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Abstract—This paper investigates the decoding of certain
Gabidulin codes that were transmitted over a channel with
space-symmetric errors. Space-symmetric errors are additive error
matrices that have the property that their column and row spaces
are equal. We show that for channels restricted to space-symmetric
errors, with high probability errors of rank up to 2(n− k)/3 can
be decoded with a Gabidulin code of length n and dimension k,
using a weak-self orthogonal basis as code locators.

Index Terms—Gabidulin codes, space-symmetric, rank metric

I. INTRODUCTION

Gabidulin codes [1]–[3] can be considered as the rank-metric
analog of Reed–Solomon codes. The rank metric measures the
distance between two codewords, represented as matrices, as
the rank of their differences. Gabidulin codes are of interest
for many applications related to communication, cryptography,
space-time coding, network coding, distributed storage systems
and digital watermarking [4]–[9].

Gabidulin codes are maximum rank distance (MRD), i.e.,
their minimum distance is dmin = n − k + 1, where n is the
length of the code and k the dimension. Hence, it is possible to
uniquely decode errors of rank up to (n−k)/2. There a several
algorithms which efficiently perform unique decoding, e.g., [1],
[2], [10]–[13].

In [14]–[16] it was shown that for Gabidulin codes that
contain a linear subcode of symmetric matrices (i.e., the trans-
pose of the matrix coincides with the matrix itself) can correct
symmetric error matrices of rank up to (n−1)/2. In this paper,
we relax the condition of symmetric errors and consider the
case of space-symmetric error matrices which have the property
that their column and row spaces coincides. We show that it
is possible to use a Gabidulin code with the same property
as in [14]–[16] to decode such space-symmetric errors of rank
up to 2(n − k)/3 with high probability. We further derive an
upper bound on the failure probability of decoding such space-
symmetric errors including some simulation results to further
support the validation. Some motivation for the application of
space-symmetric errors to code-based cryptography is addressed
as well.

II. PRELIMINARIES

A. Notation

Let q be a power of a prime and let Fq denote the finite
field of order q and Fqm its extension field of order qm. Denote
by F

m×n
q the set of all m × n matrices over Fq and denote
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the set of all row vectors of length n by F
n
qm

def
= F

1×n
qm . For a

matrix A, let Ai,j be the entry of the i-th row and j-th column.
For a vector α = (α0, α1, . . . , αn−1) ∈ F

n
qm , define its rank

by rk(α)
def
= dim〈α0, . . . , αn−1〉q , where 〈α0, . . . , αn−1〉q is

the Fq-vector space spanned by the entries αi ∈ Fqm . Given
α ∈ Fqm and an integer i, denote its i-th q-power by α[i] where
[i] = qi. Denote by Mi(α) ∈ F

i×n
qm the Moore matrix

Mi(α)
def
=











α0 α1 . . . αn−1

α
[1]
0 α

[1]
1 . . . α

[1]
n−1

...
. . .

...
...

α
[i−1]
0 α

[i−1]
1 . . . α

[i−1]
n−1











.

We denote the element-wise j-th q-power of the matrix by
Mi(α)[j] .

Througout this paper, let m = n and A ∈ F
n×n
q be a square

matrix. Let α = (α1, α2, . . . , αn) ∈ F
n
qn be a fixed basis of

Fqn over Fq. We define the map

φ : Fn
qn → F

n×n
q

a 7→ A,

where a ∈ F
n
qn and A ∈ F

n×n
q is the unique matrix such that

a = αA. The map φ is a bijection that preserves the rank and
we have that

rk (a) = rk (A).

For φ(a) = A let â be the vector, such that φ(â) = AT . We
call â the transposed vector of a. If A is a symmetric matrix,
that means A = AT , then we have that a = â.

