
ar
X

iv
:1

90
7.

08
06

4v
2

 [
cs

.I
T

]
 1

 J
un

 2
02

0
1

Efficient and Robust Distributed Matrix

Computations via Convolutional Coding

Anindya Bijoy Das, Aditya Ramamoorthy and Namrata Vaswani

Department of Electrical and Computer Engineering,

Iowa State University, Ames, IA 50011 USA.

{abd149,adityar,namrata}@iastate.edu

Abstract

Distributed matrix computations – matrix-matrix or matrix-vector multiplications – are well-recognized to suffer

from the problem of stragglers (slow or failed worker nodes). Much of prior work in this area is (i) either sub-optimal

in terms of its straggler resilience, or (ii) suffers from numerical problems, i.e., there is a blow-up of round-off errors

in the decoded result owing to the high condition numbers of the corresponding decoding matrices. Our work presents

convolutional coding approach to this problem that removes these limitations. It is optimal in terms of its straggler

resilience, and has excellent numerical robustness as long as the workers’ storage capacity is slightly higher than the

fundamental lower bound. Moreover, it can be decoded using a fast peeling decoder that only involves add/subtract

operations. Our second approach has marginally higher decoding complexity than the first one, but allows us to operate

arbitrarily close to the lower bound. Its numerical robustness can be theoretically quantified by deriving a computable

upper bound on the worst case condition number over all possible decoding matrices by drawing connections with

the properties of large Toeplitz matrices. All above claims are backed up by extensive experiments done on the AWS

cloud platform.

Index Terms

Distributed computing, Straggler, Convolutional coding, Toeplitz matrix, Vandermonde matrix.

I. INTRODUCTION

Distributed computing clusters are heavily used in domains such as machine learning where datasets are often

so large that they cannot be stored in a single computer. The widespread usage of such clusters presents several

opportunities and advantages over traditional computing paradigms. However, they also present newer challenges.

Large scale clusters which can be heterogeneous in nature suffer from the issue of stragglers (slow or failed workers

in the system). Fig. 1 shows the variation of speed of different t2.micro machines in AWS (Amazon Web Services)

cluster, and it can be seen that for a particular job, a slow worker node may require around 40%− 50% more time

than the average.

This work was supported in part by the National Science Foundation (NSF) under Grant CCF-1718470 and Grant CCF-1910840.

June 3, 2020 DRAFT

http://arxiv.org/abs/1907.08064v2

2

5 10 15 20 25 30 35 40

6

6.5

7

7.5

8

8.5

Worker Index

T
im

e
R

eq
u

ir
ed

Average

Bounds

Fig. 1: Variation of worker speeds for the same job over 100 runs across 40 workers within AWS; the job involves

multiplying two random matrices of size 4000 × 4000 twice. The average time is shown by the small circle for each worker.

The upper and lower edges indicate the maximum and minimum time over the 100 runs. The required time exhibits a wide

variation from 5.85 seconds to 8.71 seconds.

The conventional approach [1] to tackle stragglers has been to run multiple copies of tasks on various machines,

with the hope that at least one copy finishes on time. For instance, consider matrix-vector multiplication with a

matrix A and vector x, where our goal is to obtain the product ATx in a distributed fashion. Fig. 2 shows an

example where we partition A into four block-columns and we assign two block-columns to each of the four worker

nodes. Thus each block column has been assigned twice over all four workers and we can verify that we recover

the final result if any three workers finish their respective jobs. In other words, we can say that this scheme is

resilient to one straggler.

However, this toy example can be made even more efficient in terms of resource utilization by dividing A into

two block-columns A0 and A1 and assigning the worker nodes appropriate linear combinations of A0 and A1 so

that the required result can be decoded from any two workers. This is the basic idea underlying “coded computation”

(introduced in the work of Lee et al. [2]). It leverages ideas from erasure coding to introduce redundancy in the

computation performed by the worker nodes. Roughly speaking, as long as enough worker nodes complete their

tasks, the master node can decode the intended result by appropriate post-processing.

The central problem within coded distributed matrix computation can be explained as follows. Suppose that we

have large matrices A ∈ Rt×r,B ∈ Rt×w and a vector x ∈ Rt. The goal is to either compute ATx (matrix-vector

multiplication) or ATB (matrix-matrix multiplication) in a distributed fashion using n worker nodes while being

resistant to any s stragglers. Redundancy is introduced in the computation by coding across appropriately chosen

submatrices of A and B and assigning the worker nodes appropriate computation responsibilities.

The main finding of several recent works in this area is that it is possible to embed distributed matrix computations

into the structure of an equivalent erasure code, where the failed nodes play the role of erasures [3], [4], [5], [6],

June 3, 2020 DRAFT

3

W0 W1 W2 W3

AT
0 x

AT
1 x

AT
1 x

AT
2 x

AT
2 x

AT
3 x

AT
3 x

AT
0 x

Fig. 2: Matrix A is divided into four submatrices. Each worker is assigned two of the submatrices and the vector x.

TABLE I: Comparison with existing works [8], [2], [5], [10] and parallel works [11], [12] in terms of different properties of

the algorithms. Decoding complexity is mentioned for s stragglers with recovery threshold k where A ∈ R
t×r and B ∈ R

t×w.

T and q are decoding algorithm parameters for the random conv. code, discussed in Section V, where T, q ≪ r,w.

CODES
MAT-MAT OPTIMAL NUMERICAL DECODING COMPLEXITY

MULT? THRESHOLD? STABILITY? FOR MAT-MAT MULT

REPETITION CODES ✓ ✗ ✓ ZERO

RATELESS CODES [8] ✗ ✗ ✓ ✗

PRODUCT CODES [2] ✓ ✗ ✗ O(r3), ASSUMING r = w

POLYNOMIAL CODES [5] ✓ ✓ ✗ O(rwk)

ORTHO-POLY CODES [10] ✓ ✓ ✓ O(rwk)

CIRCULANT AND ROTATION MATRIX [12] ✓ ✓ ✓ O(rwk)

RANDOM KHATRI-RAO CODES [11] ✓ ✓ ✓ O
(

rw

k
s2
)

ALL-ONES-CONV CODE (PROPOSED) ✓ ✓ ✓ O(rws) (ADD/SUBTRACT OPS)

RANDOM-COV CODE (PROPOSED) ✓ ✓ ✓ min(T, q)×O
(

rw

k
s2
)

[7], [8], [9] (we discuss related work in detail shortly). A given coded computation scheme is said to have threshold

τ if the desired result can be decoded as long as any τ worker nodes return their results to the master node. This

has been the focus of many works in the literature.

In this work, we consider the important issue of numerical stability within coded computation (in addition to

threshold). We point out that several of the existing schemes in the literature suffer from significant numerical issues

in the decoding process. In particular, the system of equations that is solved by the master node in the decoding

step can have a very high condition number which in turn results in a large error in the decoded result. We present

a novel scheme based on convolutional codes (operating over the reals) that simultaneously addresses numerical

stability, the threshold, and possesses easy encoding/decoding. An overview of the properties of most of the known

schemes in the literature is presented in Table I.

This paper is organized as follows. Section II explains the problem formulation and Section III describes the

June 3, 2020 DRAFT

4

background and related work and summarizes of the contributions of our work. Section IV discusses our main

ideas on how convolutional codes can be used to address distributed matrix computations, Section V overviews the

analysis of numerical stability for our codes and Section VI discusses the experimental performance of our proposed

methods and shows the comparison with other available approaches. We conclude the paper with a discussion about

future work in Section VII. For the sake of readability several of the proofs appear in the Appendix.

II. PROBLEM FORMULATION

In the matrix-vector case we partition A into submatrices of equal size and x into subvectors and distribute a

certain number of “coded” versions of these submatrices to the n workers (subject to a storage constraint). Every

worker computes the product of its assigned submatrices and subvectors and sends the computed result back to the

master node. The master then “decodes” to recover ATx.

In the matrix-matrix multiplication scenario, each worker node receives coded versions of submatrices of A and

coded versions of the submatrices of B 1. It computes pairwise products (either all or some subset thereof) of these

and sends them to the master node which needs to decode to recover ATB.

In the discussion below we discuss the matrix-matrix scenario; it applies in a natural way to the matrix-vector

case as well. We consider a p× u and p× v block decomposition of A and B respectively as shown below.

A =








A0,0 . . . A0,u−1

...
. . .

...

Ap−1,0 . . . Ap−1,u−1







; and B =








B0,0 . . . B0,v−1

...
. . .

...

Bp−1,0 . . . Bp−1,v−1







.

The master node encodes by computing appropriate scalar linear combinations of the Ai,j matrices and respectively

the Bi,j submatrices. This implies that the master node only performs scalar multiplications and additions. It is not

responsible for any of the computationally intensive matrix operations. Following this, it sends the corresponding

coded submatrices to each of the workers.

We assume that a worker node cannot store the whole matrix A or B. Each worker can store the equivalent of

γA fraction of matrix A and γB fraction of matrix B; this is referred to as the storage fraction.

The assumption is that some nodes will fail or will be too slow, the maximum number of such nodes is assumed

to be s or less. The goal is to design the coding scheme so that (i) the decoding is possible using the output of

any k = (n − s) workers (k is often called the recovery threshold of the scheme), (ii) it is robust to noise (both

numerical precision errors and other sources of noise); and (iii) it is efficiently decodable. We say that the threshold

of a scheme is optimal if it is the lowest possible given the storage constraints.

III. BACKGROUND, RELATED WORK AND SUMMARY OF CONTRIBUTIONS

In recent years, several coded computation schemes have been proposed for matrix multiplication [3], [4], [5],

[6], [7], [8], [9], [13], [14], [15]. We illustrate the basic idea below using the polynomial code approach of [5].

These ideas are presented in a tutorial fashion in [16].

1A general formulation need not restrict the assignment to coded submatrices of A and B. Nevertheless, all known schemes thus far and our

proposed schemes work with equal-sized submatrices, so we present the formulation in this way.

June 3, 2020 DRAFT

5

W0 W1 W2

W3 W4

(A0 + 1A1)

(
B0 + 12B1

)

(A0 + 2A1)

(
B0 + 22B1

)

(A0 + 3A1)

(
B0 + 32B1

)

(A0 + 4A1)

(
B0 + 42B1

)

(A0 + 5A1)

(
B0 + 52B1

)

Fig. 3: Matrices A and B are divided into two block-columns each. Each worker is assigned one coded submatrix from A

and another coded submatrix from B.

