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Abstract—We consider the problem of learning parametric
distributions from their quantized samples in a network. Specif-
ically, n agents or sensors observe independent samples of an
unknown parametric distribution; and each of them uses k
bits to describe its observed sample to a central processor
whose goal is to estimate the unknown distribution. First, we
establish a generalization of the well-known van Trees inequality
to general Lp-norms, with p > 1, in terms of Generalized Fisher
information. Then, we develop minimax lower bounds on the
estimation error for two losses: general Lp-norms and the related
Wasserstein loss from optimal transport.

I. INTRODUCTION AND PROBLEM FORMULATION

Consider the multiterminal detection system shown in Figure 1.
In this problem a memoryless vector source X has joint distri-
bution f(x|θ) that depends on an unknown (vector) parameter
θ = (θ1, . . . , θd) ∈ Rd, with d ≥ 1. A number of agents or
sensors, say n, observe each one independent sample of X; and
each of them uses k ≥ 1 bits to describe its sample to a fusion
center whose goal is to find a distribution f̂ that approximates the
unknown (parametric) distribution f(x|θ) in a suitable sense. How
well can f(x|θ) be approximated from the quantized samples ? This
question has so far been resolved (partially) only for few special
cases, among which the L2 loss [1], [2]. Worse, even in the extreme
case in which k is large (unquantized samples) little is known about
this problem for general loss measures [3].

Fig. 1. Distribution estimation from quantized samples.

In this paper we study an instance of this problem under general
Lp-norms, where p ∈ R with p > 1, as well as the related Wasser-
stein distance of order p. We recall that for given distributions P and
Q, the p-Wasserstein distance between P and Q is defined as [6]

Wp(P,Q) = inf
ν ∈ Π(P,Q)

(
E(Z,Y ) ∼ ν

[
dp(Z, Y )

]) 1
p (1)

where the random variables Z ∈ Z and Y ∈ Y have distributions
P and Q respectively, i.e., Z ∼ P and Y ∼ Q; the set Π(P,Q)
designates the set of measures ν on Z×Y (called couplings) whose

Z-marginal and Y -marginal coincide with P and Q respectively;
and d : Z × Y → R+ is a given distance measure. Specifically, let

X1,X2, . . . ,Xn
i.i.d.∼ f(x|θ) (2)

where θ ∈ Θ ⊆ Rd. Agent i, i = 1, . . . , n, observes the sample Xi

and sends a k-bit string Mi to the fusion center. We assume that the
agents process their observations and communicate with the fusion
center simultaneously and independently of each other. The fusion
center uses the tuple M(n) = (M1, . . . ,Mn) to find an estimate
θ̂ := θ̂(M(n)) of the unknown parameter θ; and then approximates
the unknown source distribution as f(x|θ̂). Our goal is to design the
estimator θ̂ so as to minimize the worst case power-p Wasserstein
risk, i.e., to characterize

inf
θ̂

sup
θ∈Θ

E
[
W p
p

(
f(x|θ̂), f(x

∣∣θ)
)]
. (3)

When the underlying distance in the Wasserstein risk (3) is based
on the Lp-norm, it is instrumental to study the following related
parameter estimation problem under the Lp-norm,

inf
θ̂

sup
θ∈Θ

E
[∣∣∣∣∣∣θ̂ − θ

∣∣∣∣∣∣p
p

]
(4)

where ‖ · ‖p designates the Lp norm.
The main contributions of this paper are as follows. First, we

establish a generalization of the well known van Trees inequality [7,
p. 72], which is a Bayesian analog of the information inequality, to
Lp-norms with p > 1, in terms of generalized Fisher information of
order p [14]. This result, which holds under some mild conditions
(see Section II) that are assumed to hold throughout, may be of
independent interest in its own right. In particular, its proof is more
direct than the traditional methods of Assouad, Fano, or Le Cam
[17]. Then, we develop lower bounds on the losses (3) and (4)
in terms of the order p, the number of samples n, the number of
quantization bits k and the parameter space d. Some of our results
generalize those of [2], which are established therein for theL2 loss,
to the case of Lp loss for arbitrary p > 1. Particularly interesting in
these bounds is that, for some example source classes that we study,
they decrease with the number of samples at least as 1/(n

p
2 ); and

with k at least as 1/(k
p
r ) for some suitable value r > 0. Key to the

proofs of the results of this paper are some judicious applications
of inequalities such as Hölder inequality and the Marcinkiewicz-
Zygmund inequality [18].

A. Related Works
The problem of statistical estimation in distributed settings has

attracted increasing interest in recent years, in part motivated by
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learning applications at the wireless Edge. Most relevant to this
paper are the works [2], [3]. In particular, the parameter estimation
problem (4) is studied in [2] for the case p = 2, i.e., the squared L2

loss. Specifically, in [2] the authors build upon [5] to derive lower
bounds on the risk (4) that account (partially) for the loss of Fisher
information (relative to the unquantized setting [3]) that is caused
by quantization in the case p = 2. In doing so, they use the standard
van Trees inequality which is a Bayesian version of the well known
Cramér-Rao inequality for the Euclidean norm L2. In this paper, for
the study of the problem (4) for general p > 1, after generalizing
the usual van Trees inequality to general Lp-norms, essentially we
follow the approach of [2]. For non-parametric models of densities
over [0, 1] that are Hölder continuous of smoothness s ∈ (0, 1],
[4] provides upper and lower bounds on the worst case error under
the L1 norm. For more on this and other related works, the reader
may refer to [2]–[4] as well as the references mentioned therein.
For related works on Wasserstein loss based learning, see, e.g., [9]–
[13].

II. FORMAL PROBLEM FORMULATION AND DEFINITIONS

Consider the model shown in Figure 1. Here, there are n sensors
which observe each one sample of a memoryless vector source
X. We assume that the underlying distribution or density of X is
parametrized by an unknown vector parameter θ = (θ1, . . . , θd) ∈
Θ ⊆ Rd of dimension d ≥ 1; and we write f(x) := f(x|θ) for
θ ∈ Θ. The samples X1,X2, . . . ,Xn are all independent; and they
are processed independently by the sensors. Sensor i, i = 1, . . . , n,
encodes its sample Xi into a k-bit string Mi ∈ [1, 2k]. A (possibly
stochastic) k-bit quantization strategy for Xi at Sensor i can be
expressed in terms of the conditional probability

pi(m|x) := pMi|Xi
(m|x) for m ∈ [1, 2k] and x ∈ X . (5)

The sensors communicate their k-bit quantization messages si-
multaneously and independently to a fusion center whose goal is
to produce an estimate of the unknown distribution f(x|θ) from
the tuple M(n) = (M1, . . . ,Mn). The fusion center first finds
an estimate θ̂ := θ̂(M(n)) of the unknown parameter θ; and
then approximates the unknown source distribution as f(x|θ̂). Let
p ∈ R, p > 1, be given. Our goal is to design the estimator θ̂ so as
to minimize the worst case power-p Wasserstein risk

inf
θ̂

sup
θ∈Θ

E
[
W p
p

(
f(x|θ̂), f(x

∣∣θ)
)]

(6)

where the Wasserstein distance between distributions under dis-
tance d(·, ·) is defined as in (1). As we already mentioned, when
the distance d(·, ·) is the Lp-norm, we also consider the following
parameter estimation problem under the Lp-norm,

inf
θ̂

sup
θ∈Θ

E
[∣∣∣∣∣∣θ̂ − θ

∣∣∣∣∣∣p
p

]
. (7)

We assume that for all i = 1, . . . , n there is a well defined joint
probability distribution with density

fi(x,m|θ) = f(x|θ)pi(m|x) (8)

and that pi(m|x) is a regular conditional probability (it denotes the
encoding function at the ith Sensor – see (5)). For a given θ ∈ Rd
and quantization strategy at the ith Sensor, the likelihood that the

quantization message Mi takes a specific value m is denoted as
pi(m|θ). The vector

Si,θ(m) =
(
Si,θ1(m), . . . , Si,θd(m)

)
=

(
∂

∂θ1
log pi(m|θ), . . . ,

∂

∂θd
log pi(m|θ)

)
(9)

is the score function of this likelihood. For convenience, for x ∈ X
we let

Sθ(x) =
(
Sθ1(x), . . . , Sθd(x)

)
=

(
∂

∂θ1
log f(x|θ), . . . ,

∂

∂θd
log p(x|θ)

)
(10)

denote the score of the likelihood f(x|θ).
We make the following assumptions which we assume to hold

throughout unless otherwise stated. The distributions f(x|θ) and
{pi(m|θ)}ni=1 are all assumed to be continuously differentiable
at every coordinate of θ. Also, for all i = 1, . . . , n the score
function Si,θ(m) as well as its pth moment exist. Similarly, for all
i = 1, . . . , n the generalized Fisher information matrix of order p
for estimating θ from Mi and that for estimating it from Xi, both
defined as in Definition 1 that follows, are assumed to exist and to
be continuous in θi.

Definition 1. Let p ∈ R with p > 1 be given. For a multivariate
random variable X with probability distribution f(x|θ) that de-
pends on an unknown vector parameter θ = [θ1, . . . , θd] ∈ Rd, for
all i = 1, . . . , n the generalized Fisher information of order p for
estimating θi from X is defined as [14], [15]

I
(p)
X (θi) =

(
E

[∣∣∣∣ ∂∂θi [log f(X|θ)]

∣∣∣∣
p

p−1

])p−1

. (11)

Also, define

Ω
(p)
X (θ) :=

d∑
i=1

(
E

[∣∣∣∣ ∂∂θi [log f(X|θ)]

∣∣∣∣
p

p−1

])p−1

(12)

which can be interpreted as the trace of the generalized Fisher
information matrix of order p > 1 for estimating θ from X.

It can easily be checked that for p = 2, the quantity Ω
(2)
X (θ) is

the trace of the standard Fisher information matrix, i.e., Ω
(2)
X (θ) =

Tr
(
IX(θ)

)
. As it will become clearer from the rest of this paper,

throughout we will make extensive usage of the quantity Ω
(p)
X (θ)

as defined by (12). For example, for the problem of estimating θ
from the quantization tuple M(n) = (M1, . . . ,Mn) we will use

Ω
(p)

M(n)(θ) :=

d∑
i=1

(
E

[∣∣∣∣ ∂∂θi
[
log p(M(n)|θ)

]∣∣∣∣
p

p−1

])p−1

(13)

where p(M(n)|θ) =
∏n
i=1 pi(Mi|θ) due to the independence of

the samples and encoding functions at the sensors. Likewise, for
a single quantization message Mj , j = 1, . . . , n, we use Ω

(p)
Mj

(θ)

which is given by the RHS of (13) in which p(M(n)|θ) is replaced
with pj(Mj |θ). Also, when we take a Bayesian approach and let
µ(θ) be a prior on Θ, we will use

Ω(p)(µ) :=

d∑
i=1

(
E

[∣∣∣∣ ∂∂θi [logµ(θ)]

∣∣∣∣
p

p−1

])p−1

. (14)



III. A VAN TREES TYPE INEQUALITY FOR Lp-NORMS

In this section, we take a Bayesian approach. We let the param-
eter space Θ to be the Cartesian product of closed intervals on the
real line, i.e., Θ =

∏d
i=1[θi,min, θi,max]. Let π some probability

distribution on Θ with a density measure µ(θ) with respect to the
Lebesgue measure (a prior on θ). We make the assumption that
µ(θ) factorizes as µ(θ) =

∏d
i=1 µi(θi). Also, suppose that f(x|·)

and µ(·) are both absolutely continuous; and that µ converges to
zero at the boundaries of Θ, i.e., for all i = 1, . . . , d

lim
θi→θi,min

µi(θi) = lim
θi→θi,max

µi(θi) = 0. (15)

For scalar X and θ (i.e, d = 1), the usual van Trees inequality [16],
which is a Bayesian version of the well-known Cramér-Rao in-
equality established for the Euclidean norm L2, states that

E[(θ̂(X)− θ)2] ≥ 1

Eθ[IX(θ)] + I(µ)
(16)

where IX(θ) is the standard Fisher information for estimating θ
from X and I(µ) designates that from the prior.

The following theorem provides a lower bound on the average error
in estimating θ = (θ1, . . . , θd) from X under the Lp norm, for
arbitrary p > 1. It can be seen a van Trees type inequality for Lp
norms. The result can also be regarded as a Bayesian version of one
in [14]. Its proof is essentially based on a judicious application of
Hölder inequality and is different from the one of [14].

Theorem 1. For p > 1, the average estimation error under the
norm Lp satisfies the following:

i) If 1 < p < 2, then we have

E
[∣∣∣∣θ̂(X)− θ

∣∣∣∣p
p

]
≥

dp(EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

+ d
p−2
p
(
Ω(p)(µ)

) 1
p

p
(17)

where Ω
(p)
X (θ) and Ω(p)(µ) are given by (12) and (14),

respectively.
ii) If p ≥ 2, then we have

E
[∣∣∣∣θ̂(X)− θ

∣∣∣∣p
p

]
≥ d(1+ p

2 )

(EΘ [Tr(IX(θ))] + Tr(I(µ)))
p
2

.

(18)

Proof. The proof of Theorem 1 is given in Section VI-A.