Gabidulin codes are defined by means of linearized polynomi-

als which were introduced by Ore [17]. A linearized polynomial

over Fqn is a polynomial of the form f(x) =
∑df

i=0 fix
[i],

with fi ∈ Fqn . If fdf
6= 0, we call degq f(x)

def
= df the q-

degree of f(x). An important property of linearized polynomials
∀ α1, α2 ∈ Fq and ∀ a, b ∈ Fqm is f(α1a + α2b) =
α1f(a)+α2f(b). A linearized polynomial of q-degree d which
contains all elements of a d-dimensional subspace as roots is
called the minimal subspace polynomial.

B. Gabidulin Codes Generated by Weak Self-Orthogonal Bases

Gabidulin codes [1]–[3] can be seen as the rank-metric analog
of Reed–Solomon (RS) codes and can be defined by a generator
matrix as follows.
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Definition 1 (Gabidulin Code) Denote by Gabα[n, k] a

Gabidulin code of dimension k and length n over Fqn which

is defined by its k × n generator matrix

Gk
def
= Mk(α),

where α ∈ F
n
qn and α1, α2, . . . , αn are linearly independent

over Fq. The set of all Gabidulin codewords is then given by

Gabα[n, k]
def
= {uGk | ∀u ∈ F

k
qn}.

Further, we use weak self-orthogonal bases [16], [18], [19].

Definition 2 (Weak Self-Orthogonal Basis) A basis α ∈ F
n
qn

of Fqn over Fq is called a weak self-orthogonal basis if

Mn(α) ·Mn(α)T = D,

where D ∈ F
n×n
qn is a diagonal matrix.

Definition 3 (Transposed Gabidulin Code) We define the

transposed Gabidulin code as

GabT
α
[n, k]

def
= {ĉ | ∀c ∈ Gabα[n, k]},

where ĉ = φ−1(φ(c)T ).

If the first row α of a generator matrix of a Gabidulin code
Gabα[n, k] forms a weak self-orthogonal basis, then the parity-
check matrix of the code is given by

Hn−k = Mn−k(α)[k]

and the parity-check matrix of the transposed code GabT
k [α] is

given as [16]

Ĥn−k = Mn−k(α)[1].

C. Channel Model

In [14], [16], the following channel model was considered.
Let the Gabidulin codeword c = uGk be corrupted by an error
e of rank rk(e) = t, that means

r = c+ e, (1)

and E = φ(e) is a symmetric matrix. Then, errors of rank up
to t ≤ (n − 1)/2 can be corrected for certain parameters [14],
[16].

In this paper, we relax the condition of E being a symmetric
matrix, to the condition that the row space of E, denoted by
Rq(E), equals the column space of E, denoted by Cq (E), that
means

Rq(E) = Cq (E) .

A matrix of rank t whose row space is equal to its column space
is called space-symmetric and can be decomposed into

E = APAT , (2)

where A ∈ F
n×t
q and P ∈ F

t×t
q are full-rank matrices of rank t.

Note that the vector a = (a0, a1, . . . , at−1) = φ−1(A) is a
basis of the column space and also a basis of the row space,
since Rq(E) = Cq (E).

III. DECODING SPACE-SYMMETRIC ERRORS

A. Syndrome-Based Decoding Approach

In the course of this section we introduce a syndrome-
based decoding approach (cf. [1], [2], [10]–[12] for syndrome-
based decoding up to (n − k)/2 errors) of Gabidulin codes
to decode space-symmetric errors. We therefore show that we
can transform the problem of decoding space-symmetric errors
into the problem of decoding a special interleaved Gabidulin
code of interleaving order two (cf. [20]–[23] for decoding
interleaved Gabidulin codes). The basic idea is to compute two
syndromes, one obtained from the original code and another
one by transposing the received noisy codeword matrix and
obtaining the syndrome from the transposed Gabidulin code.
The two syndromes can then be used to solve a linear system
of equations jointly and the decoding radius can be increased
beyond (n − k)/2. Whether a solution can be found or not,
depends on the matrix P , see (2). The explicit decoding
approach is similar to decoding a 2-interleaved Gabidulin code.