Consider a scenario with n = 5 workers where each of these worker nodes can store γA = 1
2 fraction of matrix

A and γB = 1
2 fraction of matrix B. Consider u = v = 2 and p = 1, thus we partition both A and B into two

block-columns A0,A1 and B0,B1 respectively. Next, we define two matrix polynomials as

A(z) = A0 +A1z and B(z) = B0 +B1z
2;

so AT (z)B(z) = AT
0 B0 +AT

1 B0z +AT
0 B1z

2 +AT
1 B1z

3.

The master node evaluates these polynomial A(z) and B(z) at distinct real values z0, z1, . . . , zn−1, and sends

the corresponding matrices to worker node Wi (see Fig. 3 where zi = i + 1). Each worker node computes the

product of its assigned submatrices. It follows that decoding at the master node is equivalent to decoding a degree-3

real-valued polynomial. Thus, the master node can recover ATB as soon as it receives the results from any four

workers. Thus, in this example, the recovery threshold is, k = 4 and the system is resilient to s = 1 straggler.

A different solution can be obtained using the approach in [7] for the same example. Let u = v = 1 and p = 2,

so we can write ATB = AT
0 B0 +AT

1 B1. Now we define two matrix polynomials as

A(z) = A0z +A1 and B(z) = B0 +B1z;

so AT (z)B(z) = AT
1 B0 +

(
AT

0 B0 +AT
1 B1

)
z +AT

0 B1z
2.

As before, the master node will evaluate the polynomial A(z) and B(z) at z0, zi, . . . , zn−1, and send the correspond-

ing matrices to worker node Wi. It follows that the master can recover all the unknowns
(
including(AT

0 B0 +AT
1 B1)

)

June 3, 2020 DRAFT

6

as soon as it receives the results from any three workers. Thus, in this example, the recovery threshold is, k = 3

and the system is resilient to s = 2 stragglers.

It should be noted that the latter approach can lead to more straggler resilience, but the computational load per

worker has doubled compared to the first approach. Moreover the communication load from the worker nodes to

the master node is also higher by a factor of 4 compared to the first approach.

For both schemes above, it can be shown that worker node computation time depends on t, whereas the decoding

complexity is independent of it (see for instance [16]). Thus, for scenarios where t is very large, the decoding time

can be neglected. Nevertheless, a low decoding complexity is desirable from a practical standpoint.

A. Related Work

As discussed above, [4], [5], [7] convert distributed matrix computation into polynomial evaluation/interpolation,

i.e., the coded submatrices correspond to polynomial evaluation maps. We remark here that as far as we are aware,

the idea of embedding matrix multiplication using polynomial maps goes back even further to Yagle [17] (the

motivation there was fast matrix multiplication).

For fixed storage constraints γA = 1
u

and γB = 1
v

and for fixed computation overhead per worker with p = 1 and

arbitrary u and v, the optimal threshold τ is shown to be uv [5] using the polynomial approach. When p ≥ 2, the

work of [4] demonstrates a threshold of puv + p− 1. They also present a converse argument which demonstrates

that this is within a factor of two of the optimal threshold.

While the computation threshold is somewhat well understood at this point, the issue of numerical stability has

received much less attention. When operating over finite fields, proving the invertibility of an appropriate submatrix

of the coding matrix suffices to guarantee correct decoding. However, in decoding a real system of equations, errors

in the input can get amplified by the condition number (ratio of maximum and minimum singular values) of the

associated matrix; hence, a low condition number is critical. For instance, in solving a square system of equations

y = Mx, suppose that y is perturbed to ỹ (owing to round-off errors) and that the estimate of x is x̂ := M−1ỹ.

Then, the normalized error in x̂ is given by

‖x̂− x‖
‖x‖ =

‖M−1(ỹ − y)‖
‖M−1y‖ ≤ σmax(M

−1)

σmin(M−1)

‖ỹ − y‖
‖y‖ =

σmax(M)

σmin(M)

‖ỹ− y‖
‖y‖ = κ(M)

‖ỹ − y‖
‖y‖ ,

where σmax(M) and σmin(M) denote the maximum and minimum singular values of M and their ratio κ(M) is

the condition number of the decoding matrix M. Thus, it is clear that a small condition number of the decoding

matrix leads to less amplification of the round-off error in x̂.

This issue is especially relevant since it is well recognized that polynomial interpolation over the reals suffers

from significant numerical issues since the corresponding Vandermonde matrices have very high condition numbers

(that are exponential in their size [18]). In fact, even for clusters with around n = 30 nodes, the condition number

of the polynomial approach [5] is so large that the decoded result is essentially useless (see Section VI). We note

here that Section VII of [4] remarks that the numerical issues can be handled by embedding all operations within a

finite field. In Section VI, we demonstrate that the performance of this method is strongly dependent on the entries

of matrices A and B and the resultant normalized MSE can be quite bad [19].

June 3, 2020 DRAFT

7

Some recent works have highlighted and considered the issue of numerical stability in this context. The work

of [20], [21] presented strategies for distributed matrix-vector multiplication and demonstrated some schemes that

empirically have better numerical performance than polynomial based schemes for some values of n and s. The

work in [20] considers a convolutional coding approach, but from a parity check matrix perspective and the work

in [21] uses universally decodable matrices which further allows to utilize the partial computations of the stragglers.

However, both these approaches work only for the matrix-vector problem and do not provide a computable bound

on the condition number of the decoding submatrices.

The work of [10] presents an alternate approach that works within the basis of orthogonal polynomials. They

demonstrate that the worst case condition number of their schemes is at most O(n2s) and their numerical experiments

demonstrate improvements with respect to [5]. Our experimental evaluation in Section VI clearly demonstrates that

our proposed schemes have condition numbers that are orders of magnitude lower than [10]. [11] present an

approach where the encoded matrices are generated by taking random linear combinations of the block-columns

of the respective matrices (this was also suggested in Remark 8 of [5]). We note here that their approach can be

considered as a subclass of our methods, as discussed in Section VI. Table I shows a comparison of the features

of several well-known approaches for distributed matrix computations. Our results in Section VI show that the

underlying structure of our codes consistently results in lower worst case condition numbers than [11]. Finally,

the parallel work of [12] presents an approach that leverages the properties of rotation matrices and circulant

permutation matrices. They demonstrate that the worst case condition number of their recovery matrices grow at

most as O(ns+6). While their numerical results are better than ours, our work has the advantage of easy encoding

and decoding and explores a convolutional approach to this problem which has not been considered before.

B. Summary of Contributions

In this paper we present an efficient and robust scheme for coded matrix computations that is inspired by

convolutional codes. Our codes operate over the reals, unlike the majority of convolutional codes that are considered

over finite fields [22]. Crucially, they exploit the Vandermonde property of the recovery matrices, where the matrices

are defined over a different field (formal Laurent series over R) than the real numbers. This naturally allows for

simple encoding and decoding in addition to ensuring the threshold properties.

• Our work is among the first to provide an efficient coded computation approach for both matrix-vector and

matrix-matrix multiplications that provably works in the (i) essentially noise-free regime where numerical precision

issues dominate, and (ii) the noisy regime where noise is significant.

• We present two classes of codes in this work. Our first approach can be decoded using a peeling decoder using

only add/subtract operations and has excellent numerical performance when the storage capacity of the nodes is

slightly higher than the fundamental lower bound.

When operating very close to the storage capacity lower bound, we propose an alternative random convolutional

coding strategy for which we can provide a “computable” upper bound (cf. Theorem 2 in Section V-A) on the

worst case condition number of the recovery matrices. This naturally leads to a random sampling algorithm to pick

June 3, 2020 DRAFT

8

50 60 70 80 90 100 110 120 130 140 150

10
−9

10
−5

10
−1

10
3

10
7

10
11

10
15

10
19

SNR (in dB)

N
o

rm
al

iz
ed

S
q

u
ar

ed
E

rr
o

r

Polynomial Code [5] (1.61sec)
Ortho Poly Code[10] (1.60sec)
Random KR Code [11] (0.29sec)
Circulant and Rotation Matrix [12] (1.61sec)
Proposed All Ones Conv Codes (0.34sec)
Proposed Random ConvCodes (0.57sec)

Fig. 4: Normalized MSE vs. SNR for different coded computation schemes for distributed matrix-matrix multiplication over

n = 18 workers and s = 3 stragglers. The decoding time is reported for the different approaches in parentheses in the legend.

a coding matrix with good performance. Our work draws novel connections with this problem and the asymptotic

analysis of large Toeplitz matrices [23].

• An exhaustive comparison of our work with other approaches in the literature shows that the condition numbers

of our work are orders of magnitude below all the comparable approaches (except [12]) and have fast decoding

times. Fig. 4 depicts a comparison of the performance of the different schemes considered in our work.

• As far as we are aware, most previous work has approached coded computation by exploiting its link with block

codes under erasures. Our work is the first to investigate a convolutional coding approach to this problem. This in

turn opens up newer problems for investigation in this area.

IV. CONVOLUTIONAL CODING FOR DISTRIBUTED MATRIX COMPUTATION

A. Simple Illustrative Example

We explain our key idea by means of the following example. Consider two row vectors in Rq , u0 = [u00 u01 . . . u0(q−1)]

and u1 = [u10 u11 . . . u1(q−1)]. These vectors can also be represented as polynomials in the indeterminate D,

ui(D) =
q−1∑

j=0

uijD
j for i = 0, 1. As explained in Appendix A, these polynomials can be treated as elements in

the ring of formal Laurent series in D [24]. Moreover, it can be shown that this ring is in fact a field, i.e., each

element has a corresponding inverse. Consider the following encoding of [u0(D) u1(D)].

[c0(D) c1(D) c2(D) c3(D)] = [u0(D) u1(D)]




1 0 1 1

0 1 1 D



 .

︸ ︷︷ ︸

G(D)

It is not too hard to see that the polynomials u0(D) and u1(D) (equivalently the vectors u0,u1) can be recovered

(or “decoded”) from any two entries of the vector [c0(D) c1(D) c2(D) c3(D)]. For instance, suppose that we only

receive c2(D) and c3(D). Notice that

June 3, 2020 DRAFT

9

c2(D) =

q−1
∑

j=0

(u0j + u1j)D
j and

c3(D) = u00 +

q−2
∑

j=0

(u0(j+1) + u1j)D
j + u1(q−1)D

q.