Remark 1. It is easy to see that for p = 2 the result of Theorem 1 is
the standard van Trees inequality [7] (see also [16]). Also, observe
that for values of p ∈ R which are such that 1 < p < 2 the
result involves generalized Fisher information of order p for both
X and the prior µ, whereas for p ≥ 2 it involves standard Fisher
information (i.e, of order 2). We note that for p ≥ 2, it is possible

to derive a bound that is similar to the RHS of (17), i.e., one that
involves generalized Fisher information of order p, as below

E
[∣∣∣∣θ̂(X)− θ

∣∣∣∣p
p

]
≥

d2(EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

+
(
Ω(p)(µ)

) 1
p

p . (19)

The proof of the lower bound (19) is given in Section VI-B. However,
such bound does not seem to compare easily with the RHS of (18).
In addition, the RHS of (18) turns out to be more tractable
analytically for the examples that we will consider in the rest of
this paper.

A more general inequality than that of Theorem 1 for estimating
a continuously differentiable function ψ of θ is easily obtained in
exactly the same way.

Corollary 1. For any vector-valued function ψ(θ) which is contin-
uously differentiable in each component ψi(θ), the following holds.

i) If 1 < p < 2, we have

E
[∣∣∣∣ψ(θ̂(X))− ψ(θ)

∣∣∣∣p
p

]
≥∣∣∣∑d

i=1 EΘ

[
∂ψi(Θ)
∂Θi

]∣∣∣p(EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

+ d
p−2
p
(
Ω(p)(µ)

) 1
p

p .

ii) If p ≥ 2, we have

E
[∣∣∣∣ψ(θ̂(X))− ψ(θ)

∣∣∣∣p
p

]
≥
d(1− p

2 )
∣∣∣∑d

i=1 EΘ

[
∂ψi(Θ)
∂Θi

]∣∣∣p
(EΘ [Tr(IX(θ))] + Tr(I(µ)))

p
2

.

Proof. The proof of Corollary 1 is given in Section VI-C.

IV. DISTRIBUTED PARAMETER ESTIMATION FROM
QUANTIZED SAMPLES

Let us now consider the minimax parameter estimation prob-
lem (7) described in Section II. Let µ be a prior on θ that factorizes
as in Section III and satisfies (15). Substituting X in Theorem 1
with M(n) = (M1, . . . ,Mn) we obtain a lower bound on the worst
case error under the Lp norm. Such bound, however, does not seem
to reflect the right behavior for the error decrease as a function of
the number of samples n (for given p > 1 and fixed k ≥ 1 and
d ≥ 1). A better bound, which uses the techniques of the proof of
Theorem 1 and combines them appropriately with Marcinkiewicz-
Zygmund inequality [18], is stated in the following theorem.

Theorem 2. For p > 1, the worst case estimation error under the
norm Lp satisfies the following:

i) If 1 < p < 2, we have

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥ dp

[
d

p−2
p

(
Ω(p)(µ)

) 1
p

+
1

p− 1

 n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(θ)
) 1

p−1

]) 2(p−1)
p


1
2


−p

where, for j = 1, . . . , n, Ω
(p)
Mj

(θ) is obtained using (13) and

Ω(p)(µ) is given by (14).



ii) If p ≥ 2, we have

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥

d(1+ p
2 )

 n∑
j=1

EΘ

[
Tr(IMj

(θ))
]

+ Tr(I(µ))

−
p
2

.

Proof: 1) Case 1 < p < 2: Let q ∈ R such that 1
p + 1

q = 1,
i.e., q = p/(p− 1). Also, consider the following two functions g(·)
and h(·) defined, for x ∈ X , θ = [θ1, . . . , θd] ∈ Θ and a specific
quantization messages tuple m(n) = (m1, . . . ,mn) ∈ [1, 2k]n as

g(m(n),θ) =

d∑
i=1

∂

∂θi

[
log
(
p(m(n)|θ)µ(θ)

)]
(20a)

h(m(n),θ) = θ̂(m(n))− θ (20b)

where in (20a) the quantization messages joint probability is
p(m(n)|θ) =

∏n
j=1 pj(mj |θ). For convenience, for i = 1, . . . , d

we will denote the ith component of h(m(n),θ) as hi(m(n),θ),
i.e.,

hi(m
(n),θ) = θ̂i(m

(n))− θi =
(
h(m(n),θ)

)
i
. (21)

Using the fact that the prior measure µ converges to zero at the
boundaries of Θ, it is easy to see that∑

m(n)

∫
θi

hi(m
(n),θ)

∂

∂θi

[
p(m(n)|θ)µi(θi)

]
dθi = 1. (22)

By partial integration and (22), we get for i = 1, . . . , d, that

E(M(n),Θ)

[
hi(M

(n),Θ)g(M(n),Θ)
]

= d. (23)

Thus, for all i = 1, . . . , d, we have

d ≤ E(M(n),Θ)

[∣∣∣hi(M(n),Θ)g(M(n),Θ)
∣∣∣] . (24)

Applying Hölder’s inequality for expectations yields

E(M(n),Θ)

[∣∣∣hi(M(n),Θ)g(M(n),Θ)
∣∣∣] ≤ (25)(

E
[∣∣∣hi(M(n),Θ)

∣∣∣p]) 1
p
(
E
[∣∣∣g(M(n),Θ)

∣∣∣q]) 1
q

. (26)

The first element of the right-hand side produces the desired risk as

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]

≥
d∑
i=1

E(M(n),Θ)

[∣∣∣hi(M(n),Θ)
∣∣∣p] (27)

where the inequality follows by substituting using (21) and using
that fact that the supremum of a function is larger than its expecta-
tion.
We now upper bound the second expectation term of the RHS
of (26). For convenience, let for j = 1, . . . , 2k

l(mj ,θ) =

d∑
i=1

∂

∂θi

[
log p(mj |θ)

]
(28)

It is easy to see that for all θ, we have

EMj |Θ
[
l(Mj ,Θ)|Θ = θ

]
= 0. (29)

Then, we have(
E(M(n),Θ)

[∣∣∣g(M(n),Θ)
∣∣∣q]) 1

q

≤ (30)E(M(n),Θ)

∣∣∣∣∣∣
n∑
j=1

l(Mj ,Θ)

∣∣∣∣∣∣
q

1
q

+ d
p−1
p

(
Ω(p)(µ)

) 1
p
,

where the inequality holds by a double application by Minkowski’s
inequality: first for expectations using that for all Z and T we
have (E[|Z + T |q])

1
q ≤ (E[|Z|q])

1
q + (E[|T |q])

1
q ; and then that(

E[|
∑d
i=1 Zi|

q]
) 1

q≤
∑d
i=1 (E[|Zi|q])

1
q , ∀ q > 1 and

∑d
i=1 u

1
p

i ≤

d
p−1
p

(∑d
i=1 ui

) 1
p

, ∀ui > 0, p > 1.
Next, since the quantities {l(Mj ,Θ)}j are independent and satisfy
that EMj |Θ

[
l(Mj ,Θ)

]
= 0 for all j = 1, . . . , 2k, the application

of Marcinkiewicz-Zygmund inequality [18], [19] yields

EM(n)|Θ

∣∣∣∣∣∣
n∑
j=1

l(Mj ,Θ)

∣∣∣∣∣∣
q

|Θ

 ≤
Bq EM(n)|Θ


 n∑
j=1

l2(Mj ,Θ)


q
2

|Θ

 (31)

where Bq = (q − 1)q > 0.
Continuing from of (31), we getE(M(n),Θ)

∣∣∣∣∣∣
n∑
j=1

l(Mj ,Θ)

∣∣∣∣∣∣
q

2
q

≤

(a)
≤ 1

(p− 1)2

n∑
j=1

(
E(M(n),Θ)

[
|l(Mj ,Θ)|q

]) 2
q

(b)
≤ d

2
p

(p− 1)2

n∑
j=1

(
E(M(n),Θ)

[
d∑
i=1

∣∣∣∣ ∂∂θi [log p(Mj |Θ)
]∣∣∣∣q
]) 2

q

(c)
=

d
2
p

(p− 1)2

n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(θ)
) 1

p−1

]) 2(p−1)
p

, (32)

where (a) follows by using the quantization messages are inde-
pendent, substituting q = p/(p − 1) and applying Minkowski’s

inequality
(
E[|
∑n
i=1 Zi|

q
2 ]
) 2

q ≤
∑n
i=1

(
E[|Zi|

q
2 ]
) 2

q
since q =

p > (p − 1) > 2; (b) follows by substituting using (28) and using
that

(∑d
i=1 ui

)q
≤ dq−1∑d

i=1 u
q
i , ui > 0; and (c) holds by (13).

Finally, combining (32), (30), (24) and (27) and substituting in (25)
yields the desired result.

2) Case p ≥ 2: In this case, a direct proof can be found in a way
that is essentially similar to the above (see Section VI-D1 for the
details). An indirect proof follows by first observing that

E(M(n),Θ)

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p

]
≥

d1− p
2

(
E(M(n),Θ)

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣2

2

]) p
2

which holds due to the norms inequality ||u||2 ≤ d
1
2−

1
p ||u||p for

all vector u ∈ Rd; and then combining with the result of [2] for the
squared L2 loss.



For some classes of sources X the result of Theorem 2 can be
used to find a more explicit lower bound. Recall that for r ≥ 1, the
Ψr Orlicz norm of a random variable Z is defined as

‖Z‖Ψr
= inf{K ∈ (0,+∞[ | E [Ψr(|Z|/K)] ≤ 1} (33)

where
Ψr(u) = exp(ur)− 1. (34)

A random variable with finite Ψ1 Orlicz norm is sub-exponential;
and a random variable with finite Ψ2 Orlicz norm is sub-
Gaussian [20]. The next theorem shows that if for some suitable
r ≥ 1 the Ψr Orlicz norm of the projection of the score function
Sθ(X) as given by (10) onto any unit vector is bounded from the
above by some constant the error decreases at least as n−

p
2 and at

least as k−
p
r . For convenience, define for p > 1 and d ≥ 1 the

following quantities,

Ap =
(π

2

) 1
p 2

B

[
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)] p−1
p

(35a)

Bp,d =
2

p− 1
d

2−p
2p (35b)

where in (35a) the function B(·, ·) denotes the Eural integral (Beta
function) given for u > 0 and v > 0 by

B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt. (36)

Theorem 3. Suppose Θ = [−B,B]d and let θ̂ := θ̂(M(n))

be any estimator of θ = [θ1, . . . , θd] ∈ [−B,B]d from M(n) =
(M1, . . . ,Mn).

i) For 3
2 < p < 2: if ∃ r ≥ 1/(p− 1) and ∃ I0 ≥ 0 such that for

any θ ∈ Θ and any unit vector u ∈ Rd

‖〈u, Sθ(X)〉‖Ψr
≤ I0 (37)

then

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥

dp(√
nI0k

1
r (2k)

2−p
p Bp,d + d

p−1
p Ap

)p
where the quantities Ap and Bp,d are given by (35).

ii) For p ≥ 2: if ∃ r ≥ 1 and ∃ I0 ≥ 0 such that for any θ ∈ Θ,
any unit vector u ∈ Rd, we have ||〈u, Sθ(X)〉||Ψr

≤ I0, then

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥ d(1+ p

2 )(
4I2

0k
2
r n+ d π2

B2

) p
2

.

Proof. The proof of Theorem 3 is given in Section VI-E.

Remark 2. For the special case of the L2 loss, setting p = 2 in the
RHS of (38) we recover the result of [2, Theorem 3].

Corollary 2. (Gaussian Location Model) Let X ∼ N (θ, σ2Id)
with Θ = [−B,B]d. For p ≥ 2, we have the following: if π2σ2d ≤
nB2 min{k, d} then for any estimator θ̂(M(n)) we have

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥

d(1+ p
2 ) max

{(
σ2

nd

) p
2

,

(
3σ2

32nk

) p
2

}
. (38)

Proof. The proof of Corollary 2 is given in Section VI-F.

For the special case p = 2, the result of Corollary 2 recovers that
of [2, Corollary 5].

V. ESTIMATION UNDER THE WASSERSTEIN LOSS

We now turn to the minimax risk given by (6) in Section II.
Theorem 2 of Section IV, as well as its proof, are instrumental
to obtaining similar bounds for the Wasserstein loss (6) when
the underlying distance d(·, ·) is based on the Lp-norm. For the
Gaussian location model (see Corollary 3 below) this yields a lower
bound on the worst-case Wasserstein loss under the Lp norm which
decreases at least as n−

p
2 .

Theorem 4. For any estimator θ̂ = θ̂(M(n)), the following holds.
i) If 1 < p < 2, we have

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ

]
≥

d∑
j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yj ]

]]∣∣∣∣∣
p
×

d 1
p (p− 1)

 n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(Θ)
) 1

p−1

]) 2(p−1)
p


1
2

+

d
p−1
p

(
Ω(p)(µ)

) 1
p

}−p
ii) If p ≥ 2, we have

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ

]
≥

d∑
j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yj ]

]]∣∣∣∣∣
p
×

d n∑
j=1

EΘ

[
Tr(IMj

(Θ))
]

+ dTr(I(µ))

−
p
2

.

Proof. The proof of Theorem 4 is given in Section VI-G.