From (1) we can compute the syndromes

s(1) = ŷĤT
n−k = êĤT

n−k (3)

of the transposed code GabT
k [α] and

s(2) = yHT
n−k = eHT

n−k (4)

of the original Gabk[α] code. To each syndrome, we can

associate a polynomial s(i)(x) =
∑n−k−1

j=0 sjx
[j] for i ∈ {1, 2}.

Given an error decomposed as in (2) we can define the row

error span polynomial as the minimal subspace polynomial of
the vector a [24] of degree t as:

Γ(x)
def
=

∏

u∈Rq(E)

(x − φ(u)).

Since by definition of the error we have that Rq(E) = Cq (E),
the row error span polynomial is equal to the column error span
polynomial and Γ(al) = 0 for all l ∈ {0, . . . , t− 1}.

In the following, we give the key equation of the original
code and the transposed code.

Theorem 1 (Key Equations) Let Γ(x) =
∑t

i=0 Γix
[i] be the

error span polynomial with t = degq Γ(x) = rk (e). Then for

each syndrome we obtain a key equation as follows

Γ(s(i)(x)) ≡ Ω(i)(x) mod x[n−k], ∀i ∈ {1, 2},

for some Ω(i)(x) with degq(Ω)
(i)(x)) < t.

Proof: See Appendix A.
Solving the key equation can be done by solving a linear

system of equations

S(i) · ΓT = 0,

where Γ = (Γ0,Γ2, . . . ,Γt) and S(i)

S(i) def
=















s
(i)
t

[0]
s
(i)
t−1

[1]
. . . s

(i)
0

[t]

s
(i)
t+1

[0]
s
(i)
t

[1]
. . . s

(i)
1

[t]

...
...

. . .
...

s
(i)
n−k−1

[0]
s
(i)
n−k−2

[1]
. . . s

(i)
n−k−t

[t]















. (5)



Since for each syndrome the error span polynomial in the key
equation is the same, we can solve the two key equations jointly.
This approach is similar to decoding a 2-interleaved Gabidulin
code [20]–[23] which yields the following linear system of
equations

S · ΓT =

[

S(1)

S(2)

]

· ΓT = 0, (6)

where (see Appendix B)

S(1) = Mn−k−t(a)
[t+1] ·P ·Mt+1(a)

T (7)

and
S(2) = Mn−k−t(a)

[t+k] ·P T ·Mt+1(a)
T . (8)

Thus, S is as follows

S =

[

Mn−k−t(a)
[t+1] ·P

Mn−k−t(a)
[t+k] · P T

]

·Mt+1(a)
T . (9)

If rk (S) = t, we obtain a unique solution for Γ(x) up to
a scalar factor. After solving the key equation (6) we obtain
the coefficients of Γ(x) and we can find a basis of the root
space of Γ(x). This basis corresponds to one possible a in the
decomposition in (2). Knowing a possible vector a, the error can
be determined. The complete process of decoding is described
in Algorithm 1. In Appendix C, we describe a way to obtain
the error matrix E knowing a possible vector a. Algorithm 1
has complexity at most O(n3) operations over Fqn .

Note that more efficient algorithms with quadratic or even
sub-quadratic complexities in n can be used to solve the joint
syndrome key equation from (6) as well as to find the matrix B,
see e.g., [20], [21], [25], [26], but for our analysis Algorithm 1
is sufficient.

B. Probability of Decoding Failure

In this section, we show that decoding of space-symmetric
errors is guaranteed with high probability.

Theorem 2 (Decoding of Space-Symmetric Errors) Let

Gabα[n, k] be given a Gabidulin code of dimension k and

length n, where α is a weak self-orthogonal basis. Furthermore,

let r be a noisy Gabidulin codeword as in (1) where E is a

space-symmetric matrix of rank t ≤ 2(n−k)/3. Then decoding

is guaranteed with probability of at least 1 − Pf , where Pf is

the decoding failure probability.

