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Abstract—This paper focuses on the encoding and decoding of
Construction D’ coding lattices that can be used with shaping
lattices for power-constrained channels. Two encoding methods
and a decoding algorithm for Construction D’ lattices are
given. A design of quasi-cyclic low-density parity-check (QC-
LDPC) codes to form Construction D’ lattices is presented. This
allows construction of nested lattice codes which are good for
coding, good for shaping, and have low complexity encoding and
decoding. Numerical results of using E8, BW16 and Leech lattices
for shaping a Construction D’ lattice indicate that the shaping
gains 0.65 dB, 0.86 dB and 1.03 dB are preserved, respectively.

I. INTRODUCTION

Lattices are a natural fit for wireless communications be-
cause they provide reliable transmission using real-valued
algebra and higher transmit power efficiency than conventional
constellations. Lattices also form an important component
of compute-and-forward relaying [1], which provides high
throughput and high spectral efficiency. For power-constrained
communications, nested lattice codes constructed by a coding
lattice Λc and a shaping lattice Λs can achieve the additive
white Gaussian noise (AWGN) channel capacity [2], if Λc is
channel-good and the Voronoi region of Λs is hyperspherical,
using dithering and minimum mean-square error (MMSE)
scaling techniques. The shaping gain measures the power
reduction, with a 1.53 dB theoretic limit. The well-known E8

lattice was employed for shaping Construction D lattices [3].
Lattices have also been used for shaping in [4]–[8], but never
been used for shaping Construction D’ lattices.

LDPC codes have been implemented in a wide variety of
applications because of their capacity-achievability, efficient
encoding, low-complexity decoding, and suitability for hard-
ware implementation. For these reasons, LDPC codes are also
suitable for constructing lattices. Recently Branco da Silva
and Silva [9] proposed efficient encoding and decoding for
Construction D’ lattices, particularly for LDPC codes. A
codeword and cosets of component linear codes are used
to form systematic codewords for Construction D’ lattices.
This encoding method naturally produces lattice points in a
hypercube.

However, hypercube does not provide shaping gain. A
shaping lattice Λs is needed to do so. Let G and Gs be the
generator matrix of Λc and Λs, respectively. The check matrix
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of Λc is H “ G´1. To build a nested lattice code, Λs Ď Λc

must be satisfied [10, p. 179]; this holds iff H ¨Gs P Zn [11,
Lemma 1]. To perform shaping, the mapping from an integer
vector b to a lattice point x1 denoted x1 “ Gb´QΛs

pGbq [11,
eq. (21)] for a shaping lattice quantizer QΛs

, can be achieved
as long as the integers bi P t0, 1, . . . ,Mi´1u are selected with
Mi related to the diagonal elements of H and Gs. However,
the encoding and decoding method in [9] cannot be applied
to non-hypercubical shaping.

To tackle the above problem, the main contributions of this
paper are as follows. We provide a definition of Construction
D’ using check-matrix perspective, which is equivalent to
the congruences perspective [12]. We propose two encoding
methods and a decoding algorithm for Construction D’ suitable
for power-constrained channels. Encoding method A encodes
integers with an approximate lower triangular (ALT) check
matrix. Encoding method B shows how binary information bits
are mapped to a lattice point using the check matrices of the
underlying nested linear codes of a Construction D’ lattice.
We present a multistage successive cancellation decoding al-
gorithm employing binary decoders. The re-encoding mapping
an estimated binary codeword to a lattice point is required
during decoding, and this is consistent with encoding method
B; these methods are distinct from [9].

Motivated by [13], we also construct QC-LDPC codes to
form Construction D’ lattices (termed LDPC code lattices),
because QC-LDPC codes are widely used in recent wireless
communication standards. A design of QC-LDPC code C0 with
a parity-check matrix H0 is presented, where the position of
non-zero blocks is found by binary linear programming. A
subcode condition C0 Ď C1 must be satisfied to form a 2-
level Construction D’ lattice, and this is not straightforward.
In [9], H0 was obtained from H1 by performing check
splitting or PEG-based check splitting. In contrast to [9] we
design H0 and construct H1 from H0. Simulation results of
using well-known low-dimensional lattices for shaping a 2304-
dimensional LDPC code lattice are given, and shaping gains
of E8, BW16 and Leech lattices can be preserved.

Notation A tilde indicates a vector or matrix which has
only 0s and 1s — rx and rH are binary while x and H are not
necessarily so. Operations over the real numbers R are denoted
`, ¨ while operations over the binary field F2 are denoted‘,d.
The matrix transpose is denoted p¨qt. Element-wise rounding
to the nearest integer is denoted t¨s.
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II. CONSTRUCTION D’

An n-dimensional lattice Λ is a discrete additive subgroup
of Rn. Let a generator matrix of Λ be G with basis vectors
in columns. For integers b P Zn, a vector x is a lattice point
given by x “ G ¨ b. This is equivalent to H ¨ x “ b, where
the check matrix is H “ G´1.

Consider nested linear codes C0 Ď C1 Ď ¨ ¨ ¨ Ď Ca “ Fn
2

for level a ě 1. Let an n-by-n matrix of row vectors
hj “ rh1, . . . , hns be denoted rH “ rh1,h2, . . . ,hnst for
j “ 1, . . . , n. The parity-check matrix of Ci is rHi for
i “ 0, 1, . . . , a ´ 1. The dimension of Ci is ki “ n ´ mi,
where mi is the number of rows in rHi, from hki`1 to hn.

Construction D’ converts a set of parity-checks defining
nested linear codes into congruences for a lattice.

Definition 1 (Construction D’ (congruences)): [12, p. 235]
Let C0 Ď C1 Ď ¨ ¨ ¨ Ď Ca “ Fn

2 be nested linear codes. Let
the dimension of Ci be ki. Let h1,h2, . . . ,hn be a basis for
Fn

2 such that Ci is defined by n ´ ki parity-check vectors
hki`1, . . . ,hn. Then the Construction D’ lattice is the set of
all vectors x P Zn satisfying the congruences:

hj ¨ x ” 0 pmod 2i`1q, (1)
for all i P t0, . . . , a´ 1u and ki ` 1 ď j ď n.

Definition 2 (Construction D’ (check matrix)): Let a uni-
modular matrix rH be the check matrix of nested linear codes
C0 Ď C1 Ď ¨ ¨ ¨ Ď Ca “ Fn

2 . The dimension of Ci is ki.
Let D be a diagonal matrix with entries dj,j “ 2´i for
ki´1 ă j ď ki for i “ 0, 1, . . . , a where k´1 “ 0 and ka “ n.
Then the Construction D’ lattice is the set of all vectors x P Zn

satisfying: H ¨ x are integers, where H “ D ¨ rH is the lattice
check matrix.

If rH is unimodular, then the Construction D’ lattice Λ Ă
Zn. To see this, G “ H´1 “ rH´1 ¨ D´1. Since rH is
unimodular, rH´1 is integer. D´1 also is integer, thus G is
an integer matrix. As a matter of design, after rH0 to rHa´1

are fixed, the upper rows of rH should be chosen such that rH is
unimodular; it is also convenient to choose these upper rows
so that rH is ALT form. The two definitions are equivalent
if the congruence (1) is expressed: h1j ¨ x is an integer, for
h1j “ hj{2i`1 and x P Zn.

The volume-to-noise ratio (VNR) is conventionally used
while measuring error-correction performance of lattices, and
can be defined VNR “ V 2{npΛq{2πeσ2, where the volume
of an n-dimensional Construction D’ lattice is V pΛq “
2an´

řa´1
i“0 ki , so that VNR is the distance to the Poltyrev limit.

III. ENCODE AND DECODE CONSTRUCTION D’

Two equivalent encoding methods and a decoding algorithm
for Construction D’ lattices Λ are given in this section. The
encoding describes explicitly the mapping from bits to a lattice
point. The connection between a lattice point and the modulo-
value of lattice component (in short, a codeword of binary
code Ci) makes it possible to decode using an optimal decoder
of Ci. Encoding method A finds a lattice point of Λ using
its check matrix H. Encoding method B illustrates how bits
are mapped to integers, and accordingly lattice components

are produced by check matrix rH of nested linear codes. The
decoding algorithm is then given in Subsection III-C.

A. Encoding Method A
Near linear-time encoding of LDPC codes can be accom-

plished using check matrix in the ALT form [14]. This idea
inspired us to implement encoding of Construction D’ lattice
Λ with a similar procedure. The steps are distinct from [14]
because check matrix H of Λ is a real-valued square matrix.

Integers b are provided, and the corresponding lattice point
x is found by solving: H ¨ x “ b. If H is not too big, then
x can be found by matrix inversion: x “ H´1 ¨ b. If H is
large but is sparse and in the ALT form, as may be expected
for Construction D’ lattices based on LDPC codes, then the
following procedure can be used.

Suppose that H is in the ALT form, that is, it is partially
lower triangular. Specifically, H can be written as:

H “
„
B T
X C


(2)

where T is an s-by-s lower-triangular matrix with non-zero
elements on the diagonal; X is a g-by-g square matrix. The
"gap" is g—the smaller the gap, the easier the encoding. Let
∆ “ pX´CT´1Bq´1. The blockwise inverse of H is:

H´1 “
«

´∆CT´1 ∆

T´1 `T´1B∆CT´1 ´T´1B∆

ff
(3)

Using the block structure, H ¨ x “ b can be written as:

„
B T
X C


¨

»
——————–

x1...
xg
xg`1...
xn

fi
ffiffiffiffiffiffifl
“

»
——————–

b1...
bg
bg`1...
bn

fi
ffiffiffiffiffiffifl

(4)

To perform encoding, first x1, . . . , xg are found using (3):»
–
x1...
xg

fi
fl “ “´∆CT´1 ∆

‰ ¨ b. (5)

Then, coordinates xg`1, . . . , xn are found sequentially by
back-substitution, using the lower triangular structure. For
i “ g ` 1, . . . , n:

xi “ 1

hj,i

ˆ
bj ´

i´1ÿ

l“1

hj,lxl

˙
(6)

where j “ i´ g.
This method is efficient when g is small and H is sparse. It

uses pre-computation and storage of the g-by-g matrix in (5).
The sum in (6) is performed over non-zero terms, so few
terms appear for sparse H. If the parity-check matrix H is
purely triangular, then encoding is simply performed by back-
substitution.

B. Encoding Method B
Encoding can also be performed using information vectors

ui P Fki
2 of Ci for i “ 0, 1, . . . , a and ua “ z P Zn. In this

method, we show explicitly how ui and corresponding integers
b are related to a lattice point x.



For clarity, consider a “ 3. The integers b are related to
u0,u1,u2 and z as:

bj “ u0j
` 2u1j

` 4u2j
` 8zj for 1 ď j ď k0 (7)

bj “ u1j
` 2u2j

` 4zj for k0 ă j ď k1 (8)
bj “ u2j

` 2zj for k1 ă j ď k2 (9)
bj “ zj for k2 ă j ď n (10)

Let u1i be the zero-padded version of ui, to have n compo-
nents:

u1i “ rui1 , ui2 , . . . , uiki
, 0, . . . , 0loomoon

n´ki

st (11)

Then, the integer vector b is written as:
b “ D ¨ pu10 ` 2u11 ` 4u12 ` 8zq, (12)

where D is given Definition 2.
For Construction D’, the lattice point x may be decomposed

as:
x “ x0 ` 2x1 ` ¨ ¨ ¨ ` 2a´1xa´1 ` 2axa, (13)

with components xi depending on ui expressed below; xi are
not necessarily binary.

Now we describe how information bits are related to a lattice
point, and show that recovering integers from a lattice point
is possible. Using H ¨ x “ b, H “ D ¨ rH and (12)–(13) we
have

H ¨ x “ b (14)
rH ¨ x “ D´1 ¨ b (15)

rH ¨ px0 ` 2x1 ` ¨ ¨ ¨ ` 2axaq “ u10 ` 2u11 ` ¨ ¨ ¨ ` 2az (16)
and the lattice components xi P Zn satisfy:

rH ¨ xi “ u1i for i “ 0, . . . , a´ 1 and (17)
rH ¨ xa “ z (18)

Note that encoding performed using (17)–(18) is equivalent to
encoding method A in the previous subsection.

C. Decoding Construction D’

The multistage decoding for Construction D lattices first
introduced in [15] can produce an estimate of information bits
pui from a binary decoder of Ci, and the estimated component
pxi is obtained from pui by re-encoding pxi “ Gi ¨ pui [16].
An optimal decoder of Ci provides low complexity decoding.
Recently multistage decoding similar to [15] and [16] was
proposed for Construction D’ [9], including re-encoding steps
to compute the cosets using estimate of lattice component of
all previous levels.

We propose a multistage successive cancellation decoding
algorithm suitable for Construction D’ coding lattices to
be used with shaping lattices, likewise employing a binary
decoder Deci of Ci. The encoding and decoding scheme of
this paper is shown in Fig. 1, where encoding method B is to
demonstrate the validity of the decoding algorithm.

Proposition 1: For Construction D’, the lattice component
xi is congruent modulo 2 to a codeword rxi P Ci, for i “
0, . . . , a´ 1.

Proof: The lattice component xi satisfies rH ¨ xi “ u1i
and the codeword satisfies rHidrxi “ 0. Recall the last n´ki

CHANNEL

rH ¨ x0 “ u10 `u0 x0 1

rH ¨ x1 “ u11
u1 x1 2

rH ¨ xa´1 “ u1a´1

ua´1 xa´1 2
a´1

rH ¨ xa “ z
z xa 2a

`

w

x
mod˚ Dec0

pu10 “ rHd prx0

rH ¨ px0 “ pu10
y y0 y10 prx0 px0

` ´

Dec1mod˚
pu11 “ rHd prx1

rH ¨ px1 “ pu11

0.5

y1 y11 prx1 px1

` ´

Deca´1mod˚
pu1a´1 “ rHd prxa´1

rH ¨ pxa´1 “ pu1a´1

0.5

ya´1 y1a´1
prxa´1 pxa´1

` ´

t ¨ s

0.5

ya pxa

Fig. 1. Block diagram of proposed encoding and decoding Construc-
tion D’ lattices. mod˚ denotes the "triangle-function" mod˚pyiq “
|mod2pyi ` 1q ´ 1| where mod2 indicates a modulo-2 operation.

positions of u1i are 0s. Row l of rHi is equal to row l`ki of rH,
call this row hl. By definition, hl ¨xi “ 0 and hldrxi “ 0 for
l “ 1, 2, . . . , n´ki. Thus, xi mod 2 “ rxi and the proposition
holds.

Consider a lattice point x transmitted over a channel and
the received sequence is y0 “ x ` w, where w is noise.
Decoding proceeds recursively for i “ 0, 1, . . . , a ´ 1. The
decoding result at level i´1 is used before beginning decoding
at level i. Given y1i P r0, 1s, the decoder Deci produces a
binary codeword prxi closest to y1i, which is an estimate of rxi.
It is necessary to find pxi. If rxi is not systematic, first find pu1i “rHdprxi. Then re-encoding is performed to find pxi, that is, (17).
This estimated component pxi is subtracted from the input, and
this is divided over reals by 2: yi`1 “ pyi ´ pxiq{2 to form
yi`1, which is passed as input to the next level. This process
continues recursively, until ya is obtained. The integers are
estimated as pxa “ tyas. The estimated lattice point is written
as px “ px0 ` 2px1 ` ¨ ¨ ¨ ` 2apxa.

IV. DESIGN LDPC CODE LATTICES

Branco da Silva and Silva also addressed the design of
multilevel LDPC code lattices [9]. Using row operations on
the parity-check matrix H0 of the first level component code
C0, a parity-check matrix that has the desired row and column
degree distributions is obtained—the two check matrices both
describe C0. In our work, QC-LDPC codes are designed using
binary linear programming to guarantee that the necessary
supercode can be constructed, as well as to satisfy the column
and the row weight distribution.

A. Construction D’ Lattices Formed by QC-LDPC Codes

The parity-check matrix H0 is expressed as

H0 “

»
———–

Pp1,1 Pp1,2 ¨ ¨ ¨ Pp1,N

Pp2,1 Pp2,2 ¨ ¨ ¨ Pp2,N

...
...

. . .
...

PpM,1 PpM,2 ¨ ¨ ¨ PpM,N

fi
ffiffiffifl , (19)

where Ppi,j is a Z-by-Z matrix (or a circulant) corresponding
to the element pi,j of a prototype parity-check matrix. For
pi,j “ ´1, instead use the all-zeros matrix. For pi,j “ 0, P is



TABLE I
PROTOTYPE MATRIX OF H0 WITH CIRCULANT SIZE Z “ 96 AND BLOCK LENGTH n “ 2304. ˚ DENOTES A DOUBLE CIRCULANT.

-1 -1 53 -1 15 56 -1 -1 55 35 -1 8 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 26 -1 -1 51 -1 59 14 -1 16 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
18 -1 3 -1 -1 82 42 -1 33 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 30 73 53 -1 49 -1 -1 8 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 67 -1 15 84 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 82 0 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 71 83 34 -1 -1 -1 -1 -1 0 -1 -1 25 0 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 8 27 87 -1 -1 -1 0 -1 -1 -1 -1 59 0 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 91 -1 62 52 -1 -1 -1 0 -1 -1 6 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 11 5 17 -1 -1 0 -1 -1 -1 -1 12 0 -1 -1 -1
-1 -1 2 43 53 -1 -1 -1 -1 -1 -1 -1 -1 -1 73 -1 -1 -1 -1 -1 34 0 -1 -1
54 -1 26 -1 -1 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9 0 0
52 91 -1 -1 -1 -1 -1 -1 -1 38 -1 -1 13 -1 -1 -1 -1 -1 -1 -1 -1 -1 66{71˚ 0

TABLE II
PROTOTYPE MATRIX OF H1 WITH CIRCULANT SIZE Z “ 96 AND BLOCK LENGTH n “ 2304. ˚ DENOTES A DOUBLE CIRCULANT.

54 67 26 15 84 12 8 27 87 11 5 17 0 3 0 82 0 59 0 12 0 9 0 0
52 91 2 43 53 71 83 34 91 38 62 52 13 0 73 0 25 0 6 0 34 0 66{71˚ 0

an identity matrix. And P is a right-shift cyclic-permutation
matrix for an integer 0 ă pi,j ă Z indicating the shift amount.

This paper proposes two-level Construction D’ lattices
based on QC-LDPC codes. The first level component code
C0 has an M -by-N prototype parity-check matrix while the
second level component code C1 is a 2-by-N prototype parity-
check matrix. The code C0 has a design rate 1 ´M{N , and
C1 is a high-rate code—a column weight 2, row weight N
parity-check matrix is sufficient; column weight 2 was also
used in [13]. The code C0 is a subcode of C1 thus the prototype
matrix of C1 is a matrix obtained from linear combinations of
a C0 prototype submatrix. Binary linear codes C0 and C1, and
their parity-check matrices H0 and H1 are nested.

The parity-check matrix H1 does not provide good row and
column distributions if the rows were taken from H0, thus we
find H1 using linear combinations of rows in H0. Let the
set Aq be block rows of H0 such that their sum is a single
block row of weight N and column weight 1, for q “ 1, 2. In
addition, A1 and A2 are disjoint.

The parity-check matrix H1 can be expressed as

H1 “
„
H1

1

H1
2


, (20)

where H1
1 and H1

2 are the sum of block rows A1 and A2,
respectively:

H1
q “ à

kPAq

rPpk,1 Ppk,2 ¨ ¨ ¨ Ppk,N s, (21)

for q “ 1, 2. Accordingly, H1 is a QC-LDPC matrix with
column weight 2.

B. Binary Programming for Prototype Matrix Construction
To form a two-level Construction D’ lattice using QC-LDPC

codes, the two component binary codes are needed to satisfy
the properties given in the previous subsection. One part of
the design is to find the location of the non-zero circulants.

The goal is to design a matrix, given several constraints:
the subcode condition, row and column weight degree distri-

butions, and the matrix should be in the ALT form to enable
efficient encoding. Binary linear programming can be used
to satisfy these constraints to provide a desired prototype
matrix [17].

Set up the programming problem by writing the M ˆ N
matrix as

A “
»
–
a1,1 a1,2 ¨ ¨ ¨ a1,N

...
...

. . .
...

aM,1 aM,2 ¨ ¨ ¨ aM,N

fi
fl , (22)

where ai,j P t0, 1u is a binary variable and ai,j “ 1 indicates
a non-zero block. The row weights are r “ tr1, r2, ¨ ¨ ¨ rMu
and the column weights are c “ tc1, c2, ¨ ¨ ¨ cNu. There are M
row constraints and N column constraints:
Row i has weight ri ô ai,1 ` ¨ ¨ ¨ ` ai,N “ ri
Col j has weight cj ô a1,j ` ¨ ¨ ¨ ` aM,j “ cj

(23)

for i P t1, . . . ,Mu and j P t1, . . . , Nu. For one of the subcode
constraints, we want rows from Aq to sum to a single block
row with weight N , so we add a constraint for q “ 1, 2:

ÿ

iPAq

Nÿ

j“1

ai,j “ N (24)

Also, we want a constraint for the ALT form to force 1’s
along the offset-by-one diagonal with the constraint:

M´1ÿ

i“1

ai,N´M`1`i “M ´ 1, (25)

in addition to another constraint to force all-zeros above the
offset diagonal.

The goal is to find ai,j that satisfies the above conditions.
This goal can be expressed using the following binary linear
program:

min
ÿ

i

ÿ

j

ai,j (26)

subject to

K ¨ a “ “
r c N N M ´ 1 0

‰t
, (27)
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R “ 2.4167, E8 lattice shaping

R “ 3.4167, E8 lattice shaping

R “ 4.4167, E8 lattice shaping

R “ 2.4167, hypercube shaping

R “ 3.4167, hypercube shaping

R “ 4.4167, hypercube shaping

Fig. 2. Word error rate of shaping an n “ 2304-dimensional Construction D’
lattice (formed by QC-LDPC codes) using E8 lattice shaping and hypercube
shaping.

where K is a constraint matrix that includes all the constraints
described in (23)–(25) and a is the vectorized version of A.
Because this is a binary programming problem, for the set Aq ,
only one position will contain a 1 and the remaining |Aq| ´ 1
positions will contain 0, in any column. The implementation
of this optimization problem is easily solved using standard
optimization packages.

C. Resulting Design

Now we give a specific design of binary QC-LDPC codes C0

and C1 for 2-level Construction D’ lattices. The check matrices
H0 and H1 are designed such that: 1) C0 Ď C1 2) H0 and H1

are of full rank 3) H0 and H1 can be easily triangularized 4)
H0 and H1 have girth as high as possible.

To meet the design requirements, first we use the binary
linear programming in previous subsection to find a binary
matrix A (22) with M “ 12 rows and N “ 24 columns, using
degree distribution polynomials of variable nodes and check
nodes: λpxq “ 1

3x` 5
12x

2` 1
8x

3` 1
8x

5 and ρpxq “ 2
3x

5` 1
3x

6,
respectively, where λdx

d´1 and ρdx
d´1 means λd and ρd

are the fraction of nodes with degree d. This structure is a
modified version of [18, Table I]. The check matrix H1 is con-
structed (20) with A1 “ t5, 7, 9, 11u and A2 “ t6, 8, 10, 12u.
Using a circulant size Z “ 96, the prototype matrix as shown
in Table I can be generated by assigning pi,j “ ´1 for ai,j “ 0
and choosing the powers ´1 ă pi,j ă Z for ai,j “ 1 such
that H0 and H1 are free of 4-cycles and 6-cycles, where H0

can be constructed using (19). The resulting H1 lifted from
Table II has degree distribution polynomials λpXq “ X and
ρpXq “ X23. The designed QC-LDPC codes C0 and C1 are
of block length n “ 2304, with code rate k0{n “ 1{2 and
k1{n “ 11{12, respectively.

The check matrix H of an LDPC code lattice can be then
constructed from H0 and H1 using Definition 2. Note that we
did not use offset diagonal and we assigned a double circulant

39 39.5 40 40.5 41 41.5
10´5

10´4

10´3

10´2

10´1

100

Eb{N0, dB

W
or
d
E
rr
o
r
R
a
te

R “ 8.3090,Leech lattice shaping

R “ 8.2959, BW16 lattice shaping

R “ 8.2993, E8 lattice shaping

R “ 8.2993, hypercube shaping

Fig. 3. Word error rate of shaping the 2304-dimensional Construction D’
lattice using E8, BW16 and Leech lattice shaping. Hypercube shaping was
performed at a close code rate for comparison.

p1̊2,23 such that H0 and H1 can be easily triangularized. This
provides efficient encoding and indexing [11].

V. NUMERICAL RESULTS

The 2304-dimensional LDPC code lattice was evaluated
on the power-constrained AWGN channel. The transmitted
power can be reduced by Voronoi constellations using low-
dimensional lattices, E8, BW16 and Leech lattices are con-
sidered in this paper. The direct sum of scaled copies (by
a factor K) of a low-dimensional lattice produces a 2304-
dimensional shaping lattice Λs adapted to the proposed LDPC
code lattice Λc—K is chosen such that the two lattices satisfy
Λs Ď Λc, and thus form a nested lattice code to be used
with dithering and MMSE scaling [2]. For more details about
shaping high-dimensional Λc using low-dimensional lattices,
see [5], [6]. Rectangular encoding and its inverse indexing
can be efficiently implemented [11]. By choosing various
K we generated a variety of nested lattice codes with code
rate R. For comparison, hypercube shaping was performed
where lattice points were transformed into a hypercube B “
t0, 1, . . . , L´1un for an even integer L. The belief propagation
decoder of LDPC codes ran maximum 50 iterations.

The same code rate for both E8 lattice shaping and hy-
percube shaping can be easily achieved. The word error
rate using KE8

“ L “ 8, 16, 32 is shown in Fig. 2 as a
function of Eb{N0 “ SNR{2R with conventional signal-to-
noise ratio (SNR), suggesting a shaping gain of 0.65 dB. Let
KBW16 “ 280

?
2 and KLeech “ 168

?
8, then BW16 and

Leech lattice shaping produce code rate approximately 8.2959
and 8.3090, respectively, close to R “ 8.2993 of choosing
KE8

“ L “ 472. Numerical results are given in Fig. 3. If we
take account of the code rate differences, a 0.65 dB, 0.86 dB
and 1.03 dB shaping gain is preserved respectively, as the full
shaping gain of E8, BW16 and Leech lattices.
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