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Abstract

The construction of multiclass classifiers from binary elements is studied in this paper, and per-
formance is quantified by the regret, defined with respect to the Bayes optimal log-loss. We discuss
two known methods. The first is one vs. all (OVA), for which we prove that the multiclass regret is
upper bounded by the sum of binary regrets of the constituent classifiers. The second is hierarchical
classification, based on a binary tree. For this method we prove that the multiclass regret is exactly a
weighted sum of constituent binary regrets where the weighing is determined by the tree structure.

We also introduce a leverage-hierarchical classification method, which potentially yields smaller log-
loss and regret. The advantages of these classification methods are demonstrated by simulation on both
synthetic and real-life datasets.

I. INTRODUCTION

Classification is one of the most basic problems in statistical learning. The classification task is the
following: given some data (e.g. an image) provide a guess to the class from which it was taken (e.g. the
object appearing in the image). The guess can be the label of the chosen class, which will be referred to
as hard classification. The guess can also be a probability attached to each one of the class labels, which
will be referred to as soft classification.

Clearly, the minimal non-trivial number of classes is two. For this reason, there is abundant research
and practice for the binary classification problem, including many readily available implementations. On
the other hand, many classification problems are by nature multiclass, (i.e. having more than two classes)
and their solution requires the construction of multiclass classifiers. For some classifier families (such as
logistic regression), the multiclass counterpart can be constructed by a straightforward generalization of
the simple binary case. For other families however, (such as support vector machines) there is no single
straightforward generalization. For such cases, it is desirable to have systematic methods for reducing
the construction of a multiclass classifier to that of constructing several binary classifiers and then fusing
them into a single classifier [1]–[10].

Since black-box implementations of various binary classification architectures are so prevalent, such a
modular solution is highly appealing. In addition, building a multiclass classifier from binary elements
can be beneficial even if a simple multiclass generalization exists. The motivation in these cases can be
to provide a binary based architecture which better fits the data structure or reduces the learning and
recognition complexity [11], [12].

The main difference between the current contribution and the existing literature is the use of the
logarithmic loss (log-loss) as the target loss function. Namely, the focus in the works cited above is
on the construction of multiclass classifiers from binary elements and performance analysis under hard
classifiers and the zero-one loss (i.e. classification error probability). Instead, we consider soft classifiers
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and quantify their performance by assessing the quality of their probability assignment using log-loss
[13]–[18]. More precisely, we evaluate the regret, which is the excess log-loss compared to the optimally
attained one. The use of soft classifiers and log-loss is particularly suitable in the high error probability
regime. In other words - for difficult classification problems in which even an expert cannot give an
accurate guess and therefore only assigns posterior probabilities to the classes.

Two methods for constructing multiclass classifiers from binary elements are discusses and analyzed.
The first method is the well know one-vs.-all (OVA). In this method there is a binary classifier for every
class, discriminating it from a set of all the remaining ones. The final probability assignment is the
normalization of the probabilities of these binary classifiers. We show that the total regret of the OVA is
upper bounded by the sum of the regret of the constituent binary classifiers (Theorem 1 and Corollary 1).

The second method is called hierarchical classification. It is based on a binary tree architecture, with
a binary classifier assigned at each node. For this method, we show that the total regret is identical to a
weighted sum of the regrets of the constituent binary classifiers and the weighing is determined by the
tree structure (Theorem 2 and Corollary 3).

Our analysis of the regret corresponding to the known OVA and hierarchical classification methods,
while fairly simple, reveals important insights on the relations between binary and multiclass classification.
In particular, for hierarchical classification our analysis illustrates that once it is decided to use the
logarithmic loss as the figure of merit, the problem of multiclass classification with K possible classes is
completely equivalent to K − 1 binary classification problems. This new insight motivates us to develop
a novel architecture termed leveraged hierarchical classification. In this architecture, which is a variant
of hierarchical classification, one starts with a multiclass classifier (e.g., Softmax), and improves it. This
is attained by allowing the binary classifiers at the tree nodes of a hierarchical classifier to have the same
parametric richness as that of the original multiclass classifier, but without coupling the parameters at
different nodes. We show that this method, if judiciously trained, can yield an improvement over directly
using a single instance of the multiclass classifier in terms of the total log-loss.