Assume that the matrix

Q
def
= P−1 · P T , (10)

where P is defined in (2), is uniformly drawn at random from

the set of all matrices in F
t×t
q . Then Pf is bounded from above

by

Pf ≤ 4/qn.

Proof: As discussed above, we obtain a unique solution for
rk (S) = t to succeed with decoding. To analyze the probability
of failure, we restrict to the case for which the matrices
Mn−k−t(a)

[t+k] and Mn−k−t(a)
[t+1] have no common rows,

which means that t > n− 2k. Consider the case of symmetric
error matrices E for which P = P T , we have that

S =

[

Mt+1,n−k+1(a)
Mt+k,n(a)

]

· P ·Mt+1(a)
T ,

Algorithm 1: DecodeSpaceSymmetric

Input : y = (y0, y1, . . . , yn) ∈ F
n
qn ,

Parity-check matrix Hn−k of Gabα[n, k]

1 Syndrome calculations:

2 s(1) ← ŷĤT
n−k and s(2) ← yHT

n−k

3 if s(2) = 0 then

4 c← y

5 else

6 t← ⌊2(n− k)/3⌋
7 Set up S(1) and S(2) as in (5)

8 S ← [(S(1))T , (S(2))T ]T

9 while rk(S) < t do

10 t← t− 1
11 Repeat 7 and 8

12 Solve: S · ΓT = 0 for Γ = (Γ0, . . . ,Γt) ∈ F
t+1
qn

13 Find a basis (a1, a2, . . . , aω) ∈ F
ω
qn of the root

space of Γ(x) =
∑t

i=0

14 if ω = t then

15 Find B such that e = aB (see Appendix C)
16 c← y − aB

17 else

18 Declare “decoding failure”

Output: Estimated codeword c ∈ Gabα[n, k] or
“decoding failure”.

for which we know that rk (P ) = t by definition,
rk (Mt+1(a)

T ) = t and since n−k < t+k also the left part of
the decomposition of S has always rank t for t ≤ 2(n− k)/3.

For the case that P is not symmetric, we can rewrite (9) by

defining M̃n−k−t
def
= Mn−k−t(a) · P as

S =

[

M̃
[t+1]
n−k−t

M̃
[t+k]
n−k−t ·Q

]

·Mt+1(a)
T . (11)

Assuming that Q is uniformly drawn at random from the set
of all matrices in F

t×t
q the matrix S is similar to the syndrome

matrix of decoding a 2-interleaved Gabidulin code and we can
bound the probability of decoding error Pf according to [21]
and Theorem 2 follows.

IV. NUMERICAL RESULTS

We simulated a Gabidulin code for n = 8, k = 2 over F28 for
a space-symmetric error channel of fixed error weight with t =
rk(E) = 2(n−k)/3 = 4. The maximum error weight for unique
decoding of any rank error is (n−k)/2 = 3. We generated 106

noisy Gabidulin codeword samples and we compare the results
with a set of different scenarios:

1) Space-symmetric errors: We draw the matrix A and P , both
of rank t uniformly at random. Using a Gabidulin code with
a weak self-orthonogal basis we decode the nosiy codewords
using Algorithm 1.

2) Uniform assumption: a modified experiment where we di-
rectly draw the matrix Q in (10), with rk(Q) = t uniformly
at random instead of P . We compute the matrix S as in (11)



and check its rank. If rk(S) 6= t we declare a decoding error
failure.

3) 2-interleaved Gabidulin code: simulation of a 2-interleaved
Gabidulin code where the two error matrices are drawn
uniformly at random such that the dimension of its column
space is at most 2(n− k)/3 = 4.

4) Intersection probability: Consider the probability that the in-
tersection of two subspaces U and V of Ft

qm with dimension
ℓ drawn uniformly at random has dimension larger than or
equal to ω This probability is [27]

Pr[dim (U ∩ V) ≥ ω] =

∑ℓ

i=ω

(

t−ℓ
ℓ−i

)

qm

(

ℓ
i

)

qm
· q(ℓ−i)2

(

t

ℓ

)

qm

.