Recall for fixed p > 1 and d ≥ 1 the constants Ap and Bp,d as
defined by (35). Also, define

Cp = (p− 1)

(√
2

σ

) 1
p

 Γ
(

1
2p−2

)
(p− 1)

√
2πσ2


p−1
p

(39a)

Dp = (p− 1)
4
√

2√
3σ
. (39b)

Corollary 3. (Gaussian Location Model) Let X ∼ N (θ, σ2Id)

with θ ∈ Θ = [−B,B]d. For any estimator θ̂ = θ̂(M(n)), we have
the following.

i) If p ≥ 2, we have

sup
θ∈Θ

EM(n)|Θ
[
W p
p (f(x|θ), f(x|θ̂)) | Θ

]
≥

d
p
2 max

{(
nd

σ2
+
d π2

B2

)− p
2

,

(
32nk

3σ2
+
d π2

B2

)− p
2

}
.



ii) If 1 < p < 2, we have

sup
θ∈Θ

EM(n)|Θ
[
W p
p (f(x|θ), f(x|θ̂)) | Θ

]
≥ max {(Cp×

d
2−p
p
√
n+Ap

)−p
,
(
Dp d

4−3p
2p 2

k(2−p)
p k

1
2
√
n+Ap

)−p}
.

Proof. The proof of Corollary 3 is given in Section VI-H.

A K-subgaussian distribution, estimated with an empirical distribu-
tion smoothed by a Gaussian kernel, enjoys upper bounds on the
error in the 1-Wasserstein distance, W1, of the order n−

1
2 and in

the squared 2-Wasserstein distance, W 2
2 , of the order n−1 [21].

The bounds show remarkable performance improvement of this
convolution over the unsmoothed empirical estimator from n−

1
d to

that of the order n−
1
2 for W1 and n−1 for the W 2

2 . If p = 2, we
obtain a lower bound on W 2

2 of the order n−1, which matches that
of the upper bound in [21] for the empirical estimator smoothed by
a Gaussian kernel of a K-subgaussian distribution. Our technique
may be useful in [21], to produce a matching lower bound, to yield
optimal rates of the order n−1.

VI. PROOFS

A. Proof of Theorem 1

Let q ∈ R such that 1
p+ 1

q = 1, i.e., q = p/(p−1). Also, consider
the following two functions g(·) and h(·) defined, for x ∈ X and
θ = [θ1, . . . , θd] ∈ Θ, as

g(x,θ) =

d∑
i=1

∂

∂θi
[log (f(x|θ)µ(θ))] (40a)

h(x,θ) = θ̂(x)− θ. (40b)

For convenience, for i = 1, . . . , d we will denote the ith component
of h(x,θ) as hi(x,θ), i.e.,

hi(x,θ) = θ̂i(x)− θi = (h(x,θ))i (41)

Using the fact that the prior measure µ converges to zero at the
endpoints of Θ, it is easy to see that∫

x

∫
θi

hi(x,θ)
∂

∂θi
[f(x|θ)µi(θi)] dθidx = 1. (42)

By partial integration and (42), we get for i = 1, . . . , d, that

E(X,Θ) [hi(X,Θ)g(X,Θ)] = d. (43)

Thus, for all i = 1, . . . , d, we have

E(X,Θ) [|hi(X,Θ)g(X,Θ)|] ≥ d. (44)

For convenience, let

l(x,θ) =

d∑
i=1

∂

∂θi
[log f(x|θ)] . (45)

It is easy to see that for all θ, we have

EX|Θ [l(X,Θ)|Θ = θ] = 0 (46)

which follows by the regularity condition
EX|Θ

[
∂
∂θi

log f(x|θ)
]

= 0 for all θ ∈ Θ. Also, define

g(x,θ) = l(x,θ) +

d∑
i=1

∂

∂θi
[logµ(θ)] . (47)

In the rest of this proof we treat separately the cases p ≥ 1 and
1 < p < 2.

1) Case p ≥ 2: In this case, the average estimation error can
be lower bounded as

E(X,Θ)

[∣∣∣∣θ̂(X)− θ
∣∣∣∣p
p

]
(a)
=

d∑
i=1

E(X,Θ)

[
|hi(X,Θ)|p

]
(48)

(b)
≥

d∑
i=1

EΘ

[(
EX|Θ

[(
|hi(X,Θ)|2

)
|Θ = θ

]) p
2

]
, (49)

where (a) follows from the definition of the p-norm and (b) holds
due to Jensen’s inequality applied to the function u 7→ u

p
2 which is

convex for p > 2.
The RHS of (49) can be lower bounded as follows. First, note that
we have

E [|hi(X,Θ)g(X,Θ)| |] = EΘEX|Θ [(|hi(X,Θ)g(X,Θ)|) |Θ = θ]

(a)
≤ EΘ

(
EX|Θ

[(
|hi(X,Θ)|2

)
|Θ = θ

]) 1
2

×
(
EX|Θ

[(
|g(X,Θ)|2

)
|Θ = θ

]) 1
2

(b)
≤
(
EΘ

[∣∣∣EX|Θ

[(
|hi(X,Θ)|2

)
|Θ = θ

]∣∣∣ p2 ]) 1
p

×
(
EΘ

[(
EX|Θ

[(
|g(X,Θ)|2

)
|Θ = θ

]) q
2

]) 1
q

, (50)

where (a) follows by application of Hölder’s inequality for every
θ ∈ Θ to the conditional expectation EX|Θ[·|θ] ; and (b) follows
by application of Hölder’s inequality to the expectation EΘ[·] since
p > 1, q > 1 and are such that 1

p + 1
q = 1.

Combining (44), (49) and (50), we get

E(X,Θ)

[∣∣∣∣θ̂(X)− θ
∣∣∣∣p
p

]
≥

dp+1(
EΘ

[(
EX|Θ

[(
|g(X,Θ)|2

)
|Θ = θ

]) q
2

]) p
q

. (51)

We now upper bound the RHS term of (51), as follows.
Since

EX|Θ

[
l(X,Θ)

(
d∑
i=1

∂

∂θi
[logµ(θ)]

)
|Θ = θ

]
= 0, (52)

we get

EX|Θ

[
(g(X,Θ))2 |Θ = θ

]
= EX|Θ

[
l2(X,Θ) |Θ = θ

]
+

(
d∑
i=1

∂

∂θi
[logµ(θ)]

)2

(53)



Thus,

EΘ

[(
EX|Θ

[
|g(X,Θ)|2 |Θ = θ

]) q
2

]
(a)
≤
(
E
[
|g(X,Θ)|2

]) q
2

(54)

(b)
≤

E(X,Θ)

[
l2(X,Θ)

]
+ EΘ

(
d∑
i=1

∂

∂θi
[logµ(θ)]

)2


q
2

(55)

where (a) follows using Jensen’s inequality for the concave func-
tion u −→ uq/2 for q = p/p−1 ≤ 2; and (b) follows by substituting
using (53).
The first expectation term on the RHS of (55) is upper bounded as

E(X,Θ)

[
l2(X,Θ)

]
(a)
= E(X,Θ)

( d∑
i=1

∂

∂θi
[log f(X|Θ)]

)2


(b)
≤ dEΘ [Tr(IX(θ))] (56)

where (a) follows by substituting using (45) and (b) holds since for

non-negative {ui}di=1 we have
(∑d

i=1 ui

)2
≤ d

∑d
i=1 u

2
i .

Hence, we get(
EΘ

[(
EX|Θ

[
|g(X,Θ)|2 |Θ = θ

]) q
2

]) p
q

(a)
≤

E(X,Θ)

[
l2(X,Θ)

]
+ EΘ

(
d∑
i=1

∂

∂θi
[logµ(θ)]

)2


p
2

(b)
≤ (dEΘ [Tr(IX(θ))] + dTr(I(µ)))

p
2 , (57)

where (a) follows by using (55) and noticing that p/q = p− 1 ≥ 1
and (b) holds using (56).
Summarizing, combining (51) and (57) we get

E(X,Θ)

[∣∣∣∣θ̂(X)− θ
∣∣∣∣p
p

]
≥ d(1+ p

2 )

(EΘ [Tr(IX(θ))] + Tr(I(µ)))
p
2

.

(58)
2) Case 1 < p < 2: First, recall that

E(X,Θ)

[∣∣∣∣θ̂(X)− θ
∣∣∣∣p
p

]
=

d∑
i=1

E(X,Θ)

[
|hi(X,Θ)|p

]
. (59)

Also, for all i = 1, . . . , d, an easy application of Hölder’s inequality
for expectations yields

E(X,Θ) [|hi(X,Θ)g(X,Θ)|]

≤
(
E(X,Θ)

[
|hi(X,Θ)|p

]) 1
p
(
E(X,Θ)

[
|g(X,Θ)|q

]) 1
q . (60)

Thus, using (59) and (60), we get

E(X,Θ)

[∣∣∣∣θ̂(X)− θ
∣∣∣∣p
p

]
≥ dp+1(

E(X,Θ)

[
|g(X,Θ)|q

]) p
q

. (61)

The rest of the proof in this case is devoted to upper-bounding the
denominator of the RHS of (61).

Recalling (47), we have

(
E(X,Θ)

[
|g(X,Θ)|q

]) 1
q

(a)
≤ (62)

(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q +

EΘ

∣∣∣∣∣
d∑
i=1

∂

∂Θi
[logµ(Θ)]

∣∣∣∣∣
q


1
q

(b)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q +

d∑
i=1

(
EΘ

[∣∣∣∣ ∂

∂Θi
[logµ(Θ)]

∣∣∣∣q])
1
q

(c)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q

+

d∑
i=1

(EΘ

[∣∣∣∣ ∂

∂Θi
[logµ(Θ)]

∣∣∣∣
p

p−1

])p−1


1
p

(d)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q + d

p−1
p

(
Ω(p)(µ)

) 1
p
, (63)

where: (a) follows by application of the Minkowski’s inequality for
expectations (E[|Z + T |q])

1
q ≤ (E[|Z|q])

1
q +(E[|T |q])

1
q for r.v.s Z

and T ; (b) follows by application of the Minkowski’s inequality

for expectations
(
E[|
∑d
i=1 Zi|

q]
) 1

q ≤
∑d
i=1 (E[|Zi|q])

1
q for r.v.s

(Z1, . . . , Zd); (c) holds by substituting using q = p/p − 1 and (d)

holds by first using the inequality
∑d
i=1 u

1
p

i ≤ d
p−1
p

(∑d
i=1 ui

) 1
p

for non-negative (u1, . . . , ud) and p > 1 and then substituting
using (14).
Continuing from (63), the first term of its RHS can be upper
bounded as(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q

(a)
=

E(X,Θ)

∣∣∣∣∣
d∑
i=1

∂

∂θi
[log f(X|Θ)]

∣∣∣∣∣
q


1
q

(b)
≤ d

q−1
q

(
E(X,Θ)

[
d∑
i=1

∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣q
]) 1

q

(c)
= d

1
p

(
EΘ

[
d∑
i=1

EX|Θ

[∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣
p

p−1

| Θ = θ

]]) p−1
p

(d)
= d

1
p

(
EΘ

[
d∑
i=1

(vi(θ))
1

p−1

]) p−1
p

(e)
≤ d

1
p

EΘ

( d∑
i=1

vi(θ)

) 1
p−1


p−1
p

(f)
= d

1
p

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

, (64)

where: (a) follows by substituting using (45); (b) holds by using
the inequality

(∑d
i=1 ui

)q
≤ dq−1∑d

i=1 u
q
i which holds for non-

negative (u1, . . . , ud) and q > 1, (c) follows by substituting using
q = p

p−1 ; and (d) holds by defining, for i = 1, . . . , d and θ ∈ Θ,

vi(θ) =

(
EX|Θ

[∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣
p

p−1

| Θ = θ

])p−1

; (65)



(e) holds by using the inequality
∑d
i=1 u

1
p−1

i ≤
(∑d

i=1 ui

) 1
p−1

for non-negative (u1, . . . , ud) and p < 2; and (f) holds by substi-
tuting using (12).
Hence, combining (64) and (62), we get(

E(X,Θ)

[
|g(X,Θ)|q

]) 1
q ≤

d
1
p

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

+ d
p−1
p

(
Ω(p)(µ)

) 1
p
. (66)

Finally, substituting in (61) using (66) yields the desired result,

E(X,Θ)

[∣∣∣∣θ̂(X)− θ
∣∣∣∣p
p

]
≥ dp

(
d

p−2
p

(
Ω(p)(µ)

) 1
p

+

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

−p . (67)

B. Proof of Inequality (19)

Let q ∈ R such that 1
p+ 1

q = 1, i.e., q = p/(p−1). Also, consider
the following two functions g(·) and h(·) defined, for x ∈ X and
θ = [θ1, . . . , θd] ∈ Θ, as

g(x,θ) =

d∑
i=1

∂

∂θi
[log (f(x|θ)µ(θ))] (68a)

h(x,θ) = ψ(θ̂(x))− ψ(θ). (68b)

For convenience, for i = 1, . . . , d we will denote the ith component
of h(x,θ) as hi(x,θ), i.e.,

hi(x,θ) = ψi(θ̂(x))− ψi(θ) = (h(x,θ))i (69)

Using the definition of the p-norm, the average estimation error can
be lower bounded as

E(X,Θ)

[∣∣∣∣ψ(θ̂(X))− ψ(θ)
∣∣∣∣p
p

]
=

d∑
i=1

E(X,Θ)

[
|hi(X,Θ)|p

]
.