Starting with u00 from the constant term of c3(D), one can iteratively recover each of the coefficients of u0(D)

and u1(D), with only one new variable to recover in each iteration. A similar argument applies if we consider a

different set of two entries from [c0(D) c1(D) c2(D) c3(D)]. We refer to such a decoding scheme as a “peeling

decoder”.

Observe that the encoded polynomial c3(D) has degree q, while the others have degree q − 1. Thus, if the

coefficients of the polynomials ci correspond to encoded data that were sent to node i for processing, then node

3 would need slightly higher storage/processing capacity than nodes 0, 1, 2. Secondly, observe that the above idea

can also be equivalently understood by replacing the 2× 4 matrix of polynomials G(D) by a larger matrix of size

2q× (4q+1) and rewriting all the scalar polynomials as row vectors. Let c0, c1, c2 be row vectors of length q and

c3 be a row vector of length q + 1. Then,

[

c0 c1 c2 c3

]

=
[

u0 u1

]




Iq 0q×q Iq [Iq 0]

0q×q Iq Iq [0 Iq]





where 0q×q is a q× q matrix of zeroes, Iq is a q× q identity matrix, and 0 is a column of zeroes. In what follows,

we consider generalizations of this basic example where the ui’s will correspond to block-columns of A and B.

B. Proposed matrix-vector multiplication scheme

The above idea can naturally be adapted to the distributed matrix-vector multiplication setting. We show an

example in Fig. 5 with n = 4 workers and s = 2 stragglers, so k = n − s = 2.. Suppose that matrix A is

partitioned into kq block-columns (the choice of q will be discussed shortly). In our work, the presentation follows

more naturally if we index the block-columns of A using two indices instead of one. In particular, they are indexed

as A〈i,j〉, i ∈ [k], j ∈ [q] (where [ℓ] denotes the set {0, . . . , ℓ−1}) and each worker node stores at most γr columns

of length-t (γ is called the storage fraction).

Let Ui(D) =
∑q−1

j=0 A
T
〈i,j〉D

j for 0 ≤ i ≤ k − 1. Furthermore, let Yk,s denote a k × s matrix whose (i, j)-th

submatrix is (Yk,s)i,j = (Dj)i, for i ∈ [k], j ∈ [s], i.e., Yk,s has the Vandermonde structure. We define

Gmv(D) =

[

Ik
︸︷︷︸

message part

∣
∣
∣
∣

Yk,s(D)
︸ ︷︷ ︸

parity part

]

. (1)

Consider the encoding

[C0(D) C1(D) . . . Cn−1(D)] = [U0(D) U1(D) . . . Uk−1(D)] Gmv(D).

To arrive at the distributed matrix-vector multiplication scheme, we simply interpret the coefficients of the powers

of D in Ci(D) as the encoded submatrices assigned to worker i (see Fig. 5 for an example). With this assignment,

June 3, 2020 DRAFT

10

W0 W1 W2 W3

A〈0,0〉

A〈0,1〉

A〈0,2〉

A〈0,3〉

∗

x

A〈1,0〉

A〈1,1〉

A〈1,2〉

A〈1,3〉

∗

x

A〈0,0〉 +A〈1,0〉

A〈0,1〉 +A〈1,1〉

A〈0,2〉 +A〈1,2〉

A〈0,3〉 +A〈1,3〉

∗

x

A〈0,0〉

A〈0,1〉 +A〈1,0〉

A〈0,2〉 +A〈1,1〉

A〈0,3〉 +A〈1,2〉

A〈1,3〉

x

Fig. 5: Matrix-vector case with n = 4 workers and s = 2 stragglers, with γ = 5

8
.

worker i computes the inner product of its assigned matrices and x. We say that a k × n matrix is maximum-

distance-separable (MDS) if any of its k × k submatrices is nonsingular. This property further implies that ATx

can be recovered as long as any k workers complete their tasks. The following result shows that Gmv(D) is MDS;

the proof appears in the Appendix.

Corollary 1 (Corollary of upcoming Theorem 1 given in Section IV-C). Any k × k submatrix of Gmv(D) has a

determinant which is a non-zero polynomial in D, i.e., it is non-singular.

Analogous to convolutional coding, we call the first k workers the message workers and the last s workers the

parity workers. Each of the first k message workers receives q submatrices A〈i,j〉, j = 0, 1, . . . , q−1, each of which

is a matrix of size t × r/(kq). The rest of the s parity workers will receive ≥ q such submatrices. The highest

exponent of D in the generator matrix Gmv(D) is (s− 1)(k− 1). Thus, the maximum storage needed by a worker

is q+(s− 1)(k− 1) submatrices. When q is large enough, this imbalance is not significant. If we assume a bound

of γ on the storage capacity fraction of any worker, we need

(

q + (s− 1)(k − 1)

)
r

kq
≤ γr,

=⇒ q ≥ (s− 1)(k − 1)

k(γ − 1
k
)

. (2)

For example, in Fig. 5, γ is set to 5
8 which leads to q = 4.

June 3, 2020 DRAFT

11

C. Proposed matrix-matrix multiplication scheme

The matrix-matrix multiplication case requires the generalization of the above ideas. Let ā = [a0 a1 . . . as−1]

and b̄ = [b0 b1 . . . bk−1] be vectors of non-negative integers such that 0 ≤ a0 < a1 < · · · < as−1 and 0 ≤ b0 <

b1 < · · · < bk−1. Let Yb̄,ā(D) denote a k × s matrix whose (i, j)-th entry is given by

[Yb̄,ā(D)]i,j = (Daj)bi . (3)

Using this matrix, define a generalization of Gmv(D) as follows

G(D) =
[

Ik
∣
∣ Yb̄,ā(D)

]

. (4)

Observe that we obtain Gmv(D) by setting aj = j, 0 ≤ j ≤ s− 1 and bi = i, 0 ≤ i ≤ k− 1, which corresponds

to Yk,s(D). We will design an encoding scheme for matrix-matrix multiplication whose equivalent generator matrix

is of the form in (4). Before we explain the design, we show that this matrix also satisfies the MDS property (the

proof appears in the Appendix).

Theorem 1. Any k × k submatrix of the generator matrix G(D) defined in (4) is non-singular.

While non-singularity by itself does not reveal information about the corresponding condition numbers, Theorem

1 provides a class of schemes with a specific structure that have excellent numerical stability (see Fig. 4 “All Ones”

curve) and can be modified and analyzed for condition number using the techniques discussed in Theorem 2 within

Section V. The structure of G(D) in (4) also allows for an efficient peeling decoder.

In the matrix-matrix case, we design generator matrices GA(D) of size kA×n and GB(D) of size kB ×n such

that s = n − kAkB . Each worker stores fractions γA and γB of matrices A and B respectively. Let z be a large

enough positive integer and let

UA
i (D) =

qA−1
∑

j=0

AT
〈i,j〉D

zj , i ∈ [kA], and (5)

UB
i (D) =

qB−1
∑

j=0

B〈i,j〉D
j , i ∈ [kB]. (6)

Furthermore, we let UA(D) = [UA
0 (D) . . . UA

kA−1(D)] and UB(D) = [UB
0 (D) . . . UB

kB−1(D)]. The final goal

of the master node is to recover all products of the form AT
〈i1,j1〉

B〈i2,j2〉 for i1 ∈ [kA], j1 ∈ [qA], i2 ∈ [kB], j2 ∈ [qB].

Once again by forming

[CA
0 (D) CA

1 (D) . . . CA
n−1(D)] = UA(D)GA(D), and

[CB
0 (D) CB

1 (D) . . . CB
n−1(D)] = UB(D)GB(D),

we can represent the assignment of coded submatrices of A and B to worker node i by the coefficients of CA
i (D)

and CB
i (D) respectively. Following this step, each worker node computes the pairwise product of each coded

submatrix of A and coded submatrix of B assigned to it.

June 3, 2020 DRAFT

12

The matrices GA(D) and GB(D) will be picked in such a way so that the pairwise product of each coefficient of

CA
i (D) and each coefficient of CB

i (D) appears in CA
i (D)×CB

i (D), i.e., each worker node equivalently computes

CA
i (D)×CB

i (D). Using MATLAB notation and Kronecker product properties, for i = 1, 2, . . . , n, we have

CA
i (D) ×CB

i (D) =
[
UA(D)GA(D)(:, i)

]
×
[
UB(D)GB(D)(:, i)

]

=
[
UA(D)⊗UB(D)

]
× [GA(D)(:, i) ⊗GB(D)(:, i)] ,

where ⊗ denotes the Kronecker product. Therefore, the computation peformed by the worker nodes can be compactly

represented using the Khatri-Rao product [25] (denoted by ⊙)2 Moreover, using the properties of the Khatri-Rao

product, we have

[
UA(D)GA(D)

]
⊙
[
UB(D)GB(D)

]
=

[
UA(D)⊗UB(D)

]
[GA(D)⊙GB(D)] . (7)

The key idea at this point is to ensure that GA(D) ⊙GB(D) has the structure of a matrix as in (4). Towards

this end, we choose

GA(D) =














kA
︷ ︸︸ ︷

1kB
0 . . . 0

0 1kB
. . . 0

0 0 . . . 0 YkA,s(D
z)

...
... . . .

...

0 0 . . . 1kB














,

GB(D) =
[

kA
︷ ︸︸ ︷

IkB
IkB

. . . IkB
YkB ,s(D)

]

,

where 1kB
is an all-ones row vector of length kB , and the total number of rows in GA(D) and GB(D) are kA

and kB respectively. This implies that

GA(D)⊙GB(D) = [Ik | YkA,s(D
z)⊙YkB ,s(D)] (8)

where k = kAkB . The following lemma shows that the RHS of (8) has the structure of the matrix in (4).

Lemma 1. The Khatri-Rao product YkA,s(D
z)⊙YkB ,s(D) is a matrix in the form of (3).

2For two matrices with the same column dimension, the Khatri-Rao product corresponds to the matrix obtained by taking the Kronecker

product of the corresponding columns.

June 3, 2020 DRAFT

13

Proof. Note that the Kronecker product of ℓ-th column of YkA,s(D
z) and ℓ-th column of YkB ,s(D) can be expressed

as














1

Dzl

D2zl

...

D(kA−1)zl














⊗














1

Dl

D2l

...

D(kB−1)l














=






























1
...

D(kB−1)l

Dzl

...

D(kB−1+z)l

...

D(kA−1)zl

...