We conclude the paper with experimental results which use Softmax based classifiers. We use two
datasets. The first is a synthetic dataset in which the actual log-loss and regret are calculated, and the
generalization error is evaluated. We show that the leveraged-hierarchical architecture improves upon the
simple multiclass classifier in terms of log-loss. The second dataset is the popular MNIST dataset [19]
for handwritten digits. In this dataset we show that a leveraged hierarchical classifier yields a substantial
improvement in terms of both error rate and log-loss with respect to the Softmax benchmark.

The rest of the paper is organized as follows: Section II give the problem formulation. Section III
defines the OVA method and states our related results. Section IV defines the hierarchical classification
method and states our related results. Section V explains how the constituent binary classifiers are learned
using a training set, and Section VI introduces our novel leveraged classifier architecture and its training.
Finally, Section VII give the experimental result, and Section VIII gives some concluding remarks.

II. PROBLEM FORMULATION

The statistical setting of the standard classification problem is characterized by the pair of dependent
random variables: X and Y which are drawn from a (possibly unknown) distribution PXY . The random
variable Y ∈ Y = {0, ...,K − 1} corresponds to class label and X ∈ X corresponds to the observation.
The goal is to come up with a classifier f(X) that is close to Y with respect to some loss function. The
most common loss function is the zero-one loss, and the corresponding classifier is designed such as to
minimize the classification error probability Pr(f(X) 6= Y ). In many cases, however, the observation X
reveals some information on the label Y , but not enough to accurately predict the label. In such cases, a
preferable approach is to design classifiers that output soft information, namely a conditional probability
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distribution for Y given X , rather than committing to a single value of Y . The common choice for a
loss function measuring the quality of such a “soft classifier” is the logarithmic loss (log-loss).

Let us now define the log-loss and its associated regret. For simplicity of exposition, we start by
introducing the notation without conditioning on the observation X . The generalization to the conditional
case is given in the sequel. As defined above, Y ∼ P is the class random variable supported on Y =
{0, . . . ,K − 1}, and K > 2 (i.e. multiclass). We use P (i) and pi interchangeably to denote the class
probability Pr(Y = i). Let Q denote a (possibly mismatched) probability assignment on Y . We define
the log-loss for predicting Y based on Q, while the actual underlying distribution is P by

L(P,Q) , Ey∼P log
1

Q(y)
.

where “log” denotes the natural logarithm. This quantity is also known as the cross-entropy of Q relative
to P . It is well-known that minQ L(P,Q) is attained by Q = P , and that for this choice L(P, P ) = H(Y ),
where H(·) denotes entropy function. We therefore denote the regret related to using Q instead of P by

R(P,Q) , L(P,Q)− L(P, P ) = D(P || Q),

where D(P || Q) is the Kullback-Leibler divergence between P and Q. We shall use R(P,Q) and
D(P || Q) interchangeably, where the first notation shall be used to state results, and the latter shall be
used for the analysis.

In the sequel, binary classifiers will associated with Bernoulli random variables. For clarity of notation
we use lowercase letters to denote the properties of these Bernoulli random variables, such as success
probability, log-loss, regret etc. Namely, let U ∼ Ber(p), (i.e. U ∈ {0, 1}, and Pr(U = 1) = p), and let q
be the parameter of a possibly mismatched distribution Ber(q). The related (binary) log-loss is denoted
by

`(p, q) , p log
1

q
+ (1− p) log

1

1− q
,

and the related binary regret is denoted by

r(p, q) , `(p, q)− `(p, p) = d(p || q),

where

d(p || q) , p log
p

q
+ (1− p) log

1− p
1− q

denotes the binary divergence. `(p, p) is equal to the binary entropy of p denoted by

h(p) , p log
1

p
+ (1− p) log

1

1− p
.

Let us now extend the notation to the standard classification case, in which we are interested in
predicting Y according to some observation X . The pair (X,Y ) is distributed according to

(X,Y ) ∼ PXY = PX × PY |X .

The observation random variable X is supported on X , where X is either some discrete alphabet or
X = Rd. We denote the posterior probability of the class y given the observation x by

PY |X=x(y) , Pr(Y = y | X = x).
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We denote the estimated posterior probability of the class y given the observation x provided by a soft
classifier by QY |X=x. The expected conditional log-loss of QY |X is defined as

L(PY |X , QY |X | PX) , Ex∼PX
L(PY |X=x, QY |X=x)

and the conditional regret is defined similarly

R(PY |X , QY |X | PX) , Ex∼PX
R(PY |X=x, QY |X=x).