(70)

The RHS of (70) can be lower bounded as follows. First, note that
applying Hölder’s inequality for expectations yields

E(X,Θ) [|hi(X,Θ)g(X,Θ)|] ≤
(
E(X,Θ)

[
|hi(X,Θ)|p

]) 1
p ×(

E(X,Θ)

[
|g(X,Θ)|q

]) 1
q . (71)

Using the fact that the prior measure µ converges to zero at the
endpoints of Θ and partial integration, it is easy to see that∫

θi

hi(x,θ)
∂

∂θi
[f(x|θ)µi(θi)] dθi

= hi(x,θ)f(x|θ)µi(θi)|
θ(i)max

θ
(i)
min

−∫
θi

∂

∂θi
[hi(x,θ)] f(x|θ)µi(θi) dθi

= −
∫
θi

∂

∂θi
[hi(x,θ)] f(x|θ)µi(θi) dθi. (72)

Integration in (72), we get for i = 1, . . . , d, that∫
x

∫
θi

hi(x,θ)
∂

∂θi
[f(x|θ)µi(θi)] dθi dx

= −E(X,Θi)

[
∂

∂Θi
[hi(x,Θ)]

]
. (73)

Thus, with some algebraic manipulations,

E(X,Θ) [hi(X,Θ)g(X,Θ)]

=

d∑
i=1

EΘ1

[
. . .EΘd

[
−E(X,Θi

)

[
∂

∂Θi
[hi(X,Θ)]

]]]

= −
d∑
i=1

E(X,Θ)

[
∂

∂Θi
[hi(X,Θ)]

]

=

d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]
(74)

and |E[X]| ≤ E[|X|] lower bounds the left-hand side of (71)∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣ ≤ E(X,Θ) [|hi(X,Θ)g(X,Θ)|] . (75)

Combining (70), (71) and (75), we get

E(X,Θ)

[∣∣∣∣ψ(θ̂(X))− ψ(θ)
∣∣∣∣p
p

]
≥

d

∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣
p (

E(X,Θ)

[
|g(X,Θ)|q

])− p
q . (76)

We now upper bound the second expectation of the RHS term
of (76), as follows. For convenience, let

l(x,θ) =

d∑
i=1

∂

∂θi
[log f(x|θ)] . (77)

It is easy to see that for all θ, we have

EX|Θ [l(X,Θ)|Θ = θ] = 0 (78)

which follows by the regularity condition
EX|Θ

[
∂
∂θi

log f(x|θ)
]

= 0 for all θ ∈ Θ. Also,

g(x,θ) = l(x,θ) +

d∑
i=1

∂

∂θi
[logµ(θ)] . (79)

Note that l(x,θ) is the sum of the elements of the score function
associated with X.
From (79), we have(
E(X,Θ)

[
|g(X,Θ)|q

]) 1
q

(a)
≤ (80)

(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q +

EΘ

∣∣∣∣∣
d∑
i=1

∂

∂Θi
[logµ(Θ)]

∣∣∣∣∣
q


1
q

(b)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q +

d∑
i=1

(
EΘ

[∣∣∣∣ ∂

∂Θi
[logµ(Θ)]

∣∣∣∣q])
1
q

(c)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q

+

d∑
i=1

(EΘ

[∣∣∣∣ ∂

∂Θi
[logµ(Θ)]

∣∣∣∣
p

p−1

])p−1


1
p

(d)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q + d

p−1
p

(
Ω(p)(µ)

) 1
p
, (81)

where: (a) follows by application of the Minkowski’s inequality for
expectations (E[|Z + T |q])

1
q ≤ (E[|Z|q])

1
q +(E[|T |q])

1
q for r.v.s Z



and T ; (b) follows by application of the Minkowski’s inequality

for expectations
(
E[|
∑d
i=1 Zi|

q]
) 1

q ≤
∑d
i=1 (E[|Zi|q])

1
q for r.v.s

(Z1, . . . , Zd); (c) holds by substituting using q = p/p − 1 and (d)

holds by first using the inequality
∑d
i=1 u

1
p

i ≤ d
p−1
p

(∑d
i=1 ui

) 1
p

for non-negative (u1, . . . , ud) and p > 1 and then substituting
using (14).
Continuing from (81), the first term of its RHS can be upper
bounded as(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q

(a)
=

E(X,Θ)

∣∣∣∣∣
d∑
i=1

∂

∂θi
[log f(X|Θ)]

∣∣∣∣∣
q


1
q

(b)
≤ d

q−1
q

(
E(X,Θ)

[
d∑
i=1

∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣q
]) 1

q

(c)
= d

1
p

(
EΘ

[
d∑
i=1

EX|Θ

[∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣
p

p−1

| Θ = θ

]]) p−1
p

(d)
= d

1
p

(
EΘ

[
d∑
i=1

(vi(θ))
1

p−1

]) p−1
p

(e)
≤ d

p−1
p

EΘ

( d∑
i=1

vi(θ)

) 1
p−1


p−1
p

(f)
= d

p−1
p

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

, (82)

where: (a) follows by substituting using (77); (b) holds by using
the inequality

(∑d
i=1 ui

)q
≤ dq−1∑d

i=1 u
q
i which holds for non-

negative (u1, . . . , ud) and q > 1, (c) follows by substituting using
q = p

p−1 ; and (d) holds by defining, for i = 1, . . . , d and θ ∈ Θ,

vi(θ) =

(
EX|Θ

[∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣
p

p−1

| Θ = θ

])p−1

; (83)

(e) holds by using the inequality
∑d
i=1 u

1
p−1

i ≤

d
p−2
p−1

(∑d
i=1 ui

) 1
p−1

for non-negative (u1, . . . , ud) and p ≥ 2;
and (f) holds by substituting using (12).

Substituting (82) in (81), we obtain(
E(X,Θ)

[
|g(X,Θ)|q

]) 1
q ≤

d
p−1
p

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

+ d
p−1
p

(
Ω(p)(µ)

) 1
p
.

(84)

Substituting (84) in (76) produces the lower bound

E(X,Θ)

[∣∣∣∣ψ(θ̂(X))− ψ(θ)
∣∣∣∣p
p

]
≥

∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣
p

×

d2−p

(Ω(p)(µ)
) 1

p
+

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

−p .

Let ψ(θ) = θ, then we obtain

E(X,Θ)

[∣∣∣∣θ̂(X)− θ
∣∣∣∣p
p

]
≥

d2

(Ω(p)(µ)
) 1

p
+

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

−p .
C. Proof of Corollary 1

1) Case p ≥ 2: Let q ∈ R such that 1
p + 1

q = 1, i.e., q =
p/(p− 1). Also, consider the following two functions g(·) and h(·)
defined, for x ∈ X and θ = [θ1, . . . , θd] ∈ Θ, as

g(x,θ) =

d∑
i=1

∂

∂θi
[log (f(x|θ)µ(θ))] (85a)

h(x,θ) = ψ(θ̂(x))− ψ(θ). (85b)

For convenience, for i = 1, . . . , d we will denote the ith component
of h(x,θ) as hi(x,θ), i.e.,

hi(x,θ) = ψi(θ̂(x))− ψi(θ) = (h(x,θ))i (86)

The average estimation error can be lower bounded as

E(X,Θ)

[∣∣∣∣ψ(θ̂(x))− ψ(θ)
∣∣∣∣p
p

]
(a)
=

d∑
i=1

E(X,Θ)

[
|hi(X,Θ)|p

]
(87)

(b)
≥

d∑
i=1

EΘ

[(
EX|Θ

[
|hi(X,Θ)|2 | Θ = θ

]) p
2

]
, (88)

where (a) follows from the definition of the p-norm and (b) by
replacing E(X,Θ) with EΘ and EX|Θ and Jensen’s inequality for
expectations for convex functions x 7→ x

p
2 , for 2 < p.

The RHS of (88) can be lower bounded as follows. First, note that
we have

E [|hi(X,Θ)g(X,Θ)| |] = EΘEX|Θ [(|hi(X,Θ)g(X,Θ)|) |Θ = θ]

(a)
≤ EΘ

(
EX|Θ

[(
|hi(X,Θ)|2

)
|Θ
]) 1

2

×
(
EX|Θ

[(
|g(X,Θ)|2

)
|Θ = θ

]) 1
2

(b)
≤
(
EΘ

[∣∣∣EX|Θ

[(
|hi(X,Θ)|2

)
|Θ = θ

]∣∣∣ p2 ]) 1
p

×
(
EΘ

[(
EX|Θ

[(
|g(X,Θ)|2

)
|Θ = θ

]) q
2

]) 1
q

, (89)

where (a) follows by application of Hölder’s inequality for every
θ ∈ Θ to the conditional expectation EX|Θ[·|θ] ; and (b) follows
by application of Hölder’s inequality to the expectation EΘ[·] since
p > 1, q > 1 and are such that 1

p + 1
q = 1.



Using the fact that the prior measure µ converges to zero at the
endpoints of Θ, it is easy to see that∫

θi

hi(x,θ)
∂

∂θi
[f(x|θ)µi(θi)] dθi

= hi(x,θ)f(x|θ)µi(θi)|
θ(i)max

θ
(i)
min

−∫
θi

∂

∂θi
[hi(x,θ)] f(x|θ)µi(θi) dθi

= −
∫
θi

∂

∂θi
[hi(x,θ)] f(x|θ)µi(θi) dθi. (90)

By partial integration and (90), we get for i = 1, . . . , d, that∫
x

∫
θi

hi(x,θ)
∂

∂θi
[f(x|θ)µi(θi)] dθi dx

= −E(X,Θi)

[
∂

∂Θi
[hi(x,Θ)]

]
. (91)

Thus, with some algebraic manipulations,

E(X,Θ) [hi(X,Θ)g(X,Θ)]

=

d∑
i=1

EΘ1

[
. . .EΘd

[
−E(X,Θi

)

[
∂

∂Θi
[hi(X,Θ)]

]]]

= −
d∑
i=1

E(X,Θ)

[
∂

∂Θi
[hi(X,Θ)]

]

=

d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]
(92)

and |E[X]| ≤ E[|X|] lower bounds the left-hand side of (89)∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣ ≤ E(X,Θ) [|hi(X,Θ)g(X,Θ)|] . (93)

We now upper bound the second expectation of the RHS term
of (89), as follows. For convenience, let

l(x,θ) =

d∑
i=1

∂

∂θi
[log f(x|θ)] . (94)

It is easy to see that for all θ, we have

EX|Θ [l(X,Θ)|Θ = θ] = 0 (95)

which follows by the regularity condition
EX|Θ

[
∂
∂θi

log f(x|θ)
]

= 0 for all θ ∈ Θ. Also,

g(x,θ) = l(x,θ) +

d∑
i=1

∂

∂θi
[logµ(θ)] . (96)

Now, since

EX|Θ

[
l(X,Θ)

(
d
∂

∂θi
[logµi(θi)]

)
|Θ = θ

]
= 0, (97)

we get

EX|Θ

[
(g(X,Θ))2 |Θ = θ

]
= EX|Θ

[
l2(X,Θ) |Θ = θ

]
+

(
d∑
i=1

∂

∂θi
[logµ(θ)]

)2

.

(98)

Thus,

EΘ

[(
EX|Θ

[
|g(X,Θ)|2 |Θ = θ

]) q
2

]
(a)
≤
(
E
[
|g(X,Θ)|2

]) q
2

(99)

(b)
≤

E(X,Θ)

[
l2(X,Θ)

]
+ EΘ

(
d∑
i=1

∂

∂θi
[logµ(θ)]

)2


q
2

(100)

where (a) follows using Jensen’s inequality for the concave func-
tion u −→ uq/2 for q = p/p−1 ≤ 2; and (b) follows by substituting
using (98).
The first expectation term on the RHS of (100) is upper bounded as

E(X,Θ)

[
l2(X,Θ)

]
(a)
= E(X,Θ)

( d∑
i=1

∂

∂θi
[log f(X|Θ)]

)2


(b)
≤ dEΘ [Tr(IX(θ))] (101)

where (a) follows by substituting using (94) and (b) holds since for

non-negative {ui}di=1 we have
(∑d

i=1 ui

)2
≤ d

∑d
i=1 u

2
i .

Hence, we get(
EΘ

[(
EX|Θ

[
|g(X,Θ)|2 |Θ = θ

]) q
2

]) p
q

≤

E(X,Θ)

[
l2(X,Θ)

]
+ EΘ

(
d∑
i=1

∂

∂θi
[logµ(θ)]

)2


p
2

≤ (dEΘ [Tr(IX(θ))] + dTr(I(µ)))
p
2 , (102)

where the last inequality follows from
(∑d

i=1 ui

)2
≤ d

∑d
i=1 u

2
i ,

for non-negative {ui}di=1.
Summarizing, combining (88), (93) and (102) leads us to the

desired lower bound

E(X,Θ)

[∣∣∣∣ψ(θ̂(x))− ψ(θ)
∣∣∣∣p
p

]
≥

d∑
i=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣
p

×

(dEΘ [Tr(IX(θ))] + dTr(I(µ)))−
p
2

]
= d1− p

2

∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣
p

×

(EΘ [Tr(IX(θ))] + Tr(I(µ)))−
p
2

2) Case 1 < p < 2: Let q ∈ R such that 1
p + 1

q = 1, i.e.,
q = p/(p− 1). Also, consider the following two functions g(·) and
h(·) defined, for x ∈ X and θ = [θ1, . . . , θd] ∈ Θ, as

g(x,θ) =

d∑
i=1

∂

∂θi
[log (f(x|θ)µ(θ))] (103a)

h(x,θ) = ψ(θ̂(x))− ψ(θ). (103b)

For convenience, for i = 1, . . . , d we will denote the ith component
of h(x,θ) as hi(x,θ), i.e.,

hi(x,θ) = ψi(θ̂(x))− ψi(θ) = (h(x,θ))i (104)



Using the definition of the p-norm, the average estimation error can
be lower bounded as

E(X,Θ)

[∣∣∣∣ψ(θ̂(X))− ψ(θ)
∣∣∣∣p
p

]
=

d∑
i=1

E(X,Θ)

[
|hi(X,Θ)|p

]
.

(105)

The RHS of (105) can be lower bounded as follows. First, note that
applying Hölder’s inequality for expectations yields

E(X,Θ) [|hi(X,Θ)g(X,Θ)|] ≤
(
E(X,Θ)

[
|hi(X,Θ)|p

]) 1
p ×(

E(X,Θ)

[
|g(X,Θ)|q

]) 1
q . (106)

Using the fact that the prior measure µ converges to zero at the
endpoints of Θ and partial integration, it is easy to see that∫

θi

hi(x,θ)
∂

∂θi
[f(x|θ)µi(θi)] dθi

= hi(x,θ)f(x|θ)µi(θi)|
θ(i)max

θ
(i)
min

−∫
θi

∂

∂θi
[hi(x,θ)] f(x|θ)µi(θi) dθi

= −
∫
θi

∂

∂θi
[hi(x,θ)] f(x|θ)µi(θi) dθi. (107)

Integration in (107), we get for i = 1, . . . , d, that∫
x

∫
θi

hi(x,θ)
∂

∂θi
[f(x|θ)µi(θi)] dθi dx

= −E(X,Θi)

[
∂

∂Θi
[hi(x,Θ)]

]
. (108)

Thus, with some algebraic manipulations,

E(X,Θ) [hi(X,Θ)g(X,Θ)]

=

d∑
i=1

EΘ1

[
. . .EΘd

[
−E(X,Θi

)

[
∂

∂Θi
[hi(X,Θ)]

]]]

= −
d∑
i=1

E(X,Θ)

[
∂

∂Θi
[hi(X,Θ)]

]

=

d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]
(109)

and |E[X]| ≤ E[|X|] lower bounds the left-hand side of (106)∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣ ≤ E(X,Θ) [|hi(X,Θ)g(X,Θ)|] . (110)

Combining (105), (106) and (110), we get

E(X,Θ)

[∣∣∣∣ψ(θ̂(X))− ψ(θ)
∣∣∣∣p
p

]
≥

d

∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣
p (

E(X,Θ)

[
|g(X,Θ)|q

])− p
q . (111)

We now upper bound the second expectation of the RHS term
of (111), as follows. For convenience, let

l(x,θ) =

d∑
i=1

∂

∂θi
[log f(x|θ)] . (112)

It is easy to see that for all θ, we have

EX|Θ [l(X,Θ)|Θ = θ] = 0 (113)

which follows by the regularity condition
EX|Θ

[
∂
∂θi

log f(x|θ)
]

= 0 for all θ ∈ Θ. Also,

g(x,θ) = l(x,θ) +

d∑
i=1

∂

∂θi
[logµ(θ)] . (114)

Note that l(x,θ) is the sum of the elements of the score function
associated with X.
From (114), we have(
E(X,Θ)

[
|g(X,Θ)|q

]) 1
q

(a)
≤ (115)

(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q +

EΘ

∣∣∣∣∣
d∑
i=1

∂

∂Θi
[logµ(Θ)]

∣∣∣∣∣
q


1
q

(b)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q +

d∑
i=1

(
EΘ

[∣∣∣∣ ∂

∂Θi
[logµ(Θ)]

∣∣∣∣q])
1
q

(c)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q

+

d∑
i=1

(EΘ

[∣∣∣∣ ∂

∂Θi
[logµ(Θ)]

∣∣∣∣
p

p−1

])p−1


1
p

(d)
≤
(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q + d

p−1
p

(
Ω(p)(µ)

) 1
p
, (116)

where: (a) follows by application of the Minkowski’s inequality for
expectations (E[|Z + T |q])

1
q ≤ (E[|Z|q])

1
q +(E[|T |q])

1
q for r.v.s Z

and T ; (b) follows by application of the Minkowski’s inequality

for expectations
(
E[|
∑d
i=1 Zi|

q]
) 1

q ≤
∑d
i=1 (E[|Zi|q])

1
q for r.v.s

(Z1, . . . , Zd); (c) holds by substituting using q = p/p − 1 and (d)

holds by first using the inequality
∑d
i=1 u

1
p

i ≤ d
p−1
p

(∑d
i=1 ui

) 1
p

for non-negative (u1, . . . , ud) and p > 1 and then substituting
using (14).
Continuing from (116), the first term of its RHS can be upper
bounded as(
E(X,Θ)

[
|l(X,Θ)|q

]) 1
q

(a)
=

E(X,Θ)

∣∣∣∣∣
d∑
i=1

∂

∂θi
[log f(X|Θ)]

∣∣∣∣∣
q


1
q

(b)
≤ d

q−1
q

(
E(X,Θ)

[
d∑
i=1

∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣q
]) 1

q

(c)
= d

1
p

(
EΘ

[
d∑
i=1

EX|Θ

[∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣
p

p−1

| Θ = θ

]]) p−1
p

(d)
= d

1
p

(
EΘ

[
d∑
i=1

(vi(θ))
1

p−1

]) p−1
p

(e)
≤ d

1
p

EΘ

( d∑
i=1

vi(θ)

) 1
p−1


p−1
p



(f)
= d

1
p

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

, (117)

where: (a) follows by substituting using (112); (b) holds by using
the inequality

(∑d
i=1 ui

)q
≤ dq−1∑d

i=1 u
q
i which holds for non-

negative (u1, . . . , ud) and q > 1, (c) follows by substituting using
q = p

p−1 ; and (d) holds by defining, for i = 1, . . . , d and θ ∈ Θ,

vi(θ) =

(
EX|Θ

[∣∣∣∣ ∂∂θi [log f(X|Θ)]

∣∣∣∣
p

p−1

| Θ = θ

])p−1

;

(118)

(e) holds by using the inequality
∑d
i=1 u

1
p−1

i ≤
(∑d

i=1 ui

) 1
p−1

for non-negative (u1, . . . , ud) and p < 2; and (f) holds by substi-
tuting using (12).

Substituting (117) in (116), we obtain(
E(X,Θ)

[
|g(X,Θ)|q

]) 1
q ≤

d
1
p

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

+ d
p−1
p

(
Ω(p)(µ)

) 1
p
. (119)

Substituting (119) in (111) produces the desired lower bound

E(X,Θ)

[∣∣∣∣ψ(θ̂(X))− ψ(θ)
∣∣∣∣p
p

]
≥

∣∣∣∣∣
d∑
i=1

EΘ

[
∂ψi(θ)

∂Θi

]∣∣∣∣∣
p

×

d p−2
p

(
Ω(p)(µ)

) 1
p

+

(
EΘ

[(
Ω

(p)
X (θ)

) 1
p−1

]) p−1
p

−p .
D. Proof of Theorem 2

1) Case p ≥ 2:
Let q ∈ R such that 1

p + 1
q = 1, i.e., q = p/(p − 1). Also,

consider the following two functions g(·) and h(·) defined, for x ∈
X , θ = [θ1, . . . , θd] ∈ Θ and a specific quantization messages tuple
m(n) = (m1, . . . ,mn) ∈ [1, 2k]n as

g(m(n),θ) =

d∑
i=1

∂

∂θi

[
log
(
p(m(n)|θ)µ(θ)

)]
(120a)

h(m(n),θ) = θ̂(m(n))− θ (120b)

where in (120a) the quantization messages joint probability is
p(m(n)|θ) =

∏n
j=1 pj(mj |θ). For convenience, for i = 1, . . . , d

we will denote the ith component of h(m(n),θ) as hi(m(n),θ),
i.e.,

hi(m
(n),θ) = θ̂i(m

(n))− θi =
(
h(m(n),θ)

)
i
. (121)

Using the fact that the prior measure µ converges to zero at the
boundaries of Θ, it is easy to see that∑

m(n)

∫
θi

hi(m
(n),θ)

∂

∂θi

[
p(m(n)|θ)µi(θi)

]
dθi = 1. (122)

By partial integration and (122), we get for i = 1, . . . , d, that

E(M(n),Θ)

[
hi(M

(n),Θ)g(M(n),Θ)
]

= d. (123)

Thus, for all i = 1, . . . , d, we have

d ≤ E(M(n),Θ)

[∣∣∣hi(M(n),Θ)g(M(n),Θ)
∣∣∣] . (124)

Note that we have

E
[∣∣∣hi(M(n),Θ)g(M(n),Θ)

∣∣∣] (125)

= EΘEX|Θ

[(∣∣∣hi(M(n),Θ)g(M(n),Θ)
∣∣∣) |Θ = θ

]
(a)
≤ EΘ

(
EM(n)|Θ

[(∣∣∣hi(M(n),Θ)
∣∣∣2) |Θ = θ

]) 1
2

×
(
EM(n)|Θ

[(∣∣∣g(M(n),Θ)
∣∣∣2) |Θ = θ

]) 1
2

(b)
≤

(
EΘ

[∣∣∣∣EM(n)|Θ

[(∣∣∣hi(M(n),Θ)
∣∣∣2) |Θ = θ

]∣∣∣∣
p
2

]) 1
p

×

(
EΘ

[(
EM(n)|Θ

[(∣∣∣g(M(n),Θ)
∣∣∣2) |Θ = θ

]) q
2

]) 1
q

,

where (a) follows by application of Hölder’s inequality for every
θ ∈ Θ to the conditional expectation EM(n)|Θ[·|θ] ; and (b) follows
by application of Hölder’s inequality to the expectation EΘ[·] since
p > 1, q > 1 and are such that 1

p + 1
q = 1.

The first element of the right-hand side of (125(b)) produces the
desired risk

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]

(a)
≥ E(M(n),Θ)

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p

]
(b)
=

d∑
i=1

E(M(n),Θ)

[∣∣∣hi(M(n),Θ)
∣∣∣p] (126)

(c)
≥

d∑
i=1

EΘ

[(
EM(n)|Θ

[∣∣∣hi(M(n),Θ)
∣∣∣2 | Θ]) p

2

]
, (127)

where in (a) the supremum upper bounds the expectation, (b) fol-
lows by the definition of the p-norm and (c) by replacing E(M(n),Θ)
with EΘ and EM(n)|Θ and Jensen’s inequality for expectations for
convex functions x 7→ x

p
2 , for 2 < p.

Combining (124), (125(b)) and (127), we get

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]
≥ (128)

dp+1

(
EΘ

[(
EM(n)|Θ

[(∣∣∣g(M(n),Θ)
∣∣∣2) |Θ = θ

]) q
2

])− p
q

.

We now move on to the last step of the proof, to upper bound the
expectation of the RHS of (128). For convenience, let

l(mj ,θ) =

d∑
i=1

∂

∂θi

[
log p(mj|θ)

]
with EMj |Θ

[
l(Mj ,Θ)

]
= 0.

Then, g(m(n),θ) =

n∑
j=1

l(mj ,θ) +

d∑
i=1

∂

∂θi
[logµ(θ)] . (129)

Note that l(mj ,θ) is the sum of the elements of the score function
associated withMj . We expand the square and cancel the product of
the two elements, due to the property that EMj |Θ

[
l(Mj ,Θ)

]
= 0,



to arrive at the trace of the Fisher information matrix ofMj and that
of the prior, respectively, as follows(
EM(n)|Θ

[∣∣∣g(M(n),Θ)
∣∣∣2 | Θ]) 1

2

= (130)EM(n)|Θ


 n∑
j=1

l(Mj ,Θ)

2

| Θ

+

(
d∑
i=1

∂

∂Θi
[logµ(Θ)]

)2


1
2

,

which holds by

EM(n)|Θ

 n∑
j=1

l(Mj ,Θ)

( d∑
i=1

∂

∂θi
[logµ(θ)]

)
| Θ

 = 0.

Further, by Jensen’s inequality for expectations for concave func-
tions x 7→ x

q
2 , for q < 2, we have(

EΘ

[(
EM(n)|Θ

[∣∣∣g(M(n),Θ)
∣∣∣2 | Θ]) q

2

]) 1
q

≤

E(M(n),Θ)


 n∑
j=1

l(Mj ,Θ)

2
+

+EΘ

( d∑
i=1

∂

∂Θi
[logµ(Θ)]

)2


1
2

≤

E(M(n),Θ)


 n∑
j=1

l(Mj ,Θ)

2
+

+d

d∑
i=1

EΘ

[(
∂

∂Θi
[logµ(Θ)]

)2
]) 1

2

=

E(M(n),Θ)


 n∑
j=1

l(Mj ,Θ)

2
+ dTr(I(µ))


1
2

. (131)

For l(Mj ,Θ) with EMj |Θ
[
l(Mj ,Θ)

]
= 0 and independent, by

the Marcinkiewicz-Zygmund inequality in the form of (2) of [18],
there exists a constant B2 = 1 [19], such that

EM(n)|Θ


 n∑
j=1

l(Mj ,Θ)

2

| Θ

 =

B2EM(n)|Θ

 n∑
j=1

l2(Mj ,Θ) | Θ


(a)
=

n∑
j=1

EM(n)|Θ

( d∑
i=1

∂

∂θi

[
log p(Mj |Θ)

])2

| Θ

 ,
(b)
≤ d

n∑
j=1

Tr(IMj
(θ)), (132)

where, by the independence of Mj , the expectation of each element
of the summation is identical and this leads to the term n in (a),
which also follows from the definition of l(Mj ,Θ), (b) is given

by the inequality
(∑d

i=1 xi

)2
≤ d

∑d
i=1 x

2
i , xi > 0, required in

order to pass the summation inside the expectation and obtain the
trace of the Fisher information matrix for Mj .