D(kB−1+(kA−1)z)l






























(9)

The vector on the RHS above consists of powers of Dl and can be seen to be in the form of (3). �

Lemma 1 explains why Theorem 1 is applicable to the coding scheme used for matrix-matrix multiplication. Thus,

this lemma, along with Theorem 1 implies that the proposed convolutional code based matrix-matrix multiplication

scheme is MDS.

Now, we need to choose such a value of z which ensures that
[
UA(D)⊗UB(D)

]
in (7) contains all the

distinct pairwise products that we are interested. We know that worker i will be assigned the jobs according to

the column i of the RHS in (8). Now by examining the structure of the RHS in (8), it can be verified that for

i = 0, 1, 2, . . . , k − 1, worker i will be assigned qA submatrices from A and qB submatrices from B. And for

i = k, k + 1, k + 2, . . . , n − 1, any worker i will be assigned qA + (i − k) × (kA − 1) submatrices from A and

qB +(i−k)× (kB −1) submatrices from B. Thus the maximum number of submatrices will be assigned to worker

n − 1, which will have qA + (s − 1) × (kA − 1) submatrices from A and qB + (s − 1) × (kB − 1) submatrices

from B, since s = n− k. For the assignment of this worker,

CA
n−1(D) = UA

0 (D) +UA
1 (D) Dz(s−1) + · · ·+UA

kA−1(D) Dz(kA−1)(s−1) ; and

CB
n−1(D) = UB

0 (D) +UB
1 (D) Ds−1 + · · ·+UB

kB−1(D) D(kB−1)(s−1) .

It can be verified that CA
n−1(D) is a polynomial in D where the exponent of D at any term is an integer multiple

of z. Since each UB
i (D) has a degree qB − 1, the degree of CB

n−1(D) is qB − 1 + (s− 1)(kB − 1), and thus we

conclude that

z ≥ qB + (s− 1)(kB − 1). (10)

It should be noted that this value of z is large enough for (9) to hold.

Next, using an approach similar to (2), we can derive

qA ≥ (s− 1)(kA − 1)

kA(γA − 1
kA

)
and qB ≥ (s− 1)(kB − 1)

kB(γB − 1
kB

)
.

June 3, 2020 DRAFT

14

W0 W1 W2 W3 W4 W5

A〈0,0〉

A〈0,1〉

A〈0,2〉

A〈0,3〉

∗

B〈0,0〉

B〈0,1〉

B〈0,2〉

∗

A〈0,0〉

A〈0,1〉

A〈0,2〉

A〈0,3〉

∗

B〈1,0〉

B〈1,1〉

B〈1,2〉

∗

A〈1,0〉

A〈1,1〉

A〈1,2〉

A〈1,3〉

∗

B〈0,0〉

B〈0,1〉

B〈0,3〉

∗

A〈1,0〉

A〈1,1〉

A〈1,2〉

A〈1,3〉

∗

B〈1,0〉

B〈1,1〉

B〈1,2〉

∗

A〈0,0〉 +A〈1,0〉

A〈0,1〉 +A〈1,1〉

A〈0,2〉 +A〈1,2〉

A〈0,3〉 +A〈1,3〉

∗

B〈0,0〉 +B〈1,0〉

B〈0,1〉 +B〈1,1〉

B〈0,2〉 +B〈1,2〉

∗

A〈0,0〉

A〈0,1〉 +A〈1,0〉

A〈0,2〉 +A〈1,1〉

A〈0,3〉 +A〈1,2〉

A〈1,3〉

B〈0,0〉

B〈0,1〉 +B〈1,0〉

B〈0,2〉 +B〈1,1〉

B〈1,2〉

Fig. 6: Matrix-matrix multiplication with n = 6 workers and s = 2 stragglers with γA = 5

8
and γB = 2

3
.

Example 1. Consider the computation of ATB over n = 6 workers and s = 2 stragglers. Assume that each worker

can store/process γA = 5/8 fraction of matrix A and γB = 2/3 fraction of matrix B. We set kA = kB = 2, so

that qA = 4 and qB = 3. By setting z = qB + (s− 1)(kB − 1) = 4, we obtain

UA
i (D) =

3∑

j=0

AT
〈i,j〉D

4j , for i = 0, 1;

and UB
i (D) =

2∑

j=0

B〈i,j〉D
j , for i = 0, 1.

Furthermore,

GA(D) =




1 1 0 0 1 1

0 0 1 1 1 D4



 and

GB(D) =




1 0 1 0 1 1

0 1 0 1 1 D



 .

The assignment of jobs to all the workers can be obtained from [UA
0 (D) UA

1 (D)]GA(D) and [UB
0 (D) UB

1 (D)]GB(D).

This is shown in Fig. 6.

Remark 1. Our proposed encoding process is very simple and involves only additions at the master node.

D. Decoding algorithm: Peeling decoder

Suppose that we obtain results from workers in I ⊂ {0, 1, . . . , n− 1}, with |I| ≥ k. We describe the decoding

process below in detail for the matrix-vector case; the discussion is quite similar for the matrix-matrix case.

June 3, 2020 DRAFT

15

In the matrix-vector case our unknowns are uil = AT
〈i,l〉x, i ∈ [k], l ∈ [q]; each of these is a vector of length

r/(kq). Let row-vector zj denote the collection of the j-th entries of each of these unknowns, where j ∈ [r/(kq)].

Let the output of the worker nodes corresponding to zj be denoted by yj . The length of yj depends on I.

We assume that the master node obtains results from a subset of the message workers, I1 ⊂ {0, 1, . . . , k−1}, so

that |I1| ≤ k. This implies that it can recover |I1|q unknowns directly. Moreover, it obtains results from the parity

workers indexed by I2 ⊂ {k, k + 1, . . . , n − 1}, where |I2| = k − |I1|. Thus, it needs to recover the remaining

kq − |I1|q unknowns.

The underlying structure of the convolutional code allows for a very simple peeling decoder whereby, at each

step, the algorithm is guaranteed to find an equation with only one unknown. We demonstrate this by means of an

example in Appendix B. Crucially, the scheme can be decoded purely with add/subtract operations and can thus

be highly optimized. This algorithm is very fast and has excellent numerical stability (cf. Fig. 4) in experiments.

Decoding Complexity: We consider the worst case where |I2| = s. According to the design of this scheme,

each of the kq unknowns appears once in every parity worker, and thus the system of equations has at most kqs

non-zero entries. Furthermore, in a peeling decoder one variable can be decoded and substituted in the remaining

equations at each iteration. Therefore, the time complexity of solving this sparse system is O(kqs). As we solve a

total of r/(kq) such systems of equations, the total time taken is O(rs) which is independent of q and thus does

not grow with it; similarly it can be shown that for the matrix-matrix case the time is O(rws).

It should be noted that the matrices A and B are of sizes t× r and t× w respectively, thus the computational

complexity of computing ATB is O(rwt). In a distributed system, this job is distributed over n workers with s

stragglers, so, on average, the computational complexity of each of the workers is O
(
rwt
k

)
, where k = n−s. On the

other hand, to get the final result, we need to recover rw unknowns, which is the size of ATB. Thus the decoding

complexity does not depend on the parameter t which indicates that the decoding time can be often considered

negligible in comparison to the worker computation time when t is very large [16]. Nevertheless, fast decoding is

a desirable feature of any coded computation scheme.

E. Effect of q: storage fraction, imbalance in task assignment

Our presented scheme thus far is provably MDS, efficiently decodable and has excellent numerical stability in

experiments. Note that our schemes require lower bounds on the value of q which have an inverse dependence on

γ − 1/k. Thus, if one wants to reduce the imbalance between the task assignments to the message nodes and the

parity nodes, then q needs to be chosen large enough. It turns out that for large values of q, the worst case condition

number of our scheme can be very large. We present a theoretical treatment of this phenomenon in the upcoming

Section V and discuss techniques for mitigating this effect.

V. NUMERICAL STABILITY ANALYSIS

To understand numerical stability, we first introduce a modified encoding scheme and then discuss the matrix

representation of the coding ideas described above.

June 3, 2020 DRAFT

16

Definition 1 (Randomly scaled generator matrix). Let R be a k× s matrix of real numbers. Consider the generator

matrix G(D) defined in (4). Replace Yb̄,ā(D) by R ◦Yb̄,ā(D). Here, ◦ denotes Hadamard product (.* operation

in MATLAB).

Note that if we set rij = 1 for all entries of the matrix R, we recover the old generator matrix G(D) (the

“All-Ones” case).

1) Understanding the matrix representation: It is not hard to see that the matrix representation of the transfor-

mation induced by the k × n generator polynomial matrix G(D) from Definition 1 can be understood as right

multiplying a kq-length row vector of input data by the following matrix. An example of this was given in Section

IV-A

Definition 2 (G̃: matrix representation of G(D)). We first define a q × (q + h) shift matrix that takes a q-length

row vector and returns a q+ h-length row vector, where the original vector is shifted to the right by j components.

This is the matrix D̃h;j ,

[

0q×j Iq 0q×(h−j)

]

. The (i, ℓ)-th block matrix of G̃ for ℓ = 0, 1, . . . , k − 1 and

i = 0, 1, . . . , k − 1 is

(G̃)i,ℓ =







Iq if i = ℓ

0q×q if i 6= ℓ

and for ℓ = k + j, j = 0, 1, . . . (s− 1),

(G̃)i,ℓ = rijD̃
ajbk−1;ajbi .

Thus, G̃ is a kq × (nq + δ) matrix where

δ = bk−1

s−1∑

j=0

aj. (11)

With the above definition, decoding can be understood as inverting the specific k × k block submatrix of G̃,

denoted G̃I where I is the set of indices of the k workers that have returned their jobs.

2) Quantifying round-off error amplification: When assuming perfectly noise-free computations, invertibility

of the decoding matrix, G̃I , is sufficient to guarantee perfect recovery/decoding of the desired matrix-matrix

product. However, since all computing devices are finite precision, matrix multiplications will frequently result

in bit overflow/underflow and hence round-off errors. As explained earlier (cf. Section III-A), the decoding process

amplifies the round-off error by a factor that can at most be as large as the condition number of the decoding

matrix. Thus, the numerical stability of our scheme is quantified by the largest condition number over all block

submatrices G̃I , i.e., by

κworst , max
I⊂[n],|I|=k

κ(G̃I).

