Ai, where Yni = [Xni,1 . . .X
n
i,s] ∈ (Fqn)s and Ai is

an s× s matrix with elements from Fqn . This communication

is of the form F(n) =
[
F̃
(n)
1 · · · F̃

(n)
L−1

]
=
[
Yn1 · · ·YnL

]
F (n)

where F (n) is

I 0 · · · 0 0
A1 I · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · AL−2 I
0 0 · · · 0 AL−1


.

Here F (n) is an sL × s(L − 1) matrix over Fqn with
rankFqn

(F (n)) = s(L − 1), which implies that H(F(n)) =
(sL− s) log2 qn and the dimension of the left nullspace of
F (n) is s. Now the communication coefficients, (Ai : 1 ≤
i ≤ L − 1), have to be chosen such that F(n) achieves both
perfect omniscience and perfect alignment.

It is not difficult to show that the perfect omniscience is
equivalent to the condition that the Ai’s are invertible. For
perfect alignment, we require that the left nullspace of F (n)

is contained in the left nullspace of W (n). Observe that[
S1 −S1A

−1
1 · · · (−1)L−1S1A

−1
1 . . .A−1L−1

]︸ ︷︷ ︸
:=S

F (n) = 0.

where S1 is some invertible matrix and Si+1 :=
(−1)iS1A

−1
1 . . .A−1i for 1 ≤ i ≤ L− 1. Notice that the Si’s

are invertible and Ai = −S−1i+1Si for 1 ≤ i ≤ L − 1. The
dimension of the left nullspace of F (n) is s and all the s rows
of S are independent, so these rows span the left nullspace of
F (n). Therefore for the inclusion, we must have SW (n) = 0.

Thus, proving the existence of communication coefficients
Ai’s that achieve perfect omniscience and perfect alignment
is equivalent to proving the existence of Si’s that are in-
vertible and satisfy [S1 . . .SL]W

(n) = 0. The condition
n > logq(sL) guarantees the existence of Si’s, which follows
from Schwartz-Zippel lemma. It should be noted that the
assumption of irreducibility of the source is crucially used
in the alignment condition and in the existence argument.

V. CONCLUSION AND FUTURE DIRECTION

For a tree-PIN model with linear wiretapper, we have
characterized RL and CW. It is worth noting that since the
evaluation of the lower bound on CW given in [2, Th. 7] is
not explicit, the optimality of the bound is not very clear. But
we showed an even stronger result for our particular model
that a linear secure omniscience scheme achieves CW, which
establishes the duality between the two problems. So, our
result gives evidence for the conjecture that, for FLSs, secure
omniscience achieves CW. However, proving this even for a
general PIN model turned out to be quite challenging. Another
interesting part of the proof is the communication scheme that
achieves perfect omniscience and perfect alignment with the
wiretapper. Though we used a random coding approach in
the proof, there is an explicit optimal protocol construction
in the case ne = 1 for all e ∈ E [13, Sec. V]. Such
deterministic protocols, which have potential application in the
CCDE context, are not known in the general tree-PIN case.
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