Substituting (132) in (131), we obtain(
EΘ

[(
EM(n)|Θ

[∣∣∣g(M(n),Θ)
∣∣∣2 | Θ]) q

2

]) 1
q

≤

dEΘ

 n∑
j=1

Tr(IMj
(Θ))

+ dTr(I(µ))


1
2

. (133)

Substituting (133) in (128), produces the desired lower bound

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]
≥

d(1+ p
2 )

 n∑
j=1

EΘ

[
Tr(IMj

(Θ))
]

+ Tr(I(µ))

−
p
2

. (134)

Remark 3. For a random variable with bounded support, θi ∈
[−B,B], the prior distribution µi(θi) that minimizes the Fisher in-
formation is the raised cosine distribution. That is, for θi ∈ [−B,B]

µi(θi) =
1

B
cos2

(
πθi
2B

)
, I(µi) =

π2

B2
,Ω(p)(µ) =

d∑
i=1

I(p)(µi) = d

(
EΘi

[∣∣∣∣ ∂

∂Θi
[logµi(Θi)]

∣∣∣∣
p

p−1

])p−1

=
πd

2

( 2

B

)p [
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)]p−1

, (135)

where I(µi) represents the Fisher information associated to the
prior. The condition p > 1.5 is required to ensure the existence
of the Beta function B(·).

E. Proof of Theorem 3

1) Case p ≥ 2: By Theorem 2, if p ≥ 2, we have that

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥

d(1+ p
2 )

 n∑
j=1

EΘ

[
Tr(IMj

(θ))
]

+ Tr(I(µ))

−
p
2

.

We need to compute an upper bound on Tr(IMj
(θ)). If p ≥ 2,

then, Theorem 6 gives us that, for some r ≥ 1, the upper bound
holds

Tr(IMj
(θ)) ≤ min {Tr(IX(θ), 4I0k

2
r }.

Then, also by Remark 3, we obtain

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]
≥

d(1+ p
2 )
(

4I0k
2
r n+

d π2

B2

)− p
2

. (136)



2) Case 1 < p < 2: By Theorem 2, if 1 < p < 2, we have that

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥ dp

[
d

p−2
p

(
Ω(p)(µ)

) 1
p

+
1

p− 1

 n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(θ)
) 1

p−1

]) 2(p−1)
p


1
2


−p

We need to compute an upper bound on Ω
(p)
Mj

(θ)). If 1 < p < 2,
then, Theorem 5 gives us that, for some r ≥ p

2(p−1)
, the upper

bound holds

Ω
(p)
Mj

(θ) ≤ min {Ω(p)
X (θ), d

2−p
2 I

p
2
0 (2k)2−p 2p k

p
r }.

Then, also by Remark 3 ∀p > 1.5, which is required for the Beta
function B(·) to exist, we obtain

I(p)(µi) =
π

2

( 2

B

)p [
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)]p−1

and

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]
≥ dp

(
2
√
n

p− 1
d

2−p
2p I

1
2
0 k

1
r×

(2k)
2−p
p + d

p−1
p

(π
2

) 1
p 2

B

[
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)] p−1
p

)−p
.

F. Proof of Corollary 2

Using the expression of the score function,

Sθ(X) =
∂

∂θ
log f(x|θ) =

1

σ2
(x− θ),

we compute

Ω
(p)
X (θ) =

d∑
i=1

(
EX|Θ

[∣∣Sθi(X)
∣∣ p
p−1 | Θ

])p−1

=
( 1

σ2

)p d∑
i=1

(
EXi|Θ

[
|Xi − θi|

p
p−1

])p−1

=
( 1

σ2

)p( 1√
2πσ2

)p−1

×

×
d∑
i=1

(∫
xi

|xi − θi|
p

p−1 exp

[
− (xi − θ)2

2σ2

]
dxi

)p−1

.

Using the gamma function, we compute the above integral as∫
xi

|xi − θi|
p

p−1 exp

[
− (xi − θi)2

2σ2

]
dxi =

=
2

1
2p−2 σ

2p−1
p−1

p− 1
Γ

(
1

2p− 2

)
. (137)

Then, we obtain further

Ω
(p)
X (θ) =

d
√

2

σ

 Γ
(

1
2p−2

)
(p− 1)

√
2πσ2

p−1

. (138)

1) Case p ≥ 2: By Theorem 2, if p ≥ 2, we have that

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥

d(1+ p
2 )

 n∑
j=1

EΘ

[
Tr(IMj

(θ))
]

+ Tr(I(µ))

−
p
2

.

We need to compute an upper bound on Tr(IMj
(θ)). If p ≥ 2,

then, Theorem 6 gives us that, for some r ≥ 1, the upper bound
holds

Tr(IMj
(θ)) ≤ min {Tr(IX(θ), 4I0k

2
r }.

We move on to compute the value of I0. That is, using the same
approach as in Corollary 1 of [2], for r = 2 ≥ 1, we obtain I0 =

8
3σ2 . Then, by Remark 3, we get

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]
≥

d(1+ p
2 ) max

{(
nd

σ2
+
d π2

B2

)− p
2

,

(
32nk

3σ2
+
d π2

B2

)− p
2

}
.

(139)

For π2σ2d ≤ nB2 min{k, d}, we can ignore the prior to obtain

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]
≥

d(1+ p
2 ) max

{(
σ2

nd

) p
2

,

(
3σ2

32nk

) p
2

}
. (140)

2) Case 1 < p < 2: By Theorem 2, if 1 < p < 2, we have that

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
|Θ
]
≥ dp

[
d

p−2
p

(
Ω(p)(µ)

) 1
p

+
1

p− 1

 n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(θ)
) 1

p−1

]) 2(p−1)
p


1
2


−p

We need to compute an upper bound on Ω
(p)
Mj

(θ). If 1 < p < 2,
then, Theorem 5 gives us that, for some r ≥ p

2(p−1)
, the upper

bound holds

Ω
(p)
Mj

(θ) ≤ min {Ω(p)
X (θ), d

2−p
2 I

p
2
0 (2k)2−p 2p k

p
r }.

We move on to compute the value of I0. That is, using the same
approach as in Corollary 1 of [2], for r = 2 ≥ p

2(p−1)
for p > 1,

we obtain I0 = 8
3σ2 . Then, we obtain

Ω
(p)
Mj

(θ) ≤ (141)

min

d
√

2

σ

 Γ
(

1
2p−2

)
(p− 1)

√
2πσ2

p−1

, 2p+k(2−p)d
2−p
2

(
8k

3σ2

) p
2

 .



Then, also by Remark 3 ∀p > 1.5, which is required for the Beta
function B(·) to exist, we obtain

Ω(p)(µ) =
π d

2

( 2

B

)p [
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)]p−1

and

sup
θ∈Θ

EM(n)|Θ

[∣∣∣∣∣∣θ̂(M(n))− θ
∣∣∣∣∣∣p
p
| Θ
]
≥ dp×

max


 √np− 1

(
d
√

2

σ

) 1
p

 Γ
(

1
2p−2

)
(p− 1)

√
2πσ2


p−1
p

+

+ d
p−1
p

(π
2

) 1
p 2

B

[
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)] p−1
p

)−p
,( √

n

p− 1
2

p+k(2−p)
p d

2−p
2p

(
8k

3σ2

) 1
2

+

+ d
p−1
p

(π
2

) 1
p 2

B

[
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)] p−1
p

)−p .

G. Proof of Theorem 4

From the definition of the Wasserstein distance, we have

E(M(n),Θ)

[
W p
p (f(x|θ̂(M(n))), f(x|θ))

]
= E(M(n),Θ)

[
E(Z,Y)∼µ∗

[
dp(Z,Y)

]]
= E(M(n),Θ)

[∫
z

∫
y
dp(z,y)µ∗(z,y) dz dy

]
(142)

If d(z,y) = ||z− y||p, then

E(M(n),Θ)

[
W p
p (f(x|θ̂(M(n))), f(x|θ))

]
(143)

= E(M(n),Θ)

[
E(Z,Y)∼µ∗

[
dp(Z,Y)

]]
= E(M(n),Θ)

[∫
z

∫
y

(
d∑
i=1

|zi − yi|p
)
µ∗(z,y) dz dy

]

= E(M(n),Θ)

[
E(Z,Y)∼µ∗

[
d∑
i=1

|Zi − Yi|p
]]

= E(M(n),Θ)

[
d∑
i=1

E(Z,Y)∼µ∗
[
|Zi − Yi|p

]]
(a)
≥ E(M(n),Θ)

[
d∑
i=1

(
E(Z,Y)∼µ∗ [|Zi − Yi|]

)p]
(b)
≥ E(M(n),Θ)

[
d∑
i=1

∣∣E(Z,Y)∼µ∗ [Zi − Yi]
∣∣p]

= E(M(n),Θ)

[
d∑
i=1

∣∣∣EZ∼f(z|θ̂(M(n)))
[Zi]− EY∼f(y|Θ)[Yi]

∣∣∣p] ,
where (a) follows from Jensen’s inequality for convex functions
of expectations, E[|X|p] ≥ (E[|X|])p, p > 1 and (b) is given by
E[|X|] ≥ |E[X]|.

1) Case 1 < p < 2: Let q ∈ R such that 1
p + 1

q = 1, i.e.,
q = p/(p − 1). Also, consider the following two functions g(·)
and h(·) defined, for x ∈ X , θ = [θ1, . . . , θd] ∈ Θ and a specific
quantization messages tuple m(n) = (m1, . . . ,mn) ∈ [1, 2k]n as

g(m(n),θ) =

d∑
i=1

∂

∂θi

[
log
(
p(m(n)|θ)µ(θ)

)]
(144a)

h(m(n),θ) = E
Z∼f(z|θ̂(M(n)))

[Z]− EY∼f(y|Θ)[Y] (144b)

where in (144a) the quantization messages joint probability is
p(m(n)|θ) =

∏n
j=1 pj(mj |θ). For convenience, for i = 1, . . . , d

we will denote the ith component of h(m(n),θ) as hi(m(n),θ),
i.e.,

hi(m
(n),θ) = E

Z∼f(z|θ̂(M(n)))
[Zi]− EY∼f(y|Θ)[Yi]

=
(
h(m(n),θ)

)
i
. (145)

Applying Hölder’s inequality for expectations yields

E(M(n),Θ)

[∣∣∣hi(M(n),Θ)g(M(n),Θ)
∣∣∣] ≤(

E
[∣∣∣hi(M(n),Θ)

∣∣∣p]) 1
p
(
E
[∣∣∣g(M(n),Θ)

∣∣∣q]) 1
q

. (146)

The first element of the right-hand side produces the desired risk as

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ))

]
≥

d∑
i=1

E(M(n),Θ)

[∣∣∣hi(M(n),Θ)
∣∣∣p] (147)

where the inequality follows by substituting using (145) and 143
and the fact that the supremum of a function is larger than its
expectation. In the following, in order to avoid confusion in the
indeces, we will use the notation hj()̇.
Using the fact that the prior measure µ converges to zero at the
endpoints of Θ and partial integration, it is easy to see that∫

θi

hj(m
(n),θ)

∂

∂θi

[
p(m(n)|θ)µi(θi)

]
dθi

= hj(m
(n),θ)p(m(n)|θ)µi(θi)

∣∣∣θ(i)max

θ
(i)
min

−∫
θi

∂

∂θi

[
hi(m

(n),θ)
]
p(m(n)|θ)µi(θi) dθi

= −
∫
θi

∂

∂θi

[
hi(m

(n),θ)
]
p(m(n)|θ)µi(θi) dθi. (148)

Summing over all messages in (148), we get for i = 1, . . . , d, that

∑
m(n)

∫
θi

hj(m
(n),θ)

∂

∂θi

[
p(m(n)|θ)µi(θi)

]
dθi

= −E(M(n),Θi)

[
∂

∂Θi

[
hj(m

(n),Θ)
]]
. (149)



Thus, with some algebraic manipulations,

E(M(n),Θ)

[
hj(M

(n),Θ)g(M(n),Θ)
]

=

d∑
i=1

EΘ1

[
. . .EΘd

[
−E(M(n),Θi

)

[
∂

∂Θi

[
hj(M

(n),Θ)
]]]]

= −
d∑
i=1

E(M(n),Θ)

[
∂

∂Θi

[
hj(M

(n),Θ)
]]

=

d∑
i=1

EΘ

[
∂

∂Θi
EY∼f(y|Θ)[Yj ]

]
and |E[X]| ≤ E[|X|] lower bounds the left-hand side of (146) as∣∣∣∣∣

d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|Θ)[Yj ]

]]∣∣∣∣∣ ≤
E(M(n),Θ)

[∣∣hj(X,Θ)g(X,Θ)
∣∣] . (150)

Combining (143), (146), (147) and (150), we get

E(M(n),Θ)

[
W p
p (f(x|θ̂(M(n))), f(x|θ))

]
≥ d∑

j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|Θ)[Yj ]

]]∣∣∣∣∣
p
×

(
E(M(n),Θ)

[∣∣∣g(M(n),Θ)
∣∣∣q])− p

q

. (151)

We now upper bound the second expectation term of the RHS
of (151). For convenience, let for j = 1, . . . , 2k

l(mj ,θ) =

d∑
i=1

∂

∂θi

[
log p(mj |θ)

]
(152)

It is easy to see that for all θ, we have

EMj |Θ
[
l(Mj ,Θ)|Θ = θ

]
= 0. (153)

Then, we have(
E(M(n),Θ)

[∣∣∣g(M(n),Θ)
∣∣∣q]) 1

q

≤ (154)E(M(n),Θ)

∣∣∣∣∣∣
n∑
j=1

l(Mj ,Θ)