Note that R(PY |X , QY |X | PX) = D(PY |X || QY |X | PX), where D(PY |X || QY |X | PX) =
Ex∼PX

D(PY |X=x || QY |X=x) is the conditional divergence. The Bernoulli counterparts are appropriately
defined as follows

`(p|X , q|X | PX) , Ex∼PX
`(p|X=x, q|X=x)

r(p|X , q|X | PX) , Ex∼PX
r(p|X=x, q|X=x)

III. ONE VS. ALL (OVA)

For the sake of simplicity of exposition, we start with the unconditional case, and add the conditioning
in the sequel. We standardly use 1(·) to denote an indicator function, being equal to one if the condition
is satisfied and zero otherwise. Using indicator functions we can define the following set of Bernoulli
random variables related to Y

Ai = Ai(Y ) , 1(Y=i), i = 0, . . . ,K − 1.

Trivially,

pAi
, Pr(Ai = 1) = P (i).

The identity implies that the set of success probabilities {pAi
}K−1i=0 uniquely describe the distribution

of Y . The one vs. all (OVA) method uses a set of K binary classifiers (related to the set of indicators
{Ai}K−1i=0 ), each discriminating a specific class from all the rest. It can be compactly defined as follows.

Definition 1 (One vs. all (OVA)). Given a set of K estimates {qAi
}K−1i=0 , not all zero, of the respective

probabilities {Pr(Ai = 1)}K−1i=0 , the OVA estimate of P is defined as

QOVA(i) =
qAi∑K−1
j=0 qAj

, i = 0, . . . ,K − 1. (1)

Let us now state our main results for the OVA method which relates its regret to the regrets of its
constituent binary classifiers {r(pi, qAi

)}.

Theorem 1 (OVA regret).

R(P,QOVA) ≤
K−1∑
i=0

r(pi, qAi
) (2)

Proof. We start by rewriting (1) as QOVA(i) =
qAi

αK , for i = 0, . . . ,K−1, where α ,
∑K−1

i=0 qAi

K . Note that
since qAi

∈ [0, 1] for all i it is guaranteed that α ∈ (0, 1] (note that by Def. (1), {qAi
} are not all zero,

so α > 0). Recalling that the regrets can be written as divergences, the statement in (2) is equivalent to
K−1∑
i=0

d(pi || qAi
)−D(P || QOVA) ≥ 0.
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Expanding D(P || QOVA) yields

D(P || QOVA) =

K−1∑
i=0

pi log
pi

qAi
/(αK)

(3)

=

K−1∑
i=0

pi log
pi
qAi

+ log(αK),

and expanding
∑K−1

i=0 d(pi || qAi
) yields

K−1∑
i=0

d(pi || qAi
)

=

K−1∑
i=0

(
pi log

pi
qAi

+ (1− pi) log
1− pi
1− qAi

)
. (4)

Subtracting (3) from (4) we obtain
K−1∑
i=0

d(pi ||qAi
)−D(P || QCOVA)

=

K−1∑
i=0

(1− pi) log
1− pi
1− qAi

− log(αK)

=F1 + F2,

where the last transition is by adding and subtracting the term (K − 1) log K−1
K(1−α) and defining

F1 ,
K−1∑
i=0

(1− pi) log
1− pi
1− qAi

− (K − 1) log
K − 1

K(1− α)

and

F2 , (K − 1) log
K − 1

K(1− α)
− log(αK).

We start by proving that F1 ≥ 0 by using the log-sum inequality for the sets {1 − pi}K−1i=0 and
{1 − qAi

}K−1i=0 . We note that pi ≤ 1 and qAi
≤ 1 so it is guaranteed that the sets comprise only non-

negative elements. For the singular case of pi = 1 we use the convention that 0 log 0 = 0. Applying the
log-sum inequality [20, Theorem 17.1.2], as explained above, yields

K−1∑
i=0

(1− pi) log
1− pi
1− qAi

−

(
K−1∑
i=0

(1− pi)

)
log

∑K−1
i=0 (1− pi)∑K−1
i=0 (1− qAi

)
≥ 0. (5)
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Note that
∑K−1

i=0 pi = 1 and
∑K−1

i=0 qAi
= αK, which implies that

∑K−1
i=0 (1 − pi) = K − 1 and∑K−1

i=0 (1− qA1
) = K(1− α). Plugging the values of the sums in (5) yields

K−1∑
i=0

(1− pi) log
1− pi
1− qAi

− (K − 1) log
K − 1

K(1− α)
≥ 0

which proves that F1 ≥ 0 by its definition.
Let us now rearrange F2

F2 = (K − 1) log
K − 1

K(1− α)
− log(αK)

= K

((
1− 1

K

)
log

1− 1
K

(1− α)
+ 1

K log
1
K

α

)
= K · d

(
1
K || α

)
≥ 0.

The last inequality stems from the non-negativity of the divergence, implies that F2 ≥ 0 hence concludes
the proof of the theorem.

The following corollary extends Theorem 1 to the conditional case

Corollary 1 (OVA conditional regret).

R(PY |X , Q
OVA
Y |X | PX) ≤

K−1∑
i=0

r(pi|X , qAi|X | PX).

Proof. We start by using Theorem 1 where all the probabilities are under the point-wise conditioning
X = x

R(PY |X=x, Q
OVA
Y |X=x) ≤

K−1∑
i=0

r(pi|X=x, qAi|X=x).

Taking the expectation w.r.t x ∼ PX on both sides yields

Ex∼PX

(
R(PY |X=x, Q

OVA
Y |X=x)

)
≤ Ex∼PX

(
K−1∑
i=0

r(pi|X=x, qAi|X=x)

)
.

The Corollary now follows the definition of the conditional regret.

Although this paper deals with prediction under logarithmic loss, it is worth mentioning that our results
also have implication on prediction under zero-one loss (error probability), as stated in the following
corollary
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Corollary 2 (OVA regret under zero-one loss). Let Pe,Bayes denote the error probability attained by
the optimal (maximum a-posteriori) classifier ŷMAP(x) = argmaxy PY |X=x(y) for y from x. Denote by
Pe(Q

OVA
Y |X ) the error probability attained by the estimator ŷOVA(x) = argmaxy Q

OVA
Y |X=x(y). Then,

Pe(Q
OVA
Y |X )− Pe,Bayes

≤

√√√√2

K−1∑
i=0

r(pi|X , qAi|X | PX).

Proof. Let TV(P,Q) denote the total variation distance between the distributions P and Q. The mis-
matched error probability for predicting Y ∼ P based on maximum a-posteriori with respect to the
incorrect distribution Q satisfies

Pe(Q) = 1− P (argmax
y

Q(y))

= Pe(P ) + P (argmax
y

P (y))− P (argmax
y

Q(y))

≤ Pe(P ) + 2TV(P,Q),

where the last transition is by adding the term Q(argmaxy Q(y))−Q(argmaxy P (y)) ≥ 0 and using the
definition of TV(P,Q). We can therefore write

Pe(Q
OVA
Y |X )− Pe,Bayes ≤ 2Ex∼PX

TV
(
PY |X=x, Q

OVA
Y |X=x

)
≤ 2Ex∼PX

√
1

2
D
(
PY |X=x || QOVA

Y |X=x

)
≤
√

2R
(
PY |X , Q

OVA
Y |X | PX

)
,

where we have used Pinsker’s inequality [20, Lemma 17.3.2] in the second inequality and Jensen’s
inequality in the third. The statement now immediately follows by bounding R

(
PY |X , Q

OVA
Y |X | PX

)
according to Corollary 1.

IV. HIERARCHICAL CLASSIFICATION

0

{0, 1, 2}

{0, 1, 2, 3, 4}

{3, 4}
1 0

{4}{3}{0, 1} {2}

{0} {1}

1

1

1 00

0

1

2 3 4

(1,1,1) (1,1,0)

(1,0) (0,1) (0,0)

Fig. 1: A tree for five classes

The second method discussed in this contribution is hierarchical classification. It is based on con-
structing the multiclass classifier from binary classifiers which are assigned to the internal (i.e. not leaf)
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1

0 1

2 3 4

(1,1,1)

pB∅

pB1
pB0

0 1 0

1 0

1 0
pB11

(1,1,0)

(1,0) (0,1) (0,0)

Fig. 2: The tree of Fig. 1 with Bernoulli probabilities

nodes of a binary tree. Each tree node corresponds to a partition of its set of classes into two disjoint
sets. Every bifurcation at the tree nodes is also associated with a bit, which gives rise to an equivalent
and useful representation of a prefix code. It is also easy to see that every nested binary partition of K
classes can be represented using exactly K − 1 splits. Therefore, it is sufficient to consider trees having
exactly K − 1 internal nodes.

For example, consider the tree with five classes depicted in Fig. 1. Every internal node has a set of
classes which is split into two disjoint subsets with respect to a bit value. For example, the root node
splits the set {0, 1, 2, 3, 4} into the subsets {0, 1, 2} and {3, 4} corresponding to a bit values 1 and 0
respectively. In this way, each class is associated with a codeword (i.e. a bit sequence). Namely, classes
0− 4 are respectively associated with codewords (1, 1, 1), (1, 1, 0), (1, 0), (0, 1) and (0, 0).

In order to calculate the class probabilities, every tree node is associated with a Bernoulli success
probability, which represents the probability of the node bit to be equal to one. The success probability
of the node corresponding to the prefix c (i.e. the string of bits generated along the path from the tree
root to the node) is denoted by pBc

. The root itself is associated with the empty prefix ∅ and its Bernoulli
probability is denoted by pB∅ . An example to this concept is given in Fig. 2 which denotes the node
Bernoulli probabilities of the tree in Fig. 1. The one-to-one mapping between the class probabilities and
the binary node probabilities is given in the following examples

pB∅ = Pr(Y ∈ {0, 1, 2} | Y ∈ {0, 1, 2, 3, 4}),

pB1
= Pr(Y ∈ {0, 1} | Y ∈ {0, 1, 2}),

P (1) = pB∅ · pB1
· (1− pB11

),

and

P (4) = (1− pB∅) · (1− pB0
).

In addition, we also use a short hand indexing of the tree nodes, referring to every node using an
integer in the set {0, ...,K − 2}, without indicating its prefix. Then, the set of all descendant classes of
node j is denoted by Sj . The set of descendant classes respective to the branch labeled 0 (resp. labeled
1) is denoted by S0

j (resp. S1
j = Sj \ S0

j ). The success probability related to node j is denoted by pSj
,

being equal to

pSj
, Pr(Y ∈ S1

j | Y ∈ Sj).
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0 1

2 3 4

pS2

pS1
pS3

pS0

11

1

1

1

0

00

0

(a) True probabilities: P ,{p0, ..., p3}
0 1

2 3 4

qS2

qS1
qS3

qS0

11

1

1

1

0

00

0

(b) Estimated probabilities: Q,{q0, ..., q3}

Fig. 3: An example to a hierarchical tree with true and estimated probabilities

An example to a possible indexing of the tree in Fig. 3a is given in Fig. 2. The class probability P is
built according to the tree structure and the set {pSi

}3i=0 (for example P1 = pS2
· pS1

· (1− pS0
)).

We are interested in devising an estimate Q for the class probability assignment P using a fixed
tree structure and a set of estimated binary success probabilities {qSi

}K−2i=0 , one for each node. For
example, consider the tree in Fig. 3b which represents an estimated version of the tree in Fig. 3a. For
instance, in this tree, Q(1) is an estimate of P (1) and is calculated using the estimates to the Bernoulli
probabilities qS0

, qS1
and qS2

according to Q(1) = qS2
· qS1

· (1 − qS0
) whereas the true probability

is P (1) = pS2
· pS1

· (1 − pS0
). The following theorem relates the regrets associated with the binary

probability estimates to the regret of the resulting multiclass probability assignment.

Theorem 2 (Hierarchical tree regret). For a fixed tree structure, for which P induces the node suc-
cess probabilities pS0

, . . . , pSK−2
, and an hierarchical classifier using the same tree with node success

probabilities qS0
, . . . , qSK−2

, the obtained distribution Q satisfies

R(P,Q) =

K−2∑
j=0

Pr(Y ∈ Sj)r(pSj
, qSj

).

1

0 1
(1,1,1)

pB∅

pB1
pB0

0 1 0

1 0

1 0

pB11

(1,1,0)
2 3 4

pB10
pB00

pB01

(1,0,0) (0,1,0) (0,0,0)

0 00

Fig. 4: The tree of Fig. 2 after zero padding.

Proof. We denote the tree depth, i.e. the length of the longest codeword, by D, where dlog2Ke ≤ D ≤
K − 1. We then extend all the codewords to length D by appropriate zero padding and adding dummy
nodes with a zero Bernoulli success probability. This process is illustrated in Fig. 4. We denote the
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probability distributions P and Q induce on the codebook BD−10 by PBD−1
0

and its appropriate estimate
QBD−1

0
. Using this notation we can write the following series of equalities

R(P,Q) = D(P || Q)

= D(PBD−1
0
|| QBD−1

0
) (6)

=

D−1∑
i=0

D
(
PBi|Bi−1

0
|| QBi|Bi−1

0
| PBi−1

0

)
(7)

=

D−1∑
i=0

∑
bi−1
0 ∈{0,1}i

Pr(Bi−1
0 = bi−10 )

·D
(
PBi|Bi−1

0 =bi−1
0
|| QBi|Bi−1

0 =bi−1
0

)
=

D−1∑
i=0

∑
bi−1
0 ∈{0,1}i

Pr(Bi−1
0 = bi−10 )

· d
(
pB

b
i−1
0

|| qB
b
i−1
0

)
(8)

=

K−2∑
j=0

Pr(Y ∈ Sj)r(pSj
, qSj

). (9)

where (6) is due to the one-to-one mapping between the class labels and the codewords in the codebook,
(7) is by the chain rule of the divergence, (8) is by the notation of the Bernoulli probabilities on the
internal nodes. Lastly (9) is by the alternative indexing of the internal nodes and by tree structure. Note
that all the dummy nodes (outside the set of K − 1 indexed nodes) are associated with a zero Bernoulli
probability in both p and q. Namely, for their respective codewords a, we have pBa

= qBa
= 0. Therefore,

the contribution of these nodes to the total regret is zero.

It is interesting to note that somewhat similar results appear in the literature for prefix codes (for
example [21, Equation (1)]). The main difference between our setting and the prefix code setting is
that in prefix codes the Bernoulli probabilities in the simulating tree are all set to 1/2, whereas in the
classification setup they can take arbitrary values in [0, 1].

We further remark that the generally loose, but simple upper bound on the regret

R(P,Q) ≤
K−2∑
j=0

r(pSj
, qSj

),

can be easily derived using the data processing inequality for divergences. To see this, note that drawing
Y according to P (resp. Q) for a specific binary tree structure can be done by drawing all the K − 1
bits of the nodes and then producing the prefixes by traversing the tree. The generation of the prefixes
is the additional processing which reduces the divergences.

The following corollary generalizes Theorem 2 to the conditional case.
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Corollary 3 (Hierarchical classifier conditional regret). For a fixed tree structure, for which PY |X induces
the conditional node success probabilities pS0|X , . . . , pSK−2|X , and an hierarchical classifier using the
same tree with node success probabilities qS0|X , . . . , qSK−2|X , the obtained distribution QY |X satisfies

R(PY |X , QY |X | PX) =

K−2∑
i=0

Pr(Y ∈ Si)r(pSi|X , qSi|X | PX|Y ∈Si
). (10)

Proof. We begin by taking (3), conditioning all the probabilities by X = x and taking the expectation
w.r.t. PX according to the definition

R(PY |X , QY |X | PX)

= Ex∼PX
R(PY |X=x, QY |X=x)

= Ex∼PX

[
K−2∑
i=0

Pr(Y ∈ Si | X = x)r(pSi|X=x, qSi|X=x)

]

=

K−2∑
i=0

Ex∼PX

[
Pr(Y ∈ Si | X = x)r(pSi|X=x, qSi|X=x)

]
(11)

Let us now define Bernoulli random variables Bi , 1(Y ∈Si) and the function gi(x) , r(pSi|X=x, qSi|X=x)
and expand the i’th summands of (11) as follows

Ex∼PX
[Pr(Bi | X = x)gi(x)]

= Ex∼PX

[[
Eb∼PBi|X=x

1(b)
]
gi(x)

]
=
[
Eb∼PBi

1(b)
] [
Ex∼PX|Bi=b

gi(x)
]

= Pr(Bi = 1)Ex∼PX|Bi=1
gi(x). (12)

Plugging (12) in back into (11) concludes the proof.

A. Conditional OVA (COVA)

1 0
(1)
0

1

2

3 4

{0}

{0, 1, 2, 3, 4}

{1, 2, 3, 4}

{2, 3, 4}

{3, 4}

{4}

{1}

{2}

{3}

1 0

(0,1)

(0,0,1)

(0,0,0,1) (0,0,0,0)

1 0

1 0

Fig. 5: A COVA tree for five classes
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An interesting special case of hierarchical classification which is closely related to the OVA method
is the termed conditional OVA (COVA) [22]. This method is inspired by the non-binary information-
distilling qunatizer proposed in [23] and the non-binary channel upgrading algorithm in [24]. The COVA
tree has depth K − 2 and a single binary classifier at every level. The classifier at level i separates class
i from the set of classes {i+ 1, ...,K − 1}. Alternatively, using the hierarchical notation the COVA tree
is characterized by setting Si = {i, ...,K − 1} and S1

i = i for all i ∈ {0, ...,K − 2}.
An example for COVA tree with K = 5 is depicted in Fig. 5. The COVA method can be regarded a

conditioned modification of OVA in the following sense: like OVA, every binary classifier separates only
a single class from a subset of other classes, but the preceding classes are omitted from the competing set.
In addition, it uses only K−1 binary classifiers (and not K as in the OVA method) and the tree structure
ensures that the COVA estimate produces a valid probability assignment without requiring normalization.

For the COVA regret statement it is useful to give the following equivalent notation fo the Bernoulli
probabilities for i ∈ {0, ...,K − 2}

pcondAi
, Pr(Ai = 1 | Y ≥ i)

where Ai = 1(Y=i). Denoting the estimate for pcondAi
by qcondAi

and applying Theorem 2 yields the following
corollary

Corollary 4 (COVA regret).

R(P,QCOVA) =

K−2∑
i=0

Pr(Y ≥ i)r(pcondAi
, qcondAi

).

V. TRAINING THE BINARY CLASSIFIERS

In supervised learning under log-loss, the learner is given a training set of labeled samples T ,
{(xi, yi)}Nn=1 drawn independently from an unknown distribution PXY , and is required to output a
conditional distribution QY |X for which the regret R(PY |X , QY |X | PX) is small. We are interested in a
“black-box” reduction from the multiclass supervised learning problem to the binary case. To this end,
assume we have access to an “off-the-shelf” binary classifier, (e.g., logistic regression, decision tree)
which takes a training set with binary labels {(xn, an)}Nn=1, x ∈ X , an ∈ {0, 1}, as input, and constructs
a probability assignment qA|X=x for every x ∈ X as output. Clearly, in the general case the training
set does not contain all the values in X (which is particularly impossible in the case that X = Rd).
Nevertheless, the task of the training algorithm is to provide an estimate to the posterior probability
denoted by qA|X=x to all values in X , including the ones that are not present in T . For example, for
logistic regression with two classes the probability assignment is given by

qA|X=x(0) =
exp(βT0 x)

exp(βT0 x) + exp(βT1 x)

qA|X=x(1) =
exp(βT1 x)

exp(βT0 x) + exp(βT1 x)
,

where βi ∈ Rd are learned according to the training set T . We note that a common convention is to set
β1 as the all zeros vector, which has no effect the expressive power of the model.

In the OVA case, we build QOVA
Y |X=x from a normalization of a set of binary classifiers {qAi|X=x}K−1i=0 .

Every qAi|X=x is trained on the set {(xn, an)}Nn=1 where an = 1(yn=i), namely, an indicator for the
class i. For the hierarchical classification method, the binary classifier of node i denoted by qSi|X=x, is
built from the subset of T whose labels yi belong to the set Si. Then, samples with labels in S1

i get the

12



binary value one, and samples with labels in S0
i get the binary value zero. This concept is illustrated

in Fig. 6 where qS1|X=x is trained using the samples with labels 0, 1, 2 and sampled labeled 0, 1 are
trained against samples labeled 2.

qS0|X=x

0

2 3 4

qS1|X=x

1

qS2|X=x

qS3|X=x

S1

1

1

1

1

0

0

0

0

Fig. 6: Training the binary classifier qS1|X=x

Note that for the training process of the binary classifier at node i we only use samples in the training
set T = {(xi, yi)}Nn=1 for which Yn ∈ Si. Thus, the samples used for training that classifier are i.i.d.
samples from PXY |Y ∈Si

. Recalling eq. (10) from Corollary 3, we see that the contribution of node i to
the total regret R(PY |X , QY |X |PX) is determined by r(pSi|X , qSi|X | PX|Y ∈Si

), which also depends only
on the conditional distribution PXY |Y ∈Si

. Consequently, the expression for the total regret in Corollary 3
is aligned with the training procedure we employ, and the total regret will indeed only depend on how
well we can train each of the binary classifiers at each node i = 0, . . . ,K − 2 for minimizing the regret
with respect to the distribution PXY |Y ∈Si

.

VI. A LEVERAGED HIERARCHICAL CLASSIFIER

For the hierarchical classification method we introduce another training method in addition to the
straightforward “black-box” method presented above. It is termed leveraged training and produces lever-
aged hierarchical classifiers. The basic idea is to start from a multiclass parametric model QY |X;θ, where
θ ∈ Θ is the set of parameters determining the conditional probability assignment, and “project” it to
each node in the hierarchical classification tree from Section IV, such that now each node consists of
a binary classifier whose probability assignment is dictated by the parameters θ ∈ Θ. In the original
parametric multiclass with the probability assignment QY |X;θ, the classifiers at all nodes are dictated by
the same set of parameters θ ∈ Θ. However, in light of Corollary 3, we see that there is no coupling
between the contributions of the different nodes to the total regret. Thus, we can reduce the total regret
by reducing each of the individual node regrets, and the latter can be attained by allowing a different set
of parameters θi ∈ Θ to each of the nodes i ∈ {0, . . . ,K − 2}.

To be more specific, let QY |X;θ be a parametric family of conditional distributions, one for each θ ∈ Θ.
To fix ideas, think of QY |X;θ as the Softmax probability assignment, as given in (16) below. For any
specific hierarchical classification tree structure (suitably pruned to have exactly K − 1 internal nodes)
the multiclass probabilities PY |X , and QY |X;θ induce the set of Bernoulli probabilities {pSi|X}

K−2
i=0 and

{qSi|X;θ}K−2i=0 , respectively. To express these probability assignments explicitly, we define

PY |X=x(S) , Pr(Y ∈ S | X = x)
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and denote its estimate by QY |X=x;θ(S). Then, the induced Bernoulli probabilities are

pSi|X=x =
PY |X=x(S1

i )

PY |X=x(Si)

=

∑
j∈S1

i
PY |X=x(j)∑

j∈Si
PY |X=x(j)

(13)

and

qSi|X=x;θ =
QY |X=x;θ(S

1
i )

QY |X=x;θ(Si)

=

∑
j∈S1

i
QY |X=x;θ(j)∑

j∈Si
QY |X=x;θ(j)

(14)

for i ∈ {0, ...,K − 2}. We view the expression for qSi|X=x;θ above as the “projection” of the multiclass
parametric family QY |X;θ to the binary classifier at the ith node in the tree. This projected binary classifier
itself evidently belongs to a parametric family corresponding to θ ∈ Θ. Now, applying Corollary 3 we
see that the regret corresponding to QY |X;θ is given by

R(PY |X , QY |X;θ | PX) =

K−2∑
i=0

Pr(Y ∈ Si)r(pSi|X , qSi|X;θ | PX|Y ∈Si
). (15)

The regret is clearly a function of the chosen parameter θ ∈ Θ, and empirical risk minimization (ERM)
training chooses the value of θ ∈ Θ that minimizes (15) where PXY is replaced with the empirical
distribution induced by the training set T = {(xi, yi)}Nn=1.

So far, we have only provided an expression for the regret attained by the parametric class QY |X;θ

in terms of the hierarchical classification tree from Section IV. However, once the expression (15) is
established, it is immediately evident that the total regret can be reduced if we allow each binary classifier
at the nodes i = {0, . . . ,K − 2} to use a different set of parameters θi ∈ Θ, rather than constraining all
nodes to use the same θ ∈ Θ, as in the multiclass family QY |X;θ we have started with. Our leveraged
hierarchical classification method therefore separately minimizes each of the binary regret terms in (15). In
particular, if ERM is used for training, we choose θi ∈ Θ as the minimizer of r(pSi|X , qSi|X;θ | PX|Y ∈Si

)
with respect to the empirical distribution PXY |Y ∈Si

induced by the training set. Since the minimization
here is on a larger parametric space, the empirical regret can only decrease (or remain the same). The
generalization error may increase due to the larger number of parameters, but our experiments below
indicate that often the total regret attained by the leveraged classifier is significantly reduced with respect
to the original multiclass classifier.

Let us now demonstrate the leveraged hierarchical classification method for the important special case
where the baseline multiclass classifier is logistic regression (Softmax). In this case, θ is the set of vectors
{βj}K−1j=0 and

QY |X=x;θ(j) =
exp(βTj x)∑K−1
`=0 exp(βT` x)

(16)

where we did not use the convention that β0 is the all-zeros vector, and assumed the intercept was handled
by adding a constant coordinate to x. The induced conditional binary classifiers are now

qSi|X=x;θ =

∑
j∈S1

i
exp(βTj x)∑

j∈Si
exp(βTj x)

.
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We now allow every binary classifier to have a distinct parameter set θi which comprises the vectors
{γij}j∈Si

. Namely

qSi|X=x;θi =

∑
j∈S1

i
exp(γTijx)∑

j∈Si
exp(γTijx)

.

The empirical log-loss function related to the node associated with the set Si is therefore

L̂(T, {γij}j∈Si
) