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Abstract—Compound channel models offer a simple and
straightforward way of analyzing the stability of decoder design
under model variations. With this work we provide a coding
theorem for a large class of practically relevant compound
channel models. We give explicit formulas for the cases of the
Gaussian classical-quantum compound channels with unknown
noise, unknown phase and unknown attenuation. We show
analytically how the classical compound channel capacity formula
motivates nontrivial choices of the displacement parameter of
the Kennedy receiver. Our work demonstrates the value of the
compound channel model as a method for the design of receivers
in quantum communication.

I. INTRODUCTION

Compound channels model transmission over a noisy com-
munication line when the noise level is not known prior to
transmission, but rather only guaranteed to lie within some
region. This communication model is thus closer to application
than the typical i.i.d. model. A typical strategy to resolve
the uncertainty in this setting is for the sender to transmit
pilot symbols, in which case the receiver is able to estimate
the channel parameter. However, this strategy only affects the
capacity in case that the sender knows the exact noise level
in advance, or else there is a feedback loop from sender to
receiver. While this lets the model appear as a suitable tool
for optimization of real-world communication systems, the
current literature on compound quantum channel has so far
not considered infinite-dimensional systems, and this omission
led to a lack of applicability of the model. With this work
we take a first step to closing this gap, by providing several
explicit capacity formulas for classical-quantum channels with
unknown Gaussian noise, unknown phase shift, and unknown
attenuation level, which model typical noise effects in fiber-
optical and free-space communication [6, 13, 16].

Moreover, we apply the theory of classical compound
channels to the optimization of a Kennedy receiver when
applied to a classical-quantum compound attenuation channel,
thereby promoting the application of the theory to receiver
design for quantum communication systems.
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A. RELATED WORK

The study of compound channels can be traced back to the
work of Blackwell, Breiman and Thomasian [4]. A full coding
theorem for finite-dimensional classical-quantum compound
channels was obtained independently in [2] and in [10]. The
technical foundations of this work are the direct coding theorem
as proven in [3], the converse for the averaged channel as in
[5], and the approximation tools as presented in [20], which
have already been applied successfully for the derivation of
coding theorems for memoryless channels in [14].

II. NOTATION

The set indexing the signal states is written as X if finite
and as X if infinite. Likewise, S and S denote finite and
infinite sets of channel states. Hilbert spaces are denoted as
H , their dimensions as dimH . Throughout, they are assumed
to be separable. The set of probability measures on a set
A is written P(A), the set of states on H is P(H). We
denote by P 𝑓 (A) the set of distributions with 𝑝(𝑎) > 0
for a finite set of points. The trace of an operator 𝐴 on H
is denoted 𝑡𝑟 (𝐴), the scalar product of 𝑥, 𝑦 ∈ H as 〈𝑥, 𝑦〉.
The logarithm log is taken with respect to base two, and the
entropy of 𝜌 ∈ P(H) or 𝑝 ∈ P(A) is then written as 𝐻 (𝜌) :=
−𝑡𝑟 (𝜌 log 𝜌) or 𝐻 (𝑝) := −∑

𝑎∈A 𝑝(𝑎) log 𝑝(𝑎). The binary
entropy is ℎ : [0, 1] → [0, 1]. Classical-quantum channels will
be denoted as N . The set of all such channels, with input set
X and output space H , is 𝐶 (X,H). The set of all classical
channels with given input alphabet X and output alphabet Y
is denoted 𝐶 (X,Y). The Holevo quantity of a distribution
𝑝 ∈ P(X) and classical-quantum channel N ∈ 𝐶 (X,H) is
𝜒(𝑝,N) = 𝐻 (

∫
𝑝(𝑥)N (𝑥)𝑑𝑥) −

∫
𝑝(𝑥)𝐻 (N (𝑥))𝑑𝑥. The one-

norm is denoted as ‖·‖1. For our analysis of the Dolinar receiver
we make use of the Frobenius norm ‖ · ‖𝐹 . For 𝑎 ∈ [0, 1]
we abbreviate 1 − 𝑎 as 𝑎′. For a Hamiltonian H on H , and
𝐸 ∈ R, we let PH,𝐸 := {𝜌 : 𝑡𝑟 (𝜌H) ≤ 𝐸}. The relative entropy
of 𝜌, 𝜎 ∈ P(H) is 𝐷 (𝜌‖𝜎).

III. DEFINITIONS

A classical-quantum compound channel is any set N =

{N𝑠}𝑠∈S of channels where N𝑠 ∈ 𝐶 (X,H) for every 𝑠 ∈ S.
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Definition 1 ((𝑛, _) Code): An (𝑛, _) code C for the com-
pound channel N consists of a finite collection {𝑥𝑚}𝑀𝑚=1 ⊂ X𝑛

of signals and a POVM {𝐷𝑚}𝑀𝑚=1. If the success probability

𝑝success (C) := inf
𝑠∈S

1
𝑀

𝑀∑︁
𝑚=1

𝑡𝑟 (𝐷𝑚N ⊗𝑛
𝑠 (𝑥𝑚)) (1)

of C satisfies 𝑝𝑠 (C) ≥ 1 − _, it is called an (𝑛, _) code. If
each 𝑥𝑖 is constrained to lie inside a set R ⊂ X, then C is said
to obey state constraint R.

Definition 2 (Achievable Rates, Capacity): A rate 𝑅 ≥ 0 is
called achievable for the classical-quantum compound channel
N under state constraint R if there exists a sequence (C𝑛)𝑛∈N
of (𝑛, _𝑛) codes, obeying the state constraint R, such that both
_𝑛 → 0 and lim sup𝑛→∞

1
𝑛

log 𝑀𝑛 ≥ 𝑅.
The message transmission capacity of N under average error

criterion is defined as the supremum over all rates that are
achievable for N . It is denoted as 𝐶 (N) here for brevity.
The following definition is an important ingredient to our
analysis, which depends to a large degree on tools developed
for finite-dimensional quantum channels:

Definition 3 (Effective Dimension): Let Y > 0. A compound
channel N is said to have effective dimension efd(𝜖) ∈ N with
respect to a constraint R ⊂ X if there exists a projector P s.t.

∀𝑠 ∈ S, 𝑥 ∈ R : 𝑡𝑟 (𝑃N𝑠 (𝑥)) ≥ 1 − 𝜖 ∧ 𝑡𝑟 (𝑃) ≤ efd(Y). (2)

IV. RESULTS

Before listing our results, we cite here one of our main
technical tools, which asserts the continuity of the entropy on
energy shells PH,𝐸 . Since our main focus is the derivation of
capacity formulas for models of potential practical interest, we
can assume our communication systems as equipped with a
Hamiltonian H describing the dynamics of the output system.
Throughout, we will assume that the Hamiltonian obeys the
Gibbs hypothesis, which, for brevity, we note down here
together with an important consequence:

Lemma 4 ([20, Gibbs Hypothesis; Lemma 15]): If
𝑡𝑟 (exp{−𝛽H}) < ∞ for all 𝛽 > 0 and max{𝑡𝑟 (𝜌H), 𝑡𝑟 (𝜎H)} ≤
𝐸 for some 𝐸 > 0 then ‖𝜌 − 𝜎‖1 ≤ Y implies |𝐻 (𝜌) −
𝐻 (𝜎) | < Y𝐶 (Y,H, 𝐸) + ℎ(Y) for a function 𝐶 satisfying
limY→0 Y𝐶 (Y,H, 𝐸) = 0.
If H satisfies the Gibbs hypothesis, a multitude of techniques
for finite-dimensional systems carries over [14], which lets us
prove the following statement:

Theorem 5: Let N := {N𝑠}𝑠∈S ⊂ 𝐶 (X,H) be a compound
channel. Let the constraint 𝑥 ∈ R be imposed on all signals 𝑥,
where R ⊂ X such that efd(𝑘−2) ∈ O(𝑘2−1−Y) for some Y > 0.
Let sup𝑠∈S sup𝑥∈R 𝑡𝑟 (HN𝑠 (𝑥)) ≤ 𝐸out for some 𝐸out ∈ R. The
capacity of N is given by

𝐶 (N) = sup
𝑝∈PR (X)

inf
𝑠∈S

𝜒(𝑝;N𝑠) (3)

where PR (X) := {𝑝 ∈ P 𝑓 (X) : 𝐴 ∩ R = ∅ ⇒ 𝑝(𝐴) = 0}.
Remark 6: In our examples, we will use the Hamiltonian

H =
∑∞

𝑛=0 𝑛 · |𝑛〉〈𝑛|, where |𝑛〉 are the photon number states.
We can apply the above results to a variety of channels of

practical interest:

Theorem 7 (Unknown Gaussian Noise): Let X = C and S =

{𝜎 : 𝜎 ∈ [𝐴, 𝐵]} for some 0 ≤ 𝐴 ≤ 𝐵. Let N := {N𝜎}𝜎∈S
be a compound channel, where for each 𝜎

N𝜎 (𝛼) =
1
𝜎𝜋

∫
exp

{
− |𝑧 − 𝛼 |2

𝜎

}
|𝑧〉〈𝑧 |𝑑𝑧 (4)

is a Gaussian channel as in [11, equation (82)]. Let R := {𝛼 :
|𝛼 |2 ≤ 𝐸} be the energy constraint on the input states for some
𝐸 > 0. The capacity of N is then given by

𝐶 (N) = 𝑔(𝐵 + 𝐸) − 𝑔(𝐵). (5)

Theorem 8 (Unknown Phase): Let X = C and S = {exp{i\} :
\ ∈ [0, 2𝜋)}. Let for some 𝜎 > 0

N𝑠 (𝛼) =
1
𝜎𝜋

∫
exp

{
− |𝑧 − 𝑠𝛼 |2

𝜎

}
|𝑧〉〈𝑧 |𝑑𝑧. (6)

The capacity of N is given by

𝐶 (N) = 𝑔(𝜎 + 𝐸) − 𝑔(𝜎). (7)

Theorem 9 (Unknown Attenuation): Let X = C and S =

[𝐴, 𝐵] with 𝐴 ≥ 0. Let for some 𝜎 > 0

N𝑠 (𝛼) =
1
𝜎𝜋

∫
exp

{
− |𝑧 −

√
𝑠𝛼 |2

𝜎

}
|𝑧〉〈𝑧 |𝑑𝑧, (8)

or for 𝜎 = 0, N𝑠 (𝛼) = |
√
𝑠𝛼〉. The capacity of N is given by

𝐶 (N) = 𝑔(𝜎 + 𝐴 · 𝐸) − 𝑔(𝜎), (9)

Our approach to proving these statements rests on two pillars.
First, we employ the proof of the classical-quantum compound
channel coding theorem as in [3], which gives error bounds
that do not depend on any particular state.

The proofs in [3] make use of the method of types, and
thereby the dimension of the involved systems enters in the form
of estimates using e.g. that 𝑑2 log(𝑘)

𝑘
→ 0 as 𝑘 → ∞. Using our

requirements on the effective system dimensions 𝑑 (𝑘), we are
able to guarantee, in such cases, that e.g. lim𝑘→∞

𝑑 (𝑘)2 log(𝑘)
𝑘

=

0. The corresponding proofs can be found in the Appendix. As
our examples in Theorems 7 - 9 show, the requirements are
satisfied in many situations of potential practical interest. The
second important ingredient is the continuity of the entropy
on the sets PH,𝐸 [18] with respect to the trace norm, in the
explicit form as given in [20] which, in technical terms, is the
replacement of the Fannes-Audenaert inequality [1, 8].

To prove the explicit formulas, we require corresponding
bounds on the effective dimensions. A straightforward way
of getting an idea of the effective dimensions for a Gaussian
system is to look at effective dimensions needed to cover the
statistics of Gaussian states:

Lemma 10: There is a sequence (𝑃𝑁 )𝑁 ∈N of projectors such
that for every coherent state |𝛼〉 it holds

𝑡𝑟 (𝑃𝑁 |𝛼〉〈𝛼 |) ≥ 1 − 2 exp
(
−|𝛼 |2

) |𝛼 |2𝑁
𝑁!

(10)

𝑡𝑟 (𝑃𝑁 ) = 𝑁 (11)

Motivated by this promising estimate, we then proceed to prove
a tail bound for a Gaussian distribution on the complex plane:



Lemma 11: Let 𝐶𝐸′ := {𝑧 : |𝑧 |2 ≤ 𝐸 ′}{ and |𝛼 |2 ≤ 𝐸 . For
every 𝐸 ′ > 0 we have

1
𝜋𝜎

∫
𝐶𝐸+𝐸′

exp
{
− |𝛼−𝑧 |2

𝜎

}
𝑑𝑧 ≤ 𝑒−

𝐸′
𝜎 (12)

Where { indicates the complementary set. In particular, the
probability of finding a coherent state 𝑧 with |𝑧 |2 > 𝐸 + 𝐸 ′

at the output of channel (4), upon input of a coherent state 𝛼

with |𝛼 |2 ≤ 𝐸 , is upper bounded by exp(−𝐸 ′/𝜎).

Remark 12: Using the version
√

2𝜋𝑒𝑥𝑝{−𝑛}𝑛𝑛+
1
2 ≤ 𝑛! of

Stirling’s formula, the inequality 𝑒−𝑥 < 1 (if 𝑥 > 0), the
estimate 2 <

√
6 <

√
2𝜋 and the assumption |𝛼 |2 ≤ 𝐸 , we can

transform the lower bound on 𝑡𝑟 (𝑃𝑁 |𝛼〉〈𝛼 |) into

𝑡𝑟 (𝑃𝑁 |𝛼〉〈𝛼 |) ≥ 1 − exp{𝑁 (1 + log 𝐸) − 𝑁 log 𝑁}. (13)

There is an 𝑁 (𝐸) ∈ N such that log 𝑁 (𝐸) ≥ 1 + (1 + log 𝐸),
and thus for all 𝑁 ∈ N satisfying 𝑁 ≥ 𝑁 (𝐸) we have

𝑡𝑟 (𝑃𝑁 |𝛼〉〈𝛼 |) ≥ 1 − exp{−𝑁}. (14)

Lemma 10, Lemma 11 and Remark 12, can be combined to
give a formula of the effective dimension for each of the three
channels in Theorems 7, 8, 9: For every 𝛼 with |𝛼 |2 ≤ 𝐸 we
get, with 𝐸 ′ > 0 and 𝑁 ≥ 2 + log(𝐸 + 𝐸 ′),

𝑡𝑟 (𝑃𝑁N𝜎 (𝛼))

=𝑡𝑟

(
𝑃𝑁

1
𝜎𝜋

∫
𝐶𝐸+𝐸′

exp
{
− |𝛼−𝑧 |2

𝜎

}
|𝑧〉〈𝑧 |𝑑𝑧

)
(15)

+ 1
𝜎𝜋

𝑡𝑟

(
𝑃𝑁

∫
𝐶
{
𝐸+𝐸′

exp
{
− |𝛼−𝑧 |2

𝜎

}
|𝑧〉〈𝑧 |𝑑𝑧

)
(16)

≥ 1
𝜎𝜋

∫
𝐶
{
𝐸+𝐸′

exp
{
− |𝛼−𝑧 |2

𝜎

}
𝑑𝑧 · min

𝑧∈𝐶{
𝐸+𝐸′

〈𝑧, 𝑃𝑁 𝑧〉 (17)

≥
(
1 − exp

{
−𝐸 ′

𝜎

})
(1 − exp{−𝑁}) . (18)

If we choose 𝐸 ′(𝑁) = 𝜎𝑁 then there is an 𝑁 ′(𝐸) such that
for all 𝑁 ≥ 𝑁 ′(𝐸) we get

𝑡𝑟 (𝑃𝑁N𝜎 (𝛼)) ≥ 1 − 2 exp{−𝑁}. (19)

If we consider a block-length of 𝑘 and let 𝑁 (𝑘) = 𝑐𝑑 log(𝑘) for
some 𝑐𝑑 > 0 we therefore get 𝑡𝑟 (𝑃𝑁 (𝑘)N𝑠 (𝛼)) ≥ 1 − 2 · 𝑘−𝑐𝑑 ,
uniformly for all 𝛼 satisfying |𝛼 |2 ≤ 𝐸 .

Remark 13: While these estimates are of a simple form,
they already cover a large class of channels of practical
interest. Interestingly, they are far from the expected worst-
case behaviour, which can be estimated as follows: Let 𝜌

be diagonal in the number state basis, with eigenvalues
_𝑛 = 𝑐/𝑛−3 for some suitable 𝑐 > 0. Then the energy of
𝜌 for H =

∑
𝑖 𝑖 |𝑖〉〈𝑖 | is 𝑡𝑟 (𝜌H) =

∑
𝑖 𝑐 · 𝑖−2 < ∞. However,∑∞

𝑛=𝑁 𝑐/𝑛−3 scales approximately as O(𝑁−2), thus we only
get 𝑡𝑟 (𝑃𝑁 𝜌) ≥ 1 − 1/𝑁2, an accuracy of approximation that
is not sufficient for our techniques.

To derive Theorem 7 from Theorem 5 we require the following
additional information: The set R := {𝛼 : |𝛼 |2 ≤ 𝐸} is closed
and convex. Each state 𝛼 has expected energy 〈𝛼,H𝛼〉 = |𝛼 |2.

The expected output energy of a channel N𝜎 is therefore

𝑡𝑟 (N𝜎 (𝛼)H) = 𝜎 + |𝛼 |2 (20)
≤ 𝜎 + 𝐸. (21)

Thus 𝐸out = 𝐸 + 𝐵 for this channel. The optimal input
distribution for the Gaussian channel is independent of 𝜎

(see [11, Equation (91)] and therefore, since the capacity of
the Gaussian channel is monotonically decreasing with 𝜎, we
get

𝐶 (N) ≥ 𝑔(𝐵 + 𝐸) − 𝑔(𝐵). (22)

Obviously the reverse inequality holds as well, so that Theorem
7 is proven. To derive Theorem 8 from Theorem 5 we note
that the map |𝛼〉 → | exp{i\}𝛼〉 is unitary. Thus for each \,
choosing the optimal distribution [11, Equation (91)], yields a
capacity

𝐶 (N) = 𝑔(𝜎 + 𝐸) − 𝑔(𝜎). (23)

Since the optimal distribution does not depend on \, the
compound channel capacity of N equals 𝑔(𝜎 + 𝐸) − 𝑔(𝜎).
To derive Theorem 9 from Theorem 5 we choose again the
optimal distribution [11, Equation (91)] for the Gaussian
channel. Energy bounds carry over as well. For every single
attenuation channel, using this distribution effectively translates
the problem into a transmission under energy constraint [𝐸 so
that one can show

𝐶 (N[) ≥ 𝑔(𝜎 + [𝐸) − 𝑔(𝜎). (24)

Since 𝑥 → 𝑔(𝑥) is monotonously increasing (see e.g. [11,
Equation (85)]) we see that

𝐶 (N) = 𝑔(𝜎 + 𝐴 · 𝐸) − 𝑔(𝜎). (25)

The same input distribution is optimal for any pure attenuation
channel [9], so that the results of Theorem 9 apply also to the
case 𝜎 = 0.

V. PROOFS

Proof of Lemma 11:∫
𝐶𝐸+𝐸′

exp
{
− |𝛼−𝑧 |2

𝜎

}
𝑑𝑧

𝜋𝜎
≤ 1

𝜋𝜎

∫
𝐶𝐸′

exp
{
− |𝑧 |2

𝜎

}
𝑑𝑧 (26)

=
1
𝜋𝜎

∫
𝑟2>𝐸′

exp
{
−𝑟

2

𝜎

}
𝑟𝑑\𝑑𝑟 (27)

=
1
𝜎

∫ ∞

𝐸′
𝑒−

𝑥
𝜎 𝑑𝑥 = 𝑒−𝐸

′/𝜎 . (28)

Proof of Lemma 10: Let |𝑛〉 be the photon-number
states. Then any coherent state can be written as |𝛼〉 =

exp
(
−|𝛼 |2/2

) ∑∞
𝑛=0

𝛼𝑛
√
𝑛!
|𝑛〉. Define 𝑃𝑁 :=

∑𝑁−1
𝑛=0 |𝑛〉〈𝑛|, then

if |𝛼 |2 ≤ 𝑁+1
2 we have

𝑡𝑟 (𝑃𝑁 |𝛼〉〈𝛼 |) = 1 − exp
(
−|𝛼 |2

) ∞∑︁
𝑛=𝑁

( |𝛼 |2)𝑛
𝑛!

(29)

≥ 1 − exp
(
−|𝛼 |2

)
2
|𝛼 |2𝑁
𝑁!

. (30)



Thus the inequality is proven. The equality follows by definition
of 𝑃𝑁 .

Direct Part of Theorem 5: Let Y > 0, 𝑘 ∈ N and efd(Y)
be the effective dimension of H . Define for each 𝑠 ∈ S

N𝑠,Y (𝛼) := 𝑃YN𝑠 (𝛼)𝑃Y + 𝑡𝑟 (𝑃⊥
Y N𝑠 (𝛼))

𝑡𝑟 (𝑃Y ) 𝑃Y (31)

and let C𝑘 be a (𝑘, _) code for N𝑠, 𝜖 . Define 𝑟 (𝛼) :=
𝑡𝑟 (𝑃⊥

YN𝑠 (𝛼)). By assumption, 𝑟 (𝛼) ≤ Y. Setting N⊥
𝑠,Y (𝑥) :=

𝑡𝑟 (𝑃⊥
Y N𝑠 (𝛼))

𝑡𝑟 (𝑃Y ) 𝑃Y we’ll derive a bound on the error of this code
when used for N instead as follows:

𝑝success (C𝑘 ) ≥
1
𝑀

𝑀∑︁
𝑚=1

𝑡𝑟 ((N𝑠,Y − N⊥
𝑠,Y)⊗𝑘 (𝑥𝑘𝑚)𝐷𝑚) (32)

≥
𝑀∑︁
𝑚=1

𝑡𝑟 (N ⊗𝑘
𝑠,Y (𝑥𝑘𝑚)𝐷𝑚)

𝑀
− Y (33)

≥ 1 − _𝑘 − Y. (34)

Thus, if (Y𝑘 )𝑘∈N satisfies lim𝑘→∞ Y𝑘 = 0 and (C𝑘 )𝑘∈N is a
sequence of codes - where each C𝑘 is a (𝑘, _𝑘 ) code for N𝑠,Y𝑘

- the sequence is automatically a sequence of codes for N𝑠 , at
the same rate. In the remainder of this proof, the dependence
of _𝑘 on 𝑑 will be of vital importance. Let us consider the
random code as described in [3]. It holds

Lemma 14 ([3, Lemma 1]): Let {N𝑠}𝑠∈S be a compound
channel and 𝑝 ∈ P(X). Define p :=

∑
𝑥 𝑝(𝑥) |𝑒𝑥〉〈𝑒𝑥 |,

𝜌𝑘 :=
1
|S|

∑︁
𝑠

∑︁
𝑥𝑘

𝑝⊗𝑘 (𝑥𝑘 ) |𝑒𝑥𝑘 〉〈𝑒𝑥𝑘 | ⊗ N ⊗𝑘
𝑠 (𝑥𝑘 ) (35)

𝜎𝑘 :=
1
|S|

∑︁
𝑠

p⊗𝑘 ⊗
∑︁
𝑥𝑘

𝑝⊗𝑘 (𝑥𝑘 )N ⊗𝑘
𝑠 (𝑥𝑘 ). (36)

If there is a projector 𝑞𝑘 such that

𝑡𝑟 (𝑞𝑘 𝜌𝑘 ) ≥ 1 − _, 𝑡𝑟 (𝑞𝑘𝜎𝑘 ) ≤ 2−𝑘 ·𝑎 (37)

then for any 𝛾, with 0 < 𝛾 ≤ 𝑎, there is a code with 𝑀 =

d2𝑘 (𝑎−𝛾)e and

1
𝑀

𝑀∑︁
𝑚=1

𝑡𝑟 (N𝑠 (𝑥𝑘𝑚) (1 − 𝐷𝑚)) ≤ |S| (2 · _ + 4 · 2−𝑘𝛾) (38)

Lemma 15: For every 𝛿 > 0 and 𝑝 ∈ P(X) there is a 𝑐

such that, for every large enough 𝑘 , there is a projector 𝑞𝑘
satisfying

𝑡𝑟 (𝑞𝑘 𝜌𝑘 ) ≥ 1 − |S| · 2−𝑘 ·�̃� , 𝑡𝑟 (𝑞𝑘𝜎𝑘 ) ≤ 2−𝑘 · (𝑎−𝛿) , (39)

where 𝑎 := min𝑠∈S 𝐷 (𝜌𝑠,1‖p ⊗ 𝜎𝑠,1) = min𝑠∈S 𝜒(𝑝,N𝑠).
Critical parameters of the proof in [3] are the 𝑤(𝑘), where
𝑤(𝑘) := 𝑑2

𝑘
log(𝑘 + 1), as introduced in [3, (63)], has now an

additional dependency on 𝑘 through 𝑑 = efd(Y). The estimate
[3, (74)] translates to our setting as

𝑓 ′𝑘,a𝑘 (0) ≤ − 𝛿
2 + 1

𝑘
log |S| (40)

and is valid as long as a𝑘 satisfies 2a𝑘 log efd Y
2a𝑘 < 𝛿/2 (see [3],

below (74)). Choosing a𝑘 = 1
22−𝑐1 ·𝑘 for arbitrary 𝑐1 > 0 the

latter inequality transforms to

2−𝑐1 ·𝑘 (log(efd(Y)) + 𝑐1 · 𝑘) < 𝛿
2 , (41)

which holds true whenever efd(Y) scales slow enough with 𝑘

(as in the requirement of Theorem 5) and 𝑘 is chosen large
enough.

Thus there is an 𝑠′ > 0 and a 𝑘1 = 𝑘1 (𝛿, |S|) ∈ N such
that 𝑓𝑘,a𝑘 (𝑠) < 0 for all 𝑠 ∈ (0, 𝑠′). Letting 𝑠′ be the number
achieving min𝑠 𝑓𝑘,a𝑘 (𝑠) we get, with 𝑐2 := − 𝑓𝑘,a𝑘 (𝑠′) > 0, the
estimate

𝑡𝑟 (𝑞𝑘 𝜌𝑘 ) ≥ 1 − exp{−𝑘 (𝑐2 + 𝑤(𝑘))} (42)

Thus whenever lim𝑘→∞ 𝑤(𝑘) = 0 holds, we have proven a
direct coding theorem.

Thus, lim𝑘→∞ max𝑝∈P(X) min𝑠∈S 𝜒(𝑝;N𝑠,Y𝑘 ) is achievable
under our assumptions. It remains to show that this value
converges to the proposed one for Y𝑘 → 0. Our argument
rests on the continuity of entropy on the sets PH,𝐸 [18] in
the concrete form given in Lemma 4. This result was already
used successfully for proving coding theorems in [14, 15]. The
bound on |𝑆(𝜌) − 𝑆(𝜎) | does not depend on 𝜌 or 𝜎 explicitly.
All signal states obey 𝑡𝑟 (N𝑠 (𝑥)H) ≤ 𝐸out by assumption. For
every 𝜌, its modified finite-dimensional approximation 𝜌Y :=
𝑃Y𝜌𝑃Y + (1 − 𝑡𝑟 (𝑃Y𝜌))𝜋Y obviously satisfies

𝑡𝑟 (H𝜌Y) ≤ 𝑡𝑟 (H𝜌) ≤ 𝐸out. (43)

Thus if limY→0 ‖𝜌Y − 𝜌‖1 = 0 then also limY→0 𝑆(𝜌Y) = 𝑆(𝜌).
That ‖𝜌Y − 𝜌‖1 → 0 follows from the triangle inequality and
the gentle measurement lemma [19]. Thus

|𝜒(𝑝;N𝑠,Y𝑘 ) − 𝜒(𝑝;N𝑠) | ≤ 2(Y𝐶 (Y𝑘 ,H, 𝐸) + ℎ(Y𝑘 )) (44)

for every distribution 𝑝 ∈ P 𝑓 (X). As a consequence, for every
finite subset X ⊂ R we have

𝐶 (N) ≥ max
𝑝∈P(X)

min
𝑠∈S

𝐼 (𝑝;N𝑠). (45)

To prove the corresponding statement for general S and
arbitrary X ⊂ X we cover S with a discrete net which scales
as |S𝛼 | ≤ ( 6

𝛼
)2 |X | efd(Y𝑘 )2

and delivers, for every 𝑠 ∈ S and
𝑥𝑘 ∈ X𝑘 , an 𝑠′ ∈ S𝛼 such that ‖N𝑠 (𝑥𝑘 )⊗𝑘 − N𝑠′ (𝑥𝑘 )⊗𝑘 ‖1 ≤
2 · 𝑘 · 𝛼 [3, Lemma 6]. We pick 𝛼𝑘 = 𝑘−2. Then any code for
the finite compound is asymptotically optimal for the infinite
one as well. Moreover, in the particular case treated here,

|S𝛼𝑘
| · 2−�̃� ·𝑘 ≤ (6𝑘)4 |X | efd(Y𝑘 )2

2−�̃� ·𝑘 (46)

and thus for every 𝛿 > 0, finite set X ⊂ X of signals and
distribution p over the signals, lim𝑘→∞ inf𝑠∈S1/𝑘2 𝜒(𝑝;N𝑠,Y𝑘 ) −
𝛿 can be achieved. By the same continuity arguments as above,
this implies Theorem 5.

Converse Part of Theorem 5: If (C𝑘 )𝑘∈N is a sequence
of codes for N achieving rate 𝑅 > 0 then the sequence
(C′

𝑘
)𝑘∈N obtained by adjusting all POVM elements 𝐷𝑘

𝑚 of C𝑘

as 𝐷
(𝑘)
𝑚 → 𝑃𝑁 (𝑘)𝐷

(𝑘)
𝑚 𝑃𝑁 (𝑘) (where 𝑁 (𝑘) is chosen such that

the approximation parameter Y𝑘 = 𝑘−2 in 31) achieves the same
rate 𝑅 for {N𝑠,𝑘−2 }𝑠∈S as in (31). After discrete approximation
[3, Lemma 6] of P(𝑠𝑢𝑝𝑝(𝑃𝑁 (𝑘) )) the converse proof of [3]
applies, with 𝑑 replaced by efd(𝑘−2) and with alphabets X𝑘

of size |X𝑘 | ∈ O(𝑘efd(𝑘−2)2 ). The dependence of our approach
on efd(𝑘−2) can be picked up from the converse in [19]. Since
by assumption efd(𝑘−2) ∈ O(𝑘2−1+𝜏) for some 𝜏 > 0, Lemma
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Fig. 1. Figure 1: Numerical Estimates on Single Channel Capacities and on
Compound Channel Capacity for 𝑎 = 200 and Y = Y (𝑎) ≈ 0.996.

4) lets us prove that 𝑅 ≤ sup𝑝∈PR inf𝑠∈S 𝜒(𝑝;N𝑠).

VI. APPLICATION: KENNEDY RECEIVER PERFORMANCE
UNDER COMPOUND LOSS

Here we consider the rate attained by a simple receiver on
a compound lossy channel with coherent-state input. We let
Y ∈ (0, 1) and N = {N[}[∈S, with S = {Y, 1}, be a compound
channel consisting of pure loss channels

N[ : |𝛼〉 ↦→
��√[𝛼〉

. (47)

The Kennedy receiver [12] is a standard receiver for the
discrimination of two coherent states 𝛼𝑥 := 𝑎(−1)𝑥 , with
𝑎 ∈ R and 𝑥 = {0, 1}. It employs a displacement operation
|𝛼〉 ↦→ |𝛼 − 𝛽〉, where 𝛽 = 𝑏 ∈ R if 𝛼 ∈ R without loss
of generality, and a threshold photodetector, represented by
a quantum measurement {|0〉 〈0| , 1 − |0〉 〈0|}. This receiver,
optimized over 𝑏, beats the homodyne receiver for 𝑎 & 0.2 [17]
and has an adaptive refinement, the Dolinar receiver [7],
which asymptotically attains the minimum error probability for
discrimination.

We now show that naively optimizing the Kenneday receiver
for the worst channel (NY in this case) is not optimal. We
employ the binary alphabet {(𝛼𝑥 ; 𝑝𝑥)}𝑥=0,1 at the sender side to
communicate over N and a Kennedy receiver with displacement
𝑏 at the receiver side. The induced classical channel has output
𝑦 ∈ {0, 1} and transition function defined by

𝑝[,𝑏 (0|𝑥) = 𝑒−(𝑏−
√
[𝛼𝑥 )2

, 𝑝[,𝑏 (1|𝑥) = 1 − 𝑝[,𝑏 (0|𝑥). (48)

Our strategy of proof is to send signals at high energy, such
that we become able to produce analytical estimates on the
capacity of 𝑝[,𝑏 . Let 𝛿 > 0, 𝑎 ∈ R and Y ∈ (0, 1). Set 𝑏 =

√
Y𝑎.

We explain below how this choice of 𝑏 is both almost-optimal
for NY at high power levels 𝑎 and yet highly non-optimal for
the compound channel N . With our choice of 𝑏 it holds

𝑝Y,𝑏 (0|0) = 1, 𝑝Y,𝑏 (0|1) = 𝑒−4Y ·𝑎2
(49)

𝑝1,𝑏 (0|0) = 𝑒−𝑎
2 (
√
Y−1)2

, 𝑝1,𝑏 (0|1) = 𝑒−𝑎
2 (
√
Y+1)2

. (50)

Define, for every 𝑝 ∈ [0, 1], 𝑤𝑝 ∈ 𝐶 ({0, 1}, {0, 1}) by

𝑤𝑝 (𝑦 |0) = 𝑝𝛿0 (𝑦) + 𝑝′𝛿1 (𝑦), 𝑤𝑝 (𝑦 |1) = 𝛿1 (𝑦). (51)

Let 𝑐 > 0. Choosing Y = Y(𝑎) = ((𝑎 − 𝑐)/𝑎)2 we get
lim𝑎→∞ Y(𝑎) = 1 and for every 𝑎 > 0 we have 𝑏 = 𝑏(𝑎) =√︁
Y(𝑎)𝑎 = 𝑎 − 𝑐. It then holds uniformly for all 𝑐 > 0 that

lim
𝑎→∞

‖𝑝Y (𝑎) ,𝑏 (𝑎) − 𝑤1‖𝐹 = 0. (52)

In addition,

𝑝1,𝑏 (0|0) = 𝑒−𝑐
2
, 𝑝1,𝑏 (0|1) = 𝑒−(2𝑎−𝑐)

2
. (53)

With the special choice 𝑐 =
√

ln 2 we get

lim
𝑎→∞

‖𝑝1,𝑏 (𝑎) − 𝑤2−1 ‖𝐹 = 0. (54)

The compound channel capacity 𝐶 [4] is continuous. Therefore,

𝐶 ({𝑝1,𝑏 (𝑎) , 𝑝Y (𝑎) ,𝑏 (𝑎) }) ≤ 𝐶 ({𝑤2−1 , 𝑤1}) + 𝛿 (55)

for large enough 𝑎. The channel 𝑤2−1 has capacity log 5/4,
therefore 𝐶 ({𝑤2−1 , 𝑤1}) ≤ log 5/4. It follows that there exists
an 𝑎1 > 0 such that for all 𝑎 > 𝑎1

𝐶 ({𝑝1,𝑏 (𝑎) , 𝑝Y (𝑎) ,𝑏 (𝑎) }) ≤ log 5/4 + 𝛿, (56)

and 𝑎2 > 0 such that for all 𝑎 > 𝑎2

𝐶 ({𝑝Y (𝑎) ,𝑏 (𝑎) }) ≥ 𝐶 ({𝑤1}) − 𝛿 = 1 − 𝛿. (57)

Thus we can state: For all 𝑎 satisfying 𝑎 > 𝑎1+𝑎2, if we choose
𝑏(𝑎) as the Kennedy receiver parameter then 𝑏(𝑎) is almost-
optimal for 𝑝Y (𝑎) ,𝑏 (𝑎) but (choosing 𝛿 small enough) leads to
a capacity < 1/3 for transmission over {𝑝1,𝑏 (𝑎) , 𝑝Y (𝑎) ,𝑏 (𝑎) }.

Let us consider another choice for 𝑏 instead: Set �̃�(𝑎) =

((𝑎 − 𝑐) + 𝑎)/2 = 𝑎 − 𝑐/2 then we get

𝑝Y (𝑎) ,�̃� (𝑎) (0|0) = 𝑒
− 𝑐2

4 , 𝑝Y (𝑎) ,�̃� (𝑎) (0|1) = 𝑒
−(2𝑎− 3𝑐

2 )2
(58)

𝑝1,�̃� (𝑎) (0|0) = 𝑒−(�̃� (𝑎)−𝑎)
2
, 𝑝1,�̃� (𝑎) (0|1) = 𝑒

−(2𝑎− 𝑐
2 )2

. (59)

Therefore

lim
𝑎→∞

‖𝑝Y (𝑎) ,�̃� (𝑎) − 𝑤
𝑒−𝑐2/4 ‖𝐹 = 0, (60)

lim
𝑎→∞

‖𝑝1,�̃� (𝑎) − 𝑤
𝑒−𝑐2/4 ‖𝐹 = 0. (61)

Thus for every 𝛿 > 0 there is an 𝑎3 > 0 such that for all 𝑎 > 𝑎3

𝐶 ({𝑝Y (𝑎) ,𝑏 (𝑎) }) ≥ 1 − 𝛿 (62)

𝐶 ({𝑝1,𝑏 (𝑎) , 𝑝Y (𝑎) ,𝑏 (𝑎) }) ≤ 3−1 + 𝛿 (63)
𝐶 ({𝑝1,�̃� (𝑎) , 𝑝Y (𝑎) ,�̃� (𝑎) }) ≥ 𝐶 (𝑤𝑒− ln(2)/4 ) − 𝛿. (64)

Since 𝐶 (𝑤𝑒− ln(2)/4 ) ≥ 1 − ℎ(𝑒− ln(2)/4)/2 ≥ 1 − 0.75 · 0.5 ≥
0.625 we have shown the existence of compound channels
{𝑝1,𝑏 (𝑎) , 𝑝Y (𝑎) ,𝑏 (𝑎) } with choices for 𝑏(𝑎) which are almost-
optimal for {𝑝Y (𝑎) ,𝑏 (𝑎) } but perform strictly below optimal for
{𝑝1,𝑏 (𝑎) , 𝑝Y (𝑎) ,𝑏 (𝑎) }.

VII. CONCLUSION

We have derived capacity formulas for classical-quantum
compound channels of practical interest. Furthermore, we
demonstrated a nontrivial choice of the displacement parameter
of the Kennedy receiver when applied to a compound channel,
therewith proposing the compound channel model as a tool for



receiver design in applications under timing constraints, where
adaptive adjustment of the receiver is not desirable.
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