∣∣∣∣∣∣
q

1
q

+ d
p−1
p

(
Ω(p)(µ)

) 1
p
,

where the inequality holds by a double application by Minkowski’s
inequality: first for expectations using that for all Z and T we
have (E[|Z + T |q])

1
q ≤ (E[|Z|q])

1
q + (E[|T |q])

1
q ; and then that(

E[|
∑d
i=1 Zi|

q]
) 1

q≤
∑d
i=1 (E[|Zi|q])

1
q , ∀ q > 1 and

∑d
i=1 u

1
p

i ≤

d
p−1
p

(∑d
i=1 ui

) 1
p

, ∀ui > 0, p > 1.
Next, since the quantities {l(Mj ,Θ)}j are independent and satisfy
that EMj |Θ

[
l(Mj ,Θ)

]
= 0 for all j = 1, . . . , 2k, the application

of Marcinkiewicz-Zygmund inequality [18], [19] yields

EM(n)|Θ

∣∣∣∣∣∣
n∑
j=1

l(Mj ,Θ)

∣∣∣∣∣∣
q

|Θ

 ≤
Bq EM(n)|Θ


 n∑
j=1

l2(Mj ,Θ)


q
2

|Θ

 (155)

where Bq = 1/(q − 1)q > 0.
Continuing from of (155), we get

E(M(n),Θ)

∣∣∣∣∣∣
n∑
j=1

l(Mj ,Θ)

∣∣∣∣∣∣
q

2
q

≤

(a)
≤ (p− 1)2

n∑
j=1

(
E(M(n),Θ)

[
|l(Mj ,Θ)|q

]) 2
q

(b)
≤ d

2
p (p− 1)2

n∑
j=1

(
E(M(n),Θ)

[
d∑
i=1

∣∣∣∣ ∂∂θi [log p(Mj |Θ)
]∣∣∣∣q
]) 2

q

(c)
= d

2
p (p− 1)2

n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(θ)
) 1

p−1

]) 2(p−1)
p

, (156)

where (a) follows by using the quantization messages are inde-
pendent, substituting q = p/(p − 1) and applying Minkowski’s

inequality
(
E[|
∑n
i=1 Zi|

q
2 ]
) 2

q ≤
∑n
i=1

(
E[|Zi|

q
2 ]
) 2

q
since q =

p > (p− 1) > 2; (b) follows by substituting using (152) and using
that

(∑d
i=1 ui

)q
≤ dq−1∑d

i=1 u
q
i , ui > 0; and (c) holds by (13).

Finally, combining (156) with (154) and substituting in (151)
yields the desired result

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ

]
≥ d∑

j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yi]

]]∣∣∣∣∣
p
×

d 1
p (p− 1)

 n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(Θ)
) 1

p−1

]) 2(p−1)
p


1
2

+

d
p−1
p

(
Ω(p)(µ)

) 1
p

}−p

2) Case p ≥ 2: Let q ∈ R such that 1
p + 1

q = 1, i.e.,
q = p/(p − 1). Also, consider the following two functions g(·)
and h(·) defined, for x ∈ X , θ = [θ1, . . . , θd] ∈ Θ and a specific
quantization messages tuple m(n) = (m1, . . . ,mn) ∈ [1, 2k]n as

g(m(n),θ) =

d∑
i=1

∂

∂θi

[
log
(
p(m(n)|θ)µ(θ)

)]
(157a)

h(m(n),θ) = E
Z∼f(z|θ̂(M(n)))

[Z]− EY∼f(y|Θ)[Y] (157b)

where in (157a) the quantization messages joint probability is
p(m(n)|θ) =

∏n
j=1 pj(mj |θ). For convenience, for i = 1, . . . , d

we will denote the ith component of h(m(n),θ) as hi(m(n),θ),
i.e.,

hi(m
(n),θ) = E

Z∼f(z|θ̂(M(n)))
[Zi]− EY∼f(y|Θ)[Yi]

=
(
h(m(n),θ)

)
i
. (158)



Note that we have

E
[∣∣∣hi(M(n),Θ)g(M(n),Θ)

∣∣∣] (159)

= EΘEX|Θ

[(∣∣∣hi(M(n),Θ)g(M(n),Θ)
∣∣∣) |Θ = θ

]
(a)
≤ EΘ

(
EM(n)|Θ

[(∣∣∣hi(M(n),Θ)
∣∣∣2) |Θ = θ

]) 1
2

×
(
EM(n)|Θ

[(∣∣∣g(M(n),Θ)
∣∣∣2) |Θ = θ

]) 1
2

(b)
≤

(
EΘ

[∣∣∣∣EM(n)|Θ

[(∣∣∣hi(M(n),Θ)
∣∣∣2) |Θ = θ

]∣∣∣∣
p
2

]) 1
p

×

(
EΘ

[(
EM(n)|Θ

[(∣∣∣g(M(n),Θ)
∣∣∣2) |Θ = θ

]) q
2

]) 1
q

,

where (a) follows by application of Hölder’s inequality for every
θ ∈ Θ to the conditional expectation EM(n)|Θ[·|θ] ; and (b) follows
by application of Hölder’s inequality to the expectation EΘ[·] since
p > 1, q > 1 and are such that 1

p + 1
q = 1.

The first element of the right-hand side of (159(b)) produces the
desired risk

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ = θ

]
(a)
≥

d∑
i=1

E(M(n),Θ)

[∣∣∣hi(M(n),Θ)
∣∣∣p] (160)

(b)
≥

d∑
i=1

EΘ

[(
EM(n)|Θ

[∣∣∣hi(M(n),Θ)
∣∣∣2 | Θ = θ

]) p
2

]
,

(161)

where (a) follows from (143) and the fact that the supremum upper
bounds the expectation and (b) by replacing E(M(n),Θ) with EΘ

and EM(n)|Θ and Jensen’s inequality for expectations for convex
functions x 7→ x

p
2 , for 2 < p. In order to avoid confusion in the

indeces, we will use the notation hj()̇.
Using the fact that the prior measure µ converges to zero at the

endpoints of Θ and partial integration, it is easy to see that∫
θi

hj(m
(n),θ)

∂

∂θi

[
p(m(n)|θ)µi(θi)

]
dθi

= hj(m
(n),θ)p(m(n)|θ)µi(θi)

∣∣∣θ(i)max

θ
(i)
min

−∫
θi

∂

∂θi

[
hj(m

(n),θ)
]
p(m(n)|θ)µi(θi) dθi

= −
∫
θi

∂

∂θi

[
hj(m

(n),θ)
]
p(m(n)|θ)µi(θi) dθi. (162)

Summing over all messages in (162), we get for i = 1, . . . , d, that

∑
m(n)

∫
θi

hj(m
(n),θ)

∂

∂θi

[
p(m(n)|θ)µi(θi)

]
dθi

= −E(M(n),Θi)

[
∂

∂Θi

[
hj(m

(n),Θ)
]]
. (163)

Thus, with some algebraic manipulations,

E(M(n),Θ)

[
hj(M

(n),Θ)g(M(n),Θ)
]

=

d∑
i=1

EΘ1

[
. . .EΘd

[
−E(M(n),Θi

)

[
∂

∂Θi

[
hj(M

(n),Θ)
]]]]

= −
d∑
i=1

E(M(n),Θ)

[
∂

∂Θi

[
hj(M

(n),Θ)
]]

=

d∑
i=1

EΘ

[
∂

∂Θi
EY∼f(y|Θ)[Yj ]

]
(164)

and |E[X]| ≤ E[|X|] lower bounds the left-hand side of (159(b)) as∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|Θ)[Yj ]

]]∣∣∣∣∣ ≤
E(M(n),Θ)

[∣∣hj(X,Θ)g(X,Θ)
∣∣] . (165)

Combining (159(b)), (161) and (165), we get

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ = θ

]
≥ (166)

d∑
j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|Θ)[Yj ]

]]∣∣∣∣∣
p
×

(
EΘ

[(
EM(n)|Θ

[(∣∣∣g(M(n),Θ)
∣∣∣2) |Θ = θ

]) q
2

])− p
q

.

We now move on to the last step of the proof, to upper bound the
second expectation of the RHS of (166). For convenience, let

l(mj ,θ) =

d∑
i=1

∂

∂θi

[
log p(mj|θ)

]
with EMj |Θ

[
l(Mj ,Θ)

]
= 0.

Then, g(m(n),θ) =

n∑
j=1

l(mj ,θ) +

d∑
i=1

∂

∂θi
[logµ(θ)] . (167)

Note that l(mj ,θ) is the sum of the elements of the score function
associated withMj . We expand the square and cancel the product of
the two elements, due to the property that EMj |Θ

[
l(Mj ,Θ)

]
= 0,

to arrive at the trace of the Fisher information matrix ofMj and that
of the prior, respectively, as follows

(
EM(n)|Θ

[∣∣∣g(M(n),Θ)
∣∣∣2 | Θ]) 1

2

= (168)EM(n)|Θ


 n∑
j=1

l(Mj ,Θ)

2

| Θ

+

(
d∑
i=1

∂

∂Θi
[logµ(Θ)]

)2


1
2

,

which holds by

EM(n)|Θ

 n∑
j=1

l(Mj ,Θ)

( d∑
i=1

∂

∂θi
[logµ(θ)]

)
| Θ

 = 0.



Further, by Jensen’s inequality for expectations for concave func-
tions x 7→ x

q
2 , for q < 2, we have

(
EΘ

[(
EM(n)|Θ

[∣∣∣g(M(n),Θ)
∣∣∣2 | Θ]) q

2

]) 1
q

≤

E(M(n),Θ)


 n∑
j=1

l(Mj ,Θ)

2
+

+EΘ

( d∑
i=1

∂

∂Θi
[logµ(Θ)]

)2


1
2

≤

E(M(n),Θ)


 n∑
j=1

l(Mj ,Θ)

2
+

+d

d∑
i=1

EΘ

[(
∂

∂Θi
[logµ(Θ)]

)2
]) 1

2

=

E(M(n),Θ)


 n∑
j=1

l(Mj ,Θ)

2
+ dTr(I(µ))


1
2

. (169)

For l(Mj ,Θ) with EMj |Θ
[
l(Mj ,Θ)

]
= 0 and independent, by

the Marcinkiewicz-Zygmund inequality in the form of (2) of [18],
there exists a constant B2 = 1 [19], such that

EM(n)|Θ


 n∑
j=1

l(Mj ,Θ)

2

| Θ

 =

B2EM(n)|Θ

 n∑
j=1

l2(Mj ,Θ) | Θ


(a)
=

n∑
j=1

EM(n)|Θ

( d∑
i=1

∂

∂θi

[
log p(Mj |Θ)

])2

| Θ

 ,
(b)
≤ d

n∑
j=1

Tr(IMj
(θ)), (170)

where, by the independence of Mj , the expectation of each element
of the summation is identical and this leads to the term n in (a),
which also follows from the definition of l(Mj ,Θ), (b) is given

by the inequality
(∑d

i=1 xi

)2
≤ d

∑d
i=1 x

2
i , xi > 0, required in

order to pass the summation inside the expectation and obtain the
trace of the Fisher information matrix for Mj .

Substituting (170) in (169), we obtain

(
EΘ

[(
EM(n)|Θ

[∣∣∣g(M(n),Θ)
∣∣∣2 | Θ]) q

2

]) 1
q

≤

dEΘ

 n∑
j=1

Tr(IMj
(Θ))

+ dTr(I(µ))


1
2

. (171)

Substituting (171) in (166), produces the desired lower bound

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ

]
≥

d∑
j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yj ]

]]∣∣∣∣∣
p
×

d n∑
j=1

EΘ

[
Tr(IMj

(Θ))
]

+ dTr(I(µ))

−
p
2

.

H. Proof of Corollary 3

Using the expression of the score function,

Sθ(X) =
∂

∂θ
log f(x|θ) =

1

σ2
(x− θ),

we can compute

Ω
(p)
X (θ) =

d∑
i=1

(
EX|Θ

[∣∣Sθi(X)
∣∣ p
p−1 | Θ = θ

])p−1

=
( 1

σ2

)p d∑
i=1

(
EXi|Θ

[
|Xi − θi|

p
p−1

])p−1

=
( 1

σ2

)p( 1√
2πσ2

)p−1

×

×
d∑
i=1

(∫
xi

|xi − θi|
p

p−1 exp

[
− (xi − θ)2

2σ2

]
dxi

)p−1

.

Using the gamma function, the above integral becomes∫
xi

|xi − θi|
p

p−1 exp

[
− (xi − θi)2

2σ2

]
dxi =

=
2

1
2p−2 σ

2p−1
p−1

p− 1
Γ

(
1

2p− 2

)
. (172)

Then, we obtain further

Ω
(p)
X (θ) =

d
√

2

σ

 Γ
(

1
2p−2

)
(p− 1)

√
2πσ2

p−1

. (173)

1) Case p ≥ 2: From Theorem 4, if p ≥ 2, we know that

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ

]
≥ (174)

d∑
j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yj ]

]]∣∣∣∣∣
p
×

d n∑
j=1

EΘ

[
Tr(IMj

(Θ))
]

+ dTr(I(µ))

−
p
2

. (175)

For the Gaussian location model,

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yi]

]]
= EΘ

[
∂

∂Θi
[Θi]

]
= 1. (176)

We need to compute an upper bound on Tr(IM(θ)). If p ≥ 2,
then, Theorem 6 gives us that, for some r ≥ 1, the upper bound
holds

Tr(IM (θ)) ≤ min {Tr(IX(θ), 4I0k
2
r }. (177)



We move on to compute the value of I0. That is, using the same
approach as in Corollary 1 of [2], for r = 2 ≥ 1, we obtain I0 =

8
3σ2 . Then, combining (174), (176), (177) and by Remark 3, we get

sup
θ∈Θ

EM(n)|Θ
[
W p
p (f(x|θ), f(x|θ̂)) | Θ

]
≥ d

p
2×

max

{(
nd

σ2
+
d π2

B2

)− p
2

,

(
32nk

3σ2
+
d π2

B2

)− p
2

}
. (178)

2) Case 1 < p < 2: By Theorem 4, if 1 < p < 2, we have that

sup
θ∈Θ

EM(n)|Θ

[
W p
p (f(x|θ̂(M(n))), f(x|θ)) |Θ

]
≥

d∑
j=1

∣∣∣∣∣
d∑
i=1

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yj ]

]]∣∣∣∣∣
p
×

d 1
p (p− 1)

 n∑
j=1

(
EΘ

[(
Ω

(p)
Mj

(Θ)
) 1

p−1

]) 2(p−1)
p


1
2

+

d
p−1
p

(
Ω(p)(µ)

) 1
p

}−p
(179)

For the Gaussian location model,

EΘ

[
∂

∂Θi

[
EY∼f(y|θ)[Yi]

]]
= EΘ

[
∂

∂Θi
[Θi]

]
= 1. (180)

We need to compute an upper bound on Ω
(p)
M (θ). If 1 < p < 2,

then, Theorem 5 gives us that, for some r ≥ 1
p−1 , the upper bound

holds

Ω
(p)
M (θ) ≤ min {Ω(p)

X (θ), d
2−p
2 I

p
2
0 (2k)2−p 2p k

p
r }.

We move on to compute the value of I0. That is, using the same
approach as in Corollary 1 of [2], for r = 2 ≥ 1

p−1 , for p > 1.5, we
obtain I0 = 8

3σ2 . Then, we obtain

Ω
(p)
M (θ) ≤ (181)

min

d
√

2

σ

 Γ
(

1
2p−2

)
(p− 1)

√
2πσ2

p−1

, 2p+k(2−p)d
2−p
2

(
8k

3σ2

) p
2

 .

Substituting (180) and (181) in (179) and by Remark 3 ∀p > 1.5,
which is required for the Beta function B(·) to exist, we obtain

I(p)(µi) =
π

2

( 2

B

)p [
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)]p−1

and

sup
θ∈Θ

EM(n)|Θ
[
W p
p (f(x|θ), f(x|θ̂)) | Θ

]
≥ dp×

max


√nd 1

p (p− 1)

(
d
√

2

σ

) 1
p

 Γ
(

1
2p−2

)
(p− 1)

√
2πσ2


p−1
p

+

+ d
(π

2

) 1
p 2

B

[
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)] p−1
p

)−p
,(

√
n (p− 1)2

p+k(2−p)
p d

4−p
2p

(
8k

3σ2

) 1
2

+

+ d
(π

2

) 1
p 2

B

[
B
(

2p− 1

2p− 2
,

2p− 3

2p− 2

)] p−1
p

)−p .

APPENDIX

A. Auxilliary results
Lemma 1 (Extension of Lemma 1 of [2] to p-norms). For p ≥ 1
and the parameter θ = [θ1, . . . , θd], i = 1 : d, the (i, i)th element
of the generalized Fisher information matrix is lower bounded by

[I
(p)
M (θ)]i,i =

(
EM |θ

[∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣ p
p−1

])p−1
.

Proof: The (i, i)th element of the generalized Fisher informa-
tion matrix of order p ≥ 1 associated to M is equal to

[I
(p)
M (θ)]i,i =

(
EM |θ

[∣∣Sθi(M)
∣∣ p
p−1

])p−1
.

We start lower bounding the score function as

Sθi(m) =
∂

∂θi
[log p(m|θ)] =

1

p(m|θ)

∂

∂θi
[p(m|θ)]

=
1

p(m|θ)

∂

∂θi

[∫
x
f(x|θ)p(m|x,θ) dν(x)

]
=

∫
x

p(m|x)f(x|θ)

p(m|θ)

1

f(x|θ)

∂f(x|θ)

∂θi
dν(x)

=

∫
x

f(x,m|θ)

p(m|θ)

∂

∂θi
[log f(x|θ)] dν(x)

=

∫
x
Sθi(x)f(x|θ,m) dν(x) = E(X|θ,m)

[
Sθi(X)|m

]
.

Taking the absolute value, raising both sides to the power p
p−1 ,

taking the expectation with respect to M |θ and raising again
everything to the power p− 1, we obtain the desired result

[I
(p)
M (θ)]i,i =

(
EM |θ

[∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣ p
p−1

])p−1
.

Lemma 2 (Extension of Lemma 2 of [2] to p-norms, 1 ≤ p < 2).
For 1 ≤ p < 2, θ = [θ1, . . . , θd], the trace of the generalized Fisher
information matrix is lower bounded by

Ω
(p)
M (θ) ≤

2k∑
j=1

pp−1(mj |θ)
∣∣∣∣∣∣E(X|θ,mj)

[
Sθ(X)|mj

]∣∣∣∣∣∣p
p
.

Proof: We begin with the definition of the trace of a matrix
and we apply Lemma 1 yielding

Ω
(p)
M (θ) =

d∑
i=1

[I
(p)
M (θ)]i,i

=

d∑
i=1

(
EM |θ

[∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣ p
p−1

])p−1

=

d∑
i=1

 2k∑
j=1

p(mj |θ)
∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣ p
p−1

p−1

≤
d∑
i=1

2k∑
j=1

pp−1(mj |θ)
∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣p (182)



=

2k∑
j=1

pp−1(mj |θ)

d∑
i=1

∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣p
=

2k∑
j=1

pp−1(mj |θ)
∣∣∣∣∣∣E(X|θ,mj)

[
Sθ(X)|mj

]∣∣∣∣∣∣p
p
, (183)

where (182) follows from the inequality
(∑2k

j=1 xj

)p−1
≤∑2k

j=1 x
p−1
j , for xj > 0 and p−1 < 1, and (183) from the definition

of the p-norm, ||x||pp =
∑d
i=1 |xi|

p. Then, we obtain the final upper
bound

Ω
(p)
M (θ) ≤

2k∑
j=1

pp−1(mj |θ)
∣∣∣∣∣∣E(X|θ,mj)

[
Sθ(X)|mj

]∣∣∣∣∣∣p
p
.

Theorem 5 (Extension of Theorem 2 of [2] to p-norms, 1 ≤ p < 2).
If for any θ ∈ Θ and any unit vector u ∈ Rd,

||〈u, Sθ(X)〉||2Ψr
≤ I0 (184)

holds for some r ≥ p
2(p−1)

, then

Ω
(p)
M (θ) ≤ min {Ω(p)

X (θ), d
2−p
2 I

p
2
0 (2k)2−p 2p k

p
r }.

Proof: By the inequality between the generalized Fisher infor-
mation associated to a random vector and that of its transformation
by a measurable function given by [14], we have that

Ω
(p)
M (θ) ≤ Ω

(p)
X (θ). (185)

From the proof of Theorem 2 of [2], with the notation t =
p(m|θ), we have that

∣∣∣∣E(X|θ,m) [Sθ(X)|m]
∣∣∣∣

2
≤ I

1
2
0

(
log

2

t

) 1
p

, (186)

and, together with the following inequality between different
norms, for any vector x ∈ Rd, 0 < p < 2,

||x||2 ≤ ||x||p ≤ d
1
p−

1
2 ||x||2 , (187)

yield the upper bound on the p-norm as

∣∣∣∣E(X|θ,m) [Sθ(X)|m]
∣∣∣∣p
p
≤ d

2−p
2 I

p
2
0

(
log

2

t

) p
r

. (188)

Let tj = p(mj |θ). Then, Lemma 2 upper bounds the trace of the
generalized Fisher information matrix

Ω
(p)
M (θ) ≤

2k∑
j=1

tr−1
j

∣∣∣∣∣∣E(X|θ,mj)

[
Sθ(X)|mj

]∣∣∣∣∣∣p
p

≤ d
2−p
2 I

p
2
0

2k∑
j=1

tp−1
j

(
log

2

tj

) p
r

, (189)

where the last step follows from (188). Using the same argument
as in [2], let φ(x) be the concave envelope of f : ( 0, 1 ] → R,

f(x) = xp−1
(
log 2

x

) p
r . Then, by this definition and the concavity

of φ(x),

Ω
(p)
M (θ) ≤ d

2−p
2 I

p
2
0

2k∑
j=1

φ(tj) ≤ d
2−p
2 I

p
2
0 2kφ

∑2k

j=1 tj

2k


= d

2−p
2 I

p
2
0 2kφ

( 1

2k

)
≤ d

2−p
2 I

p
2
0 (2k)2−p(k + 1)

p
r

≤ d
2−p
2 I

p
2
0 (2k)2−p2pk

p
r ,

where we selected φ(x) = xp−1
(
log 2

x

) p
r , which, for r ≥ 1

p−1

and 1 < p < 2, is concave on x ∈ ( 0, 1
2 ]. This is true because the

function f(x) = x
(
log 2

x

) p
r(p−1) , for r ≥ p

2(p−1)
and 1 < p < 2,

is concave on x ∈ ( 0, 1
2 ] and φ(x) = fp−1(x) and x → xp−1 is

non-decreasing and concave for p − 1 < 1 [page 84 of [22]]. For
any r ≥ 1 and k ≥ 1, (k + 1)

p
r ≤ 2pk

p
r .

Lemma 3 (Extension of Lemma 2 of [2] to p-norms, p ≥ 2).
For p ≥ 2, θ = [θ1, . . . , θd], the trace of the generalized Fisher
information matrix is lower bounded by

Ω
(p)
M (θ) ≤

2k∑
j=1

p(mj |θ)
∣∣∣∣∣∣E(X|θ,mj)

[
Sθ(X)|mj

]∣∣∣∣∣∣p
p
.

Proof: We begin with the definition of the trace of a matrix
and apply Lemma (1), which yields

Ω
(p)
M (θ) =

d∑
i=1

(
EM |θ

[∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣ p
p−1

])p−1

≤
d∑
i=1

EM |θ
[∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣p] (190)

= EM |θ

[
d∑
i=1

∣∣E(X|θ,M)

[
Sθi(X)|M

]∣∣p]
= EM |θ

[∣∣∣∣E(X|θ,M) [Sθ(X)|M ]
∣∣∣∣p
p

]
, (191)

where the inequality (190) is given by Jensen’s inequality for
convex functions of expectations, φ(x) = xp−1, p > 2, φ(E[X]) ≤
E[φ(X)], and the last step (191) follows from the definition of the p-
norm, ||x||pp =

∑d
i=1 |xi|

p. Writing explicitly the outer expectation
from (191), we obtain the final result

Ω
(p)
M (θ) ≤

2k∑
j=1

p(mj |θ)
∣∣∣∣∣∣E(X|θ,mj)

[
Sθ(X)|mj

]∣∣∣∣∣∣p
p
.

Theorem 6 (Extension of Theorem 2 of [2] to p-norms, p ≥ 2). If
for any θ ∈ Θ and any unit vector u ∈ Rd,

||〈u, Sθ(X)〉||2Ψr
≤ I0 (192)

holds for some r ≥ p
2 , then

Ω
(p)
M (θ) ≤ min {Ω(p)

X (θ), I
p
2
0 2pk

p
r }. (193)



Proof: By the inequality between the generalized Fisher infor-
mation associated to a random vector and that of its transformation
by a measurable function given by [14], we have that

Ω
(p)
M (θ) ≤ Ω

(p)
X (θ). (194)

From the proof of Theorem 2 of [2], with the notation t =
p(m|θ), we have that∣∣∣∣E(X|θ,m) [Sθ(X)|m]

∣∣∣∣
2
≤ I

1
2
0

(
log

2

t

) 1
r

, (195)

and, together with the following inequality between different
norms, for any vector x ∈ Rd, p ≥ 2,

||x||p ≤ ||x||2 ≤ d
1
2−

1
p ||x||p , (196)

yield the upper bound on the p-norm as∣∣∣∣E(X|θ,m) [Sθ(X)|m]
∣∣∣∣p
p
≤ I

p
2
0

(
log

2

t

) p
r

. (197)

Lemma 3 upper bounds the trace of the generalized Fisher informa-
tion matrix

Ω
(p)
M (θ) ≤

2k∑
j=1

tj

∣∣∣∣∣∣E(X|θ,mj)

[
Sθ(X)|mj

]∣∣∣∣∣∣p
p

≤ I
p
2
0

2k∑
j=1

tj

(
log

2

tj

) p
r

, (198)

where the last step follows from (197). Using the same argument
as in [2], let φ(x) be the concave envelope of f : ( 0, 1 ] → R,
f(x) = x

(
log 2

x

) p
r . Then, by this definition and the concavity of

φ(x),

Ω
(p)
M (θ) ≤ I

p
2
0

2k∑
j=1

φ(tj) ≤ I
p
2
0 2kφ

∑2k

j=1 tj

2k


= I

p
2
0 2kφ

( 1

2k

)
≤ I

p
2
0 (k + 1)

p
r ≤ I

p
2
0 2pk

p
r ,

where we selected φ(x) = x
(
log 2

x

) p
r , which, for r ≥ p

2 and p ≥ 2,
is concave on x ∈ ( 0, 1

2 ].
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