A. Upper bounding κworst

Observe that the matrix G̃, and consequently the decoding submatrix G̃I with |I| = k, has a very specific

structure. Because of this, it is possible to show that the matrix G̃IG̃
T
I is a k×k block matrix with Toeplitz blocks

June 3, 2020 DRAFT

17

of size q × q, see in Appendix C. This fact is useful since the asymptotics of λmax(G̃IG̃
T
I) and λmin(G̃IG̃

T
I)

when q is large have been studied in [26]. In particular, Theorem 3 of [26] shows that using Fourier transform

ideas, one can bound the eigenvalues of such matrices by computing the minimum (and maximum) of the smallest

(and largest) eigenvalues of a much smaller k × k matrix that is a function of a scalar parameter ω which lies in

[−π, π].

With some abuse of notation, let GI(e
iω) represent the matrix obtained by extracting GI(D) (from G(D) in

(4)) and then substituting D = eiω (where i =
√
−1). By adapting the results of [26] (see Appendix C for a detailed

description), we have the following theorem.

Theorem 2. For I ⊂ {0, . . . , n− 1} such that |I| = k, we have

lim
q→∞

λmin(G̃IG̃
∗
I) = min

ω∈[−π,π]
λmin[(GI(e

iω))(GI(e
iω))∗];

and lim
q→∞

λmax(G̃IG̃
∗
I) = max

ω∈[−π,π]
λmax[(GI(e

iω))(GI(e
iω))∗].

Moreover, for any q

λmax(G̃IG̃
∗
I) ≤ max

ω∈[−π,π]
λmax[(GI(e

iω))(GI(e
iω))∗];

and λmin(G̃IG̃
∗
I) ≥ min

ω∈[−π,π]
λmin[(GI(e

iω))(GI(e
iω))∗].

Theorem 2 shows that we can find an upper bound on the condition number of G̃I based on a scalar optimization

over ω ∈ [−π, π]. When R is chosen to be the all-ones matrix, the characterization of Theorem 2 allows us to

conclude that when s > 1, there exist choices of I ⊆ {0, 1, . . . , n− 1}, |I| = k such that G̃IG̃
∗
I has a minimum

eigenvalue that will go to zero as q → ∞. In particular, the corresponding GI(e
iω) has repeated columns for ω = 0.

Example 2. Consider the (n, k) = (4, 2) example with G(D) =




1 0 1 1

0 1 1 D



. Suppose that I = {2, 3}. This

implies that

G̃IG̃
T
I = G̃2G̃

T
2 + G̃3G̃

T
3 =




2Iq Iq + L

Iq +U 2Iq



 ,

where U and L are q × q upper shift and lower shift matrices respectively (see, e.g., (17) in the Appendix).

The corresponding GI(e
iω)GI(e

iω)∗ can be obtained as

GI(e
iω)GI(e

iω)∗ =




2 1 + e−iω

1 + eiω 2





Using Theorem 2, we can conclude therefore that limq→∞ λmax[T] = 2 (achieved at ω = π) and limq→∞ λmin[T] =

0 (achieved at ω = 0). This implies therefore that as q becomes larger and larger, the matrix G̃I becomes more

and more ill-conditioned, though it is nonsingular for any fixed q.

Therefore considering a nontrivial scaling of the parity part with a matrix R is essential for well-conditioned

behavior when q is very large.

June 3, 2020 DRAFT

18

B. Randomly-weighted convolutional coding

We now show that choosing the matrix R randomly in Definition 1 results in better numerical stability than the

All-Ones scheme in the regime of large q but requires marginally higher decoding complexity.

The following result shows that the MDS property continues to holds with probability 1 when the entries are

chosen i.i.d. from a continuous distribution. The proof is an easy consequence of Theorem 1 and appears in the

Appendix.

Corollary 2. If the entries of the matrix R are chosen i.i.d. from any continuous-valued probability distribution,

then, any k × k submatrix of the generator matrix mentioned in Definition 1 is non-singular with probability one.

We now demonstrate that choosing the matrix R randomly allows us to upper bound the worst case condition

number (over the recovery matrices) even when q → ∞. In the matrix-vector scenario, Theorem 2 suggests the

following algorithm for choosing R. We proceed by randomly choosing R. Let I ⊂ {0, . . . , n− 1}, |I| = k and

let Ω = {0,± π
N
,± 2π

N
, . . . ,± (N−1)π

N
,±π} for a large positive integer N denote a fine enough grid of the interval

[−π, π]. Let κR be defined as

max
I⊂{0,...,n−1},

|I|=k

√
√
√
√
√





max
ω∈Ω

λmax[(GI(eiω))(GI(eiω))∗]

min
ω∈Ω

λmin[(GI(eiω))(GI(eiω))∗]



.

Thus, κR indicates the maximum condition number of GI(e
iω) over all

(
n
k

)
choices of I; this is an upper bound

on the maximum condition number of G̃I . The algorithm repeatedly generates choices of R and retains the choice

that has the lowest value of κR; this denoted by R⋆. The matrix-matrix case is similar, except that we generate two

random matrices denoted RA and RB and consider the worst case condition number of the appropriate submatrices

of (8) to obtain R⋆
A and R⋆

B. We emphasize that even though the search requires optimizing over
(
n
k

)
=

(
n
s

)
choices

of I, this is a one-time cost for designing the coding scheme for a system with n worker nodes which is resilient

to s = n − k stragglers. Furthermore, (i) the search does not have any dependence on q, and (ii) the value of s

is typically a small constant, that either does not grow or grows very slowly with n. Thus the complexity of the

above design, ns, grows as polynomial in n. Appendix D presents some numerical results on the amount of time

taken to find a good R matrix.

For systems with n = 12, s = 3 and n = 13, s = 3, we conducted 50 random trials each to find the corresponding

R⋆ for the matrix vector multiplication case; the entries were sampled i.i.d. from the uniform distribution on [−1, 1].

Our algorithm also returns the asymptotic upper bound on κ(R⋆). By sweeping over values of q, we can also compute

the actual worst-case condition number for each particular chosen value of q. Fig. 7 depicts the upper bound and

the actual worst case condition numbers for different n and s.

C. Random convolutional coding: decoding algorithm

In principle, it is possible to use a fast peeling decoder for decoding as done earlier in the all-ones case. Note

however that the peeling decoder solves a system of kq equations in kq variables. Thus, it only uses kq columns

June 3, 2020 DRAFT

19

800 1,600 2,400 3,200 4,000

300

600

900

1,200

1,500

kq

C
o

n
d

it
io

n
N

u
m

b
er

Predicted Upper Bound for n = 12, s = 3
Actual Condition Number for n = 12, s = 3
Predicted Upper Bound for n = 13, s = 3
Actual Condition Number for n = 13, s = 3

Fig. 7: Worst case condition number for the random convolutional code for different n and s.

of the G̃I even though G̃I is a matrix of size kq× (kq+ δ
′

) where δ
′

is an integer between zero and δ (cf. (11)),

depending on which set of k worker nodes finished their computations (in matrix-vector multiplication).

In particular, the stability of the peeling decoder depends on the condition number of the relevant full rank square

submatrix of G̃I . In general, this condition number is higher than that of G̃I . In our numerical experiments we

have found that for the all-ones case, the worst case condition numbers of both matrices (G̃I and full rank square

submatrix of G̃I) are almost the same (see more experimental details in Section VI). This explains the numerically

stable behavior of the peeling decoder in the all-ones case.

The situation changes quite a bit when we consider random scaling of the generator matrix. e.g., when the entries

of R are i.i.d. random Gaussian, the difference is very large. In this case, the condition number of the full rank

square submatrix of G̃I can be very high for certain sets of workers I (see in Section VI). But in all cases, κworst

over all G̃I is significantly smaller than that of the all-ones case. Thus, it is clear that one should use all the

columns of G̃I for decoding, rather than using only kq equations.

Decoding Complexity: Similar to the discussion in Section IV-D, we assume that the fastest k workers include

the message worker set I1 and the parity worker set I2, so that |I1|+ |I2| = k. We can decode some unknowns

directly from the workers in I1, and in the worst case, we need to recover the other sq unknowns from the parity

workers in I2. In this case, one can solve a least square (LS) problem to recover the sq unknowns. This LS problem

can be solved in different ways. The most straightforward way would be matrix inversion (O
(
(sq)3

)
time) followed

by solving rw
kq

systems of equations (O
(

rw
kq

(sq)2
)

time). If sq ≪ r, w; we can write it as O
(
rw
k
s2q

)
. On the

other hand if the value of q is large, then we can use techniques such as conjugate gradient descent to solve the LS

problem. This is especially useful when q is large since the underlying system of equations is sparse. Thus, each

iteration of conjugate gradient descent can be solved in a fast manner. In particular, if we run it for T iterations

to recover these sq unknown blocks, the decoding complexity is O
(

rw
kq

× sq × s× T
)

= O
(
rw
k
s2T

)
. To reach

within ǫ fraction of the solution, the number of iterations scales a O(κ log(1/ǫ)) where κ is the condition number

of the linear system of equations.

Overall the decoding complexity of the random convolutional code setting is marginally higher than the All-Ones

June 3, 2020 DRAFT

20

TABLE II: Comparison of Worst Case Condition Numbers (κworst) for Matrix-matrix Multiplication for n = 18 and s = 3

METHODS κworst

POLYNOMIAL CODE [5] 4.031× 107

ORTHO-POLY CODE [10] 2.506× 104

RANDOM KHATRI-RAO CODE[11] 5329.3

CIRCULANT AND ROTATION MATRIX [12] 102

PROPOSED ALL-ONES CONV CODE 4417.8

PROPOSED RANDOM CONV CODE 1829.4

case, depending on which algorithm is used for the LS solution.

VI. COMPARISONS AND NUMERICAL EXPERIMENTS

In this section, we discuss the results of the numerical experiments for our proposed approaches and compare

our methods with other available methods.

The polynomial code approach [5] suffers from the problem that real Vandermonde matrices have condition

numbers that are exponential in their size. This in turn implies that for large number of workers (for example, 30

workers) the condition number of the decoding matrix is so high that the recovered result by the master node is

actually useless.

To avoid this numerical issue, Section VII of [4] remarks that the real computation can be embedded within a

large enough finite field of prime order p. It turns out that the performance of this scheme is strongly dependent

on the entries of A and B and the resultant normalized MSE can be quite bad. These arguments have appeared in

[19]; we present an outline below.

We note that computations in this method are error-free only when each entry of the product matrix ATB

is an integer in {0, 1, ..., p − 1}. If this requirement is violated, the proposed mod-p computations can return

catastrophically wrong answers [19]. This means that the matrices A and B need to be multiplied by a scalar and

quantized so that each entry of the resulting matrix is an integer that is within the appropriate range. Suppose that

the absolute values of the entries of A and B are upper bounded by α; then we need α2t < p. This is referred to

as the dynamic range constraint in [19]. For instance, with 64-bit integers (the standard on present day computers),

the largest integer is ≈ 1019. Thus, even if t < 105, the method can only support α ≤ 107. Thus, the range is rather

limited.

The work of [19] constructs adversarial A and B integer matrices for this method as follows. Let p = 2147483647

(note that this is much larger than the publicly available code of [5] which uses p = 65537) so that their method

can support higher dynamic range. Next let r = w = t = 400. This implies that α needs to be ≤ 1000 by the

June 3, 2020 DRAFT

21

dynamic range constraint. The matrices have the following block decomposition.

A =




A0,0 A0,1

A1,0 A1,1



 , and B =




B0,0 B0,1

B1,0 B1,1



 .

Each Ai,j and Bi,j is a matrix of size 200 × 200, with entries chosen from the following distributions. A0,0,

A0,1 distributed Unif(0, , 9999) and A1,0, A1,1 distributed Unif(0, , 9). Next, B0,0, B0,1 distributed Unif(0, , 9)

and B1,0,B1,1 distributed Unif(0, , 9999). In this scenario, the dynamic range constraint requires us to multiply

each matrix by 0.1 and quantize each entry between 0 and 999. Note that this implies that A1,0,A1,1,B0,0,B0,1

are all quantized into zero submatrices since the entry in these four submatrices is less than 10. We emphasize that

the finite field embedding technique only recovers the product of these quantized matrices. However, this product

is the all-zeros matrix, i.e., the decoded matrix will also be the all-zeros matrix. Therefore, the normalized MSE

in this case will be 100 %. There are also significant computational issues as discussed in [19]. We note here that

such adversarial can be found even for larger choices of p. It is worth noting that the normalized MSE of the other

methods do not depend on the actual values of A and B.

The work of [10] uses orthogonal polynomials and Chebyshev-Vandermonde matrices for the encoding part,

which significantly improves the condition number of the decoding matrices compared to [5] and [6]. The work in

[11] uses random Khatri-Rao product where random coefficients are used for the encoding, which further improves

the numerical stability. The recent preprint [12] uses circulant and permutation matrices to improve the numerical

stability of the polynomial approach. We compare our approaches with these methods with exhaustive numerical

experiments which are performed over a cluster in AWS (Amazon Web Services). A t2.2xlarge machine is

used as the master node and t2.small machines are used as the slave nodes. Software code for recreating these

experiments can be found at [27].

Comparing κworst and MSE for Matrix-matrix case: For a system with n = 18 workers and s = 3 stragglers

for matrix-matrix multiplication, we set γA = 1
4 and γB = 2

5 with kA = 5 and kB = 3, so k = kAkB = n−s = 15.

Table II reports a comparison of the worst-case condition numbers for different approaches in the literature. It can be

observed that the work of [5] and [10] have much higher condition numbers than our proposed schemes (All-ones

and Random). Both our approaches are also better than the work of [11] in terms of worst case condition number

(κworst) values. We point out that the methods in [20] and [8] are developed for matrix-vector multiplication, so

those are not applicable for this comparison.

In our next experiment we compare the mean-squared error (MSE) of the different matrix-matrix multiplication

methods for their respective worst case scenarios when n = 18 and s = 3. For matrix-matrix case, we define MSE

as

MSE =
||ATB− ÂTB||2

||ATB||2 × 100%

where ÂTB is the recovered result and ATB is the actual result. Here, the matrices A and B are of size 15, 000×
10080 and 15, 000 × 12000 respectively. We simulate errors in the worker node computations by adding white

Gaussian noise to the calculated submatrix products obtained from the worker nodes and sweeping the range of

SNRs. The results appear in Fig. 4 (for additive Gaussian noise) and Fig. 8 (for round-off errors). In Fig. 4 we

June 3, 2020 DRAFT

22

0 1 2 3 4 5 6 7 8 9 10

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

No. of decimal points (precision)

N
o

rm
al

iz
ed

S
q

u
ar

ed
E

rr
o

r

Polynomial Code [5] (1.61sec)
Ortho Poly Code[10] (1.60sec)
Random KR Code [11] (0.29sec)
Proposed All Ones Conv Codes (0.34sec)
Proposed Random ConvCodes (0.57sec)

Fig. 8: Normalized MSE vs. number of decimal points of precision for different coded computation schemes for distributed

matrix-matrix multiplication over n = 18 workers and s = 3 stragglers. The decoding time is reported for the different

approaches in parentheses in the legend.

TABLE III: Comparison of κworst for Matrix-vector Multiplication for n = 30 and s = 2 with γ = 1

25

METHODS κworst

POLYNOMIAL CODE [5] 2.293 × 1013

CONVOLUTIONAL CODE [20] 5.124× 104

ORTHO-POLY CODE [10] 7902.6

RANDOM KR CODE [11] 3642.7

CIRCULANT AND ROTATION MATRIX [12] 52

PROPOSED ALL-ONES CONV. CODE 2868.3

PROPOSED RAND CONV. CODE 1374.6

observe that even at SNR = 70dB, our approach is around 9, 4 and 2 orders of magnitude better than [5], [10]

and [11]. The corresponding decoding time is also reported in the legend which shows that the decoding time for

our approaches compare quite well with other approaches. The behavior of the curves in Fig. 8 is similar in nature.

Comparing κworst and MSE for Matrix-vector case: We carry out an experiment to compare the worst case

condition number of the decoding matrix for different approaches for matrix-vector multiplication. Table III shows

the worst case condition number for a scenario with n = 30 workers, with s = 2 stragglers where each worker

node can store γA = 1
25 fraction of matrix A. From the table, it is clear that the approaches in [5] and [20] provide

much larger condition numbers in comparison to the others. From the table, we can also see that our proposed

approaches provide lower condition numbers than the approaches [10] and [11].

In our next experiment we compare the normalized MSE of the different methods for their respective worst case

June 3, 2020 DRAFT

23

50 60 70 80 90 100 110 120

10
−9

10
−6

10
−3

10
0

10
3

10
6

SNR (in dB)

N
o
rm

al
iz

ed
S

q
u
ar

ed
E

rr
o
r

Ortho-Poly Code [10]
Random KR Code [11]
Circulant and Rotation Matrix [12]
Proposed All Ones Conv Codes
Proposed Random ConvCodes

Fig. 9: Normalized MSE vs SNR plot for matrix-vector multiplication for n = 30 and s = 2.

TABLE IV: Comparison of our proposed methods. n = 11, kA = kB = 3 and A and B have size 10000 × 12600.

METRICS METHODS γ = 2

5
γ = 5

14
γ = 7

20

DECODING ALL ONES 0.35s 0.36s 0.39s

TIME RANDOM 0.39s 1.16s 2.89s

κworst ALL ONES 95.2 275.9 395.6

FOR G̃I RANDOM 76.9 112.2 117.5

κworst FOR ALL ONES 96.5 277.9 397.8

SQR. SUBMAT.
RANDOM

7.46 9.64 1.11

OF G̃I ×106 ×1017 1028

scenarios. For matrix-vector case, we define MSE as

MSE =
||ATx− ÂTx||2

||ATx||2 × 100%

where ÂTx is the recovered result and ATx is the actual result. We consider the same scenario with n = 30 and

s = 2 where we have matrix A of size 30, 000× 31, 500 and a vector x of length 30, 000. We want to compute

the product ATx. Fig. 9 shows the normalized MSE of the different approaches for different SNR. From the figure

we can see that our proposed approaches perform significantly better than all other schemes except the scheme of

[12]. This supports our condition number results in Table III. For example, at SNR = 60dB, the approach in [11]

provides around 1.6% error whereas our all-ones and random convolutional code approaches provide only 0.5%

and 0.2% error, respectively, for the worst case.

Comparing [12] and our approach: It can be observed that the recent preprint of [12] has the best κworst

June 3, 2020 DRAFT

24

s = 3 s = 4 s = 5

104

105

C
o
n
d
it

io
n

N
u
m

b
er

Rand KR Codes [11]

Proposed Random Convolutional Codes

Fig. 10: Comparison of κworst for matrix-vector multiplication between the method in [11] and our proposed

random convolutional code approach for n = 20 with s = 3, 4 and 5. To find κworst, the proposed method used

γ = 1
15 ,

1
14 ,

1
13 for k = 17, 16, 15, respectively.

and MSE numbers for both the matrix-matrix and matrix-vector scenarios. However, our work has much simpler

encoding (additions/subtractions in the All-Ones case) and decoding (peeling decoder) than their method. Our work

is also the first to propose a convolutional coding strategy for this problem.

Comparing [11] and our approach The Random KR approach can be considered as specific instance of our

random scaling method where the scaling is applied to a trivial all-ones parity matrix, instead of a carefully designed

Yb̄,ā(D). As both approaches are random and pick the best choices, we conducted an experiment where we ran

100 trials for both methods (with n = 20 and s = 3, 4, 5) and picked the respective best choices (see Fig. 10 for the

corresponding worst case condition numbers). It is clear that the structure imposed in our construction definitely

improves the condition number as compared to the work of [11].

Comparing our All-ones and random approaches: Recall that for our methods qA and qB increase when

γA − 1/kA and γB − 1/kB become smaller (cf. Sections IV-B and IV-C). Table IV, shows a comparison of our

proposed approaches in terms of decoding time and worst case condition number for three different values of

γ = γA = γB . The following inferences can be drawn.

• The decoding time remains more or less constant for the all-ones case, whereas it can increase with decreasing

γ because of solving LS problem for the random case.

• The worst case condition number for the all-ones case continues to increase with decreasing γ, whereas it

saturates for the random case.

• For all-ones case, the worst case condition numbers of both matrices (G̃I and full rank square submatrix of

G̃I) are almost the same for different γ. However, if the entries of R are random Gaussian, then the difference

between these two condition numbers is very large.

June 3, 2020 DRAFT

25

VII. CONCLUSIONS AND FUTURE WORK

Most current approaches for coded computation work within the framework of block codes. In this work we

presented a convolutional approach to coded matrix computation. Our codes possess simple encoding and decoding

algorithms. We demonstrated novel connections between the analysis of numerical stability of our codes and the

properties of large Toeplitz matrices. The performance of our codes is better than most of the existing known

approaches. It would be interesting to consider other classes of convolutional codes for coded computation and

attempt to characterize their properties.

APPENDIX

A. Proof of Theorem 1 and Corollary 2 (MDS property of our codes)

We begin by a formal description of the field in which the polynomials in the indeterminate D lie. Consider

the set of real infinite sequences {ur, ur+1, . . . } for r ∈ Z that start at some finite integer index r, and continue

thereafter. These sequences can be treated as elements of the formal Laurent series [28] in indeterminate D with

coefficients from R, i.e., u(D) =
∞∑

i=r

uiD
i. Let us denote the ring of formal Laurent series over R as R((D)) under

the normal addition and multiplication of formal power series. It can be shown [24] that R((D)) forms a field,

i.e., each non-zero element in it has a corresponding inverse. Thus, the polynomials u(D) =
∑ℓ

i=0 uiD
i that we

consider in this work are members of R((D)) and can be added, multiplied and divided to obtain other members

of R((D)). The zero element and identity element are precisely the real number 0 and the real number 1 within

this field.

The proof of Theorem 1 is an immediate consequence of Lemma 2 below since any k × k submatrix of G(D)

is of the form X(D) given in the lemma.

Lemma 2. Consider a square matrix X(D) such that

X(D) =











(Da0)b0 (Da1)b0 . . . (Dav−1)b0

(Da0)
b1 (Da1)

b1 . . . (Dav−1)
b1

.

..
.
..

.

..
.
..

(Da0)
bv−1 (Da1)

bv−1 . . . (Dav−1)
bv−1











where ai and bj are positive integers for 0 ≤ i, j ≤ v − 1 such that 0 ≤ a0 < a1 < · · · < av−1 and 0 ≤ b0 <

b1 < · · · < bv−1. Then X(D) is nonsingular, i.e., its determinant is a non-zero polynomial in D. Furthermore, if

R is a v× v matrix with entries chosen i.i.d. from a continuous distribution, then R ◦X(D) (where ◦ denotes the

Hadamard product) is nonsingular with probability 1.

The proof of Lemma 2 involves Schur polynomials that are defined next.

Definition 3. Let λ0 ≥ λ1 ≥ . . . λv−1 be non-negative integers and let λ = (λ0, . . . , λv−1). Then,

Sλ(x0, . . . , xv−1) =
∑

T

xt0
0 xt1

1 . . . x
tv−1

v−1 (12)

where the summation is over all semistandard Young tableaux T of shape λ [29].

June 3, 2020 DRAFT

26

A Young diagram of shape λ consists of a collection of boxes arranged in left-justified rows. The i-th row has

λi boxes. A semistandard Young tableau T is obtained by filling the boxes with the integers 0, . . . , v− 1 such that

entries are in ascending order from left to right in the rows and in strictly increasing order from top to bottom in

the columns. The ti values in (12) are obtained by counting the occurrences of the number i in tableau T .

Proof. Matrix X(D) can be written upon permuting some rows as X̂(D) which is given by

X̂(D) =











(Da0)
λ0+v−1

(Da1)
λ0+v−1

. . . (Dav−1)
λ0+v−1

(Da0)λ1+v−2 (Da1)λ1+v−2 . . . (Dav−1)λ1+v−2

..

.
..
.

..

.
..
.

(Da0)
λv−1 (Da1)

λv−1 . . . (Dav−1)
λv−1











where we can assume that λ0 ≥ λ1 ≥ · · · ≥ λv−1. We need to prove that the determinant of X̂(D) is non-zero.

According to [29] (Chapter 1),

det(X̂(D)) = det (Z(Da0 , Da1 , . . . , Dav−1)) × Sλ (D
a0 , Da1 , . . . , Dav−1) ,

where

Z(Da0 , . . . , Dav−1) =














(Da0)
v−1

(Da1)
v−1

. . . (Dav−1)
v−1

(Da0)
v−2

(Da1)
v−2

. . . (Dav−1)
v−2

.

..
.
..

.

..
.
..

Da0 Da1 . . . Dav−1

1 1 . . . 1














. (13)

Note that det (Z(Da0 , Da1 , . . . , Dav−1)) is a non-zero polynomial in D as it is a Vandermonde matrix.

Furthermore, based on Definition 3, Sλ (D
a0 , Da1 , . . . , Dav−1) consists of the sum of terms of the form (Da0)t0 (Da1)t1 . . . (Dav−1)tv−1

all of which have positive coefficients. Thus, it follows that Sλ (D
a0 , Da1 , . . . , Dav−1) is not the zero-polynomial.

�

Proof of Corollary 2. To see the extension, we note that det(R ◦X(D)) is a polynomial in D whose coefficients

in turn are multivariate polynomials in the elements of R, i.e., {ri,j}, 0 ≤ i, j ≤ v − 1. Based on the proof above,

it is clear that setting R to be a matrix of all-ones results in a nonsingular matrix. This implies that det(R◦X(D))

is not identically zero. Next, the elements of R are chosen i.i.d. from a continuous distribution. Therefore the

probability that all the coefficients evaluate to zero over the random choice is also zero. �

Example 3 (Illustration of Lemma 2). Suppose that v = 3 and consider the square submatrix,

E =








D4 D8 D16

D2 D4 D8

D D2 D4








June 3, 2020 DRAFT

27

0

1

2

0 0

1

2

1 0

1

2

2

Fig. 11: Young tableaux of shape λ = (2, 1, 1) leads to three different distribution for T = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}

which helps to obtain Sλ

(

D,D2, D4
)

where λ0 = 2, λ1 = 1 and λ2 = 1, so λ = (2, 1, 1). The determinant of E is given by

det(E) = Sλ

(
D,D2, D4

)
× det















D2 D4 D8

D D2 D4

1 1 1















= Sλ

(
D,D2, D4

)
×
[(
D −D2

) (
D2 −D4

) (
D −D4

)]

The Schur polynomial can be obtained from Fig. 11 as

Sλ

(
D,D2, D4

)
=

(
D4

)2 (
D2

)1
(D)

1
+
(
D4

)1 (
D2

)2
(D)

1
+
(
D4

)1 (
D2

)1
(D)

2
= D11 +D9 +D8.

B. Example of peeling decoder

Example 4. Consider Example 1 for matrix-matrix multiplication, as shown in Fig. 6 and suppose that workers

W0 and W1 are stragglers. The goal of the master node is to recover all products of the form AT
〈i1,j1〉

B〈i2,j2〉

for i1 ∈ [2], j1 ∈ [4], i2 ∈ [2], j2 ∈ [3], hence we have total 2 × 4 × 2 × 3 = 48 unknowns. Note that we can

directly obtain 4 × 6 = 24 unknowns from workers W2 and W3. So it remains to recover all unknowns of the

form AT
〈0,j1〉

B〈i2,j2〉 for j1 ∈ [4], i2 ∈ [2], j2 ∈ [3] from workers W4 and W5.

First, we concentrate on the first block product of W5, which helps to recover AT
〈0,0〉B〈0,0〉. Following this we

examine the first block product of W4, which is
(
A〈0,0〉 +A〈1,0〉

)T (
B〈0,0〉 +B〈1,0〉

)
; the only unknown here is

AT
〈0,0〉B〈1,0〉 which can therefore be decoded. We can keep moving back and forth between W4 and W5 and it

can be verified that we can recover all the block products AT
〈0,j1〉

B〈i2,j2〉 in a similar fashion.

C. Proof of Theorem 2

Let b̄ be a vector of length 2q − 1, whose entries are indexed as b̄ℓ,−(q − 1) ≤ ℓ ≤ (q − 1). A Toeplitz matrix

of size q× q, denoted by Toeplitz(b̄) is such that its (i, j)-th entry is given by b̄i−j for i ∈ [q], j ∈ [q]. Thus, it is

such that each diagonal is a constant from top-left to bottom-right.

Our proof of Theorem 2 relies on a result from [26]. Consider a kq×kq matrix B̃ that has Toeplitz blocks of size

q×q with the (i, j)-th block specified by the (2q−1)-length vector b̄i,j . To be precise, for i = 0, 1, . . . , (k−1), j =

0, 1, . . . , (k − 1),

(B̃)i,j = Toeplitz(b̄i,j).

June 3, 2020 DRAFT

28

G̃ =











k block-columns
︷ ︸︸ ︷

Iq 0 . . . 0 r00

n − k block-columns
︷ ︸︸ ︷

D̃a0bk−1;a0b0 . . . r(s−1)0D̃
as−1bk−1;as−1b0

0 Iq . . . 0 r10D̃
a0bk−1;a0b1 . . . r1(s−1)D̃

as−1bk−1;as−1b1

...
...

. . .
... r20D̃

a0bk−1;a0b2 . . . r2(s−1)D̃
as−1bk−1;as−1b2

0 0 0 Iq r(k−1)0D̃
a0bk−1;a0bk−1 . . . r(k−1)(s−1)D̃

as−1bk−1;as−1bk−1











. (16)

The result in [26] shows that the minimum and maximum eigenvalues of such a matrix can be bounded by

computing the minimum and maximum of the eigenvalues of the following (much smaller) k×k Fourier transform

(FT) matrix B(ω) over the frequency parameter ω. The (i, j)-the entry of B(ω) is defined by simply computing

the Fourier transform of the corresponding vector b̄i,j , i.e.,

(B(ω))i,j =

(q−1)
∑

ℓ=−(q−1)

b̄i,jℓ e−iωℓ.

We can now state the result.

Lemma 3 (Theorem 3 of [26]).

(i) For all q, the eigenvalues of B̃ lie in
[

min
ω∈[−π,π]

λminB(ω) , max
ω∈[−π,π]

λmaxB(ω)

]

.

(ii) Furthermore,

lim
q→∞

λmin

(

B̃
)

= min
ω∈[−π,π]

λmin (B(ω)) ; (14)

lim
q→∞

λmax

(

B̃
)

= max
ω∈[−π,π]

λmax (B(ω)) . (15)

In other words, the behavior of the eigenvalues of B̃ which is a kq × kq matrix can be studied instead by

computing the eigenvalues of the k × k matrix B(ω) and finding its minimum and maximum eigenvalues over the

range ω ∈ [−π, π].

The next two lemmas below help prove that G̃IG̃
T
I has Toeplitz blocks.

Let U and L = UT denote square upper and lower shift matrices respectively, i.e., U is a q× q matrix such that

Uij =







1 if j = i+ 1

0 otherwise.

Thus, for instance if q = 5, then

U =














0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0














. (17)

June 3, 2020 DRAFT

29

Lemma 4. Let h ≥ max(i, j). Then

(D̃h;i)(D̃h;j)T =







Ui−j if i > j,

Lj−i if i ≤ j.

,

Note that the matrices on the RHS above are Toeplitz.

Proof. We only prove the case when i > j as the other part is very similar. The product (D̃h;i)(D̃h;j)T can be

expressed as

[

0q×i Iq 0q×(h−i)

]

×














0j×q

Iq

0(h−j)×q














=




0(q−(i−j))×(i−j) Iq−(i−j)

0(i−j)×(i−j) 0(i−j)×(q−(i−j))



 = Ui−j .

�

Lemma 5. Let G̃ℓ denote the ℓ-th block-column of G̃. For ℓ = 0, 1, . . . , k − 1,

[G̃ℓG̃
T
ℓ]i,j =







Iq if i = j = ℓ,

0 otherwise.

For ℓ = k + ℓ̃, ℓ̃ = 0, 1, . . . , s− 1, and for i ≥ j

[G̃ℓG̃
T
ℓ]i,j =







r2
iℓ̃
Iq if i = j,

riℓ̃rjℓ̃U
aℓ̃(bi−bj) if i > j.

Since the matrix is symmetric, specifying its entries for i ≥ j is sufficient.

Proof. This follows directly by using Lemma 4 and the definition of G̃ℓ. �

Furthermore, using the property that the sum of Toeplitz matrices is Toeplitz, we can conclude that for any subset

I ⊂ {0, . . . , n− 1} such that |I| = k, we have that the matrix G̃IG̃
T
I is a matrix with Toeplitz blocks.

For ease of presentation let I = I1 ∪ I2 where I1 ⊆ {0, . . . , k − 1}, I2 ⊆ {k, . . . , n− 1} and I1 ∩ I2 = ∅ and

ℓ̃ = ℓ− k . Then, for 0 ≤ i, j ≤ k − 1 and i ≥ j we can express the (i, j)-th block of (G̃I)(G̃I)
T as follows.

[(G̃I)(G̃I)
T]i,j =







(
∑

ℓ∈I2
r2
iℓ̃
)Iq + 1i∈I1

Iq, if i = j,

∑

ℓ∈I2
riℓ̃rjℓ̃U

aℓ̃(bi−bj) if i > j.

(18)

where 1 denotes the indicator function. By symmetry it suffices to specify [(G̃I)(G̃I)
T]i,j for i ≥ j. Each of the

blocks is of dimension q × q.

Proof of Theorem 2. We emphasize that our matrix [(G̃I)(G̃I)
T] (see (18)) has Toeplitz blocks. Let B̃ = (G̃I)(G̃I)

T .

Then we have

June 3, 2020 DRAFT

30

B̃i,j = [(G̃I)(G̃I)
T]i,j =







(
∑

ℓ∈I2
r2
iℓ̃
)Iq + 1i∈I1

Iq, if i = j,

∑

ℓ∈I2
riℓ̃rjℓ̃U

aℓ̃(bi−bj) if i > j.

where ℓ̃ = ℓ − k. Observe Ua is a matrix with 1’s on the (a + 1)-th diagonal and zeros everywhere else. Thus,

B̃i,j is a Toeplitz matrix with the (aℓ̃(bi − bj))-th diagonal equal to riℓ̃rjℓ̃. Therefore, the corresponding sequence

b̄i,j for i > j is given by

b̄i,jm =







riℓ̃rjℓ̃ if m = −aℓ̃(bi − bj),

0 otherwise.

Thus, following the discussion above, we obtain

(B(ω))i,j =
∑

ℓ∈I2

riℓ̃rjℓ̃ exp
(
iωaℓ̃(bi − bj)

)

The expressions above can equivalently be expressed as replacing D with eiω and then computing the inner

product of GI(e
jω)(i, :) with (GI(e

iω)(j, :))∗. Therefore, we can compactly represent

B(ω) = GI(e
iω)GI(e

iω)∗.

This concludes the proof. �

D. Search Time for Random Convolutional Coding

We run an experiment to tabulate the time needed to find a good random matrix R. We run 50 trials to find the

best R for n = 13, 14, 15 with s = 2, 3, 4. It should be noted that the choice of R depends on all
(
n
s

)
choices of

stragglers. Fig. 12 shows the corresponding time for different pairs of n and s. From the figure, it can be seen that

our system (a processor with CPU speed 3.5GHz and 16GB RAM) needs only around 8 minutes to find a good

choice of R for even n = 15 and s = 4. In other cases, the required amount of time is even lesser. This indicates

that for a reasonable system size, we do not need to wait too long to obtain a good choice of R that ensures that

the worst case condition number is bounded. And it should be noted that this is a one-time cost for designing the

coding scheme for a system with n worker nodes which is resilient to s = n− k stragglers.

REFERENCES

[1] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving mapreduce performance in heterogeneous environments,” in

Operating syst. design and impl. USENIX Association, 2008, pp. 29–42.

[2] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix multiplication,” in IEEE Intl. Symposium on Info. Th., 2017, pp.

2418–2422.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE

Trans. on Info. Th., vol. 64, no. 3, pp. 1514–1529, 2018.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal

coding,” IEEE Trans. on Info. Th., vol. 66, no. 3, pp. 1920–1933, 2020.

[5] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix multiplication,” in

Proc. of Adv. in Neur. Inf. Proc. Syst. (NIPS), 2017, pp. 4403–4413.

June 3, 2020 DRAFT

31

s = 2 s = 3 s = 4
0

100

200

300

400

500

R
eq

u
ir

ed
ti

m
e

(i
n

se
co

n
d
s) n = 13

n = 14
n = 15

Fig. 12: Comparison of required time to find a good choice of R for different n and s.

[6] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot products,” in Proc.

of Adv. in Neur. Inf. Proc. Syst. (NIPS), 2016, pp. 2100–2108.

[7] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix

multiplication,” IEEE Trans. on Info. Th., vol. 66, no. 1, pp. 278–301, 2019.

[8] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi, “Rateless codes for near-perfect load balancing in distributed matrix-

vector multiplication,” Proceedings of the ACM on Meas. and Analysis of Comp. Syst., vol. 3, no. 3, pp. 1–40, 2019.

[9] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in Proc. of Intl. Conf. on Machine Learning (ICML), 2018.

[10] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded computing,” in IEEE Intl. Symposium on Info. Th., July 2019, pp.

3017–3021.

[11] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random Khatri-Rao-Product Codes for Numerically-Stable Distributed Matrix

Multiplication,” in 57th Annual Conf. on Comm., Control, and Computing (Allerton), Sep. 2019, pp. 253–259.

[12] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix computations via circulant and rotation matrix embeddings,” preprint,

2019, [Online] Available: https://arxiv.org/abs/1910.06515.

[13] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES : Codes for coded computation that leverage stragglers,” in IEEE Info. Th. Workshop,

2018.

[14] L. Tang, K. Konstantinidis, and A. Ramamoorthy, “Erasure coding for distributed matrix multiplication for matrices with bounded entries,”

IEEE Communications Letters, vol. 23, no. 1, pp. 8–11, Jan 2019.

[15] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in coded computation,” in IEEE Intl. Symposium on Info. Th., 2018,

pp. 1988–1992.

[16] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed matrix computation via coding theory: Removing a bottleneck

in large-scale data processing,” IEEE Sig. Proc. Mag., vol. 37, no. 3, pp. 136–145, 2020.

[17] A. E. Yagle, “Fast algorithms for matrix multiplication using pseudo-number-theoretic transforms,” IEEE Transactions on Signal Processing,

vol. 43, no. 1, pp. 71–76, 1995.

[18] V. Pan, “How Bad Are Vandermonde Matrices?” SIAM Journal on Matrix Analysis and Applications, vol. 37, no. 2, pp. 676–694, 2016.

[19] L. Tang, “Algebraic approaches for coded caching and distributed computing,” Ph.D. dissertation, Iowa State University, 2020.

[20] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplication: A convolutional coding approach,” in IEEE Intl. Symposium

on Info. Th., July 2019, pp. 3022–3026.

[21] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable matrices for distributed matrix-vector multiplication,” in IEEE Intl.

Symposium on Info. Th., July 2019, pp. 1777–1781.

[22] S. Lin and D. J. Costello, Error Control Coding, 2nd Ed. Prentice Hall, 2004.

June 3, 2020 DRAFT

32

[23] R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations and Trends R© in Comm. and Inf. Th., vol. 2, no. 3, pp. 155–239,

2006.

[24] I. Niven, “Formal power series,” The American Mathematical Monthly, vol. 76, no. 8, pp. 871–889, 1969.

[25] X.-D. Zhang, Matrix Analysis and Applications. Cambridge University Press, 2017.

[26] H. Gazzah, P. A. Regalia, and J.-P. Delmas, “Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO

channel identification,” IEEE Trans. on Info. Th., vol. 47, no. 3, pp. 1243–1251, 2001.

[27] Straggler Mitigation Codes. [Online]. Available: https://github.com/anindyabijoydas/StragglerMitigateConvCodes

[28] T. Fuja, C. Heegard, and M. Blaum, “Cross parity check convolutional codes,” IEEE Trans. on Info. Th., vol. 35, no. 6, pp. 1264–1276,

1989.

[29] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd Ed. Oxford University Press, 2015.

June 3, 2020 DRAFT

https://github.com/anindyabijoydas/StragglerMitigateConvCodes

	I Introduction
	II Problem Formulation
	III Background, Related Work and Summary of Contributions
	III-A Related Work
	III-B Summary of Contributions

	IV Convolutional Coding for Distributed Matrix Computation
	IV-A Simple Illustrative Example
	IV-B Proposed matrix-vector multiplication scheme
	IV-C Proposed matrix-matrix multiplication scheme
	IV-D Decoding algorithm: Peeling decoder
	IV-E Effect of q: storage fraction, imbalance in task assignment

	V Numerical stability analysis
	V-1 Understanding the matrix representation
	V-2 Quantifying round-off error amplification

	V-A Upper bounding worst
	V-B Randomly-weighted convolutional coding
	V-C Random convolutional coding: decoding algorithm

	VI Comparisons and Numerical Experiments
	VII Conclusions and Future Work
	Appendix
	A Proof of Theorem ?? and Corollary ?? (MDS property of our codes)
	B Example of peeling decoder
	C Proof of Theorem ??
	D Search Time for Random Convolutional Coding

	References