(12)
Consider the rows of Mn−k−t(a)

[t+1] ·P being a basis of a
subspace Ũ of Ft

qm of dimension ℓ = n−k−t. Additionally,

consider the rows of Mn−k−t(a)
[t+k] · P T being a basis

of another subspace Ṽ also of dimension ℓ = n − k − t.
We then can use (12) as an estimation of the probability
Pr[dim (Ũ ∩ Ṽ) ≥ ω] for ω = 2(n − k) − 3t + 1 which is
equal to the probability of the matrix

[

Mt+1,n−k+1(a)
Mt+k,n(a)

]

having rank t and therefore rk(S) = t according to (9).

Table I shows the simulation results, including the different
scenarios for comparison. We observe that the decoding failure
rate of decoding space-symmetric errors using a Gabidulin code
with weak self-orthogonal basis is approximately identical to
the one with the uniform assumption as well as to the one of
decoding a 2-interleaved Gabidulin code over an ordinary rank-
metric channel with errors of a fixed rank. The upper bound
on Pf is shown as well and the intersection probability gives a
good estimate of the decoding failure rate.

TABLE I
SIMULATION RESULTS OF SPACE-SYMMETRIC ERRORS FOR n = 8, k = 2

OVER F
28

AND t = 4.

Scenario Decoding failure rate

1) Space-symmetric errors 0.004124
2) Uniform assumption 0.004229
3) 2-interleaved Gabidulin code 0.003965
4) Intersection probability 0.003921
Upper bound: 4/qm 0.015625

V. NUMBER OF SPACE-SYMMETRIC MATRICES

Denote by
(

n

t

)

q
the Gaussian binomial coefficient which gives

the number of t-dimensional subspaces of F
n
q over Fq and

is [28]
(

n

t

)

q

=

t−1
∏

i=0

qn − qi

qt − qi
.

Theorem 3 (Number of Space-Symmetric Matrices) The

number Nsp-sym(n, t, q) of n × n matrices over Fq of rank t
that are space-symmetric is given by

Nsp-sym(n, t, q) =

t−1
∏

i=0

(qn − qi). (13)

Proof: The number of column spaces of a n × n matrix
of rank t over Fq is given by the number of t-dimensional
subspaces of F

n
q which is

(

n

t

)

q
. Since we deal with square

matrices we can identify the column space with the image of the
associated linear map from F

n
q to F

n
q . And since column space

and row space are equal, there are
∏t−1

i=0(q
t − qi) surjective

linear maps from F
t
q to that t-dimensional image. It follows

that Nsp-sym(n, t, q) =
(

n

t

)

q
·
∏t−1

i=0(q
t − qi) and inserting the

definition of
(

n
t

)

q
, (13) follows.

VI. APPLICATION TO CODE-BASED CRYPTOGRAPHY

A McEliece-like cryptosystem based on Gabidulin codes was
first introduced in [10], called the GPT system. Unfortunately,
the original system and many of its variants were broken by
attacks from Gibons [29], [30] and Overbeck [31]–[33]. In
this section, we present the potential application of space-
symmetric rank errors to code-based cryptography. We therefore
compare the key sizes of the GPT variant by Loidreau [4],
[5] if applied to arbitrary rank errors, symmetric errors and
space-symmetric errors. We want to emphasize that we do not
claim any security proofs. Symmetric errors contain a lot of
structure which might lead to new efficient structural attacks
when used in cryptosystems like [4], [5]. The same holds
for space-symmetric errors, however, compared to symmetric
errors, the former contain less structure. In either case, for a
practical cryptosystem, further analysis to rule out structural
attacks is required.

The GPT variant by Loidreau [4], [5] involves a parameter λ
which amplifies the rank of the error matrix. In Table II, we
give a set of parameters under the assumption that it is possible
to embed error matrices of a specific structure like symmetric or
space-symmetric rank errors in the aforementioned cryptosys-
tem. We also give different hypothetical security levels (SLs).
The SL is defined by the smallest work factor (WF) of an attack
in bits. We assume that the following three WFs (the first two
WFs are described in [4]) apply:

• Decoding attack: WFdec = n3q((t
′
−1)k

• Structural attack: WFstruc = n3qn(λ−1)−(λ−1)2

• Brute-forcing error patterns: WFe

with t′ = t/λ and t being the maximal amount of errors that
can be corrected by the different scenarios:

1) Conventional Gabidulin codes: t = ⌊(n− k)/2⌋
2) Symmetric rank errors: t = ⌊(n− 1)/2⌋
3) Space-symmetric rank errors: t = ⌊2(n− k)/3⌋
WFe is defined by the number of distinct error matrices which
is for the three different cases:

1) Conventional rank errors: The number of n× n matrices of
rank t′ over Fq which is given by [24]

Nrank(n, t
′, q) =

t′−1
∏

j=0

(qn − qj)2

qt′ − qj
.

2) Symmetric rank errors : Let Nsymm(n, t
′, q) be the number

of symmetric matrices of size n × n of rank t′ = 2s over
Fq we have that [34]

Nsymm(n, 2s, q) =

s
∏

i=1

q2i

q2i − 1
·
2s−1
∏

i=0

(qn−i − 1)



TABLE II
KEY SIZES OF THE GPT CRYPTOSYSTEM VARIANT [4], [5] USING

DIFFERENT TYPES OF ERRORS: CONVENTIONAL RANK ERRORS (CONV),
SYMMETRIC (SYM) AND SPACE-SYMMETRIC (SP-SYM) RANK ERRORS FOR

DIFFERENT SLS. THE CODE RATE OF ALL CODES IS APPROXIMATELY 1/2.

SL Type n k λ t′ WFdec WFstruc WFe Keysize
256 Conv 96 48 4 6 259.75 298.75 1117.77 27.65 KB
256 Sym 80 40 5 7 258.97 322.97 539.53 16.00 KB
256 Sp-Sym 83 41 4 7 265.13 259.13 581.00 17.87 KB
192 Conv 88 44 4 5 195.38 274.38 856.75 21.30 KB
192 Sym 62 31 4 7 203.86 194.86 413.53 7.45 KB
192 Sp-Sym 71 35 4 6 193.45 222.45 426.00 11.18 KB
128 Conv 59 29 3 5 133.65 131.65 566.75 6.41 KB
128 Sym 49 24 4 6 136.84 154.84 279.53 3.68 KB
128 Sp-Sym 58 29 4 6 162.57 129.57 348.00 6.10 KB

and

Nsymm(n, 2s+ 1, q) =

s
∏

i=1

q2i

q2i − 1
·

2s
∏

i=0

(qn−i − 1).

3) Space-symmetric rank errors: Nsp-sym(n, t
′, q) as in (13).

Table II shows that using symmetric or space-symmetric rank
errors potentially might reduce the key size of such a cryptosys-
tem.

APPENDIX

Define B
def
= PAT and C

def
= P TAT . Thus E = AB and

ET = AC . The vector representation e of E and its transposed
ê of ET can therefore be written as

e = αE = αAB = aB

ê = αET = αAC = aC,

with a = αA. From the syndrome equations (3) and (4) follows

s(1) = aCĤT
n−k ⇔ s

(1)
j =

n−1
∑

i=0

t−1
∑

l=0

alCl,iα
[1+j]
i

=

t−1
∑

l=0

alĉ
[1+j]
l , (14)

s(2) = aBHT
n−k ⇔ s

(2)
j =

n−1
∑

i=0

t−1
∑

l=0

alBl,iα
[k+j]
i

=

t−1
∑

l=0

alb̂
[k+j]
l , (15)

with ĉl being the l-th entry of the vector ĉ = αCT and b̂l of
b̂ = αBT , respectively.

A. Proof of the Key Equations

The p-th coefficient of Ω(i) = Γ(s(i)(x)) for i ∈ {1, 2} can
be calculated by

Ω(i)
p =

p
∑

j=0

Γj(s
(i)
p−j)

[j].

Using (14) and (15) we obtain for the transposed code and
original code

Ω(1)
p =

p
∑

j=0

Γj

(

t−1
∑

l=0

alĉ
[1+p−j]
l

)[j]

=

t−1
∑

l=0

ĉ
[1+i]
l

p
∑

j=0

Γja
[j]
l .

and

Ω(2)
p =

p
∑

j=0

Γj

(

t−1
∑

l=0

alb̂
[k+p−j]
l

)[j]

=

t−1
∑

l=0

b̂
[k+i]
l

p
∑

j=0

Γja
[j]
l .

respectively. For any p ≥ t this gives Ω
(i)
p = 0, since Γ(al) =

∑t

j=0 Γja
[j]
l = 0 by definition and therefore degq Ω

(i)(x) <
degq Γ(x) = t for i ∈ {1, 2}.

B. Derivation of (7) and (8)

Using (14) and (15) we can decompose the syndrome matri-
ces from (5) as

S(1) =













ĉ
[t+1]
0 ĉ

[t+1]
1 . . . ĉ

[t+1]
t−1

ĉ
[t+2]
0 ĉ

[t+2]
1 . . . ĉ

[t+2]
t−1

...
...

. . .
...

ĉ
[n−k]
0 ĉ

[n−k]
1 . . . ĉ

[n−k]
t−1













·Mt+1(a)
T

and

S
(2) =













b̂
[t+k]
0 b̂

[t+k]
1 . . . b̂

[t+k]
t−1

b̂
[t+k+1]
0 b̂

[t+k+1]
1 . . . b̂

[t+k+1]
t−1

...
...

. . .
...

b̂
[n−1]
0 b̂

[n−1]
1 . . . b̂

[n−1]
t−1













·Mt+1(a)
T .

The left sides can be decomposed again according to the
definition of ĉ and b̂ and we have

S
(1) =













α
[t+1]
0 α

[t+1]
1 . . . α

[t+1]
n−1

α
[t+2]
0 α

[t+2]
1 . . . α

[t+2]
n−1

...
...

. . .
...

α
[n−k]
0 α

[n−k]
1 . . . α

[n−k]
n−1













·CT ·Mt+1(a)
T

and

S
(2) =













α
[t+k]
0 α

[t+k]
1 . . . α

[t+k]
n−1

α
[t+k+1]
0 α

[t+k+1]
1 . . . α

[t+k+1]
n−1

...
...

. . .
...

α
[n−1]
0 α

[n−1]
1 . . . α

[n−1]
n−1













·BT·Mt+1(a)
T .

Since CT = AP , BT = AP T and a = αA we obtain (7)
and (8).

C. Finding B such that e = aB

Define dl
def
= b̂

[k]
l . We have then from (15) that the syndrome

s
(2)
j =

∑t−1
l=0 ald

[j]
l . Knowing the vector a = (a0, a1, . . . , at−1)

we can solve for d = (d0, d1, . . . , dt−1) the following linear
system of equations:












a
[0]
0 a

[0]
1 · · · a

[0]
t−1

a
[−1]
0 a

[−1]
1 · · · a

[−1]
t−1

...
...

. . .
...

a
[−v]
0 a

[−v]
1 · · · a

[−v]
t−1













·











d0
d1
...

dt−1











=













(s
(2)
0 )[0]

(s
(2)
1 )[−1]

...

(s
(2)
v )[−v]













with v = n − k − 1. It remains to find B such that dl =
∑n−1

j=0 Bl,jα
[k]
j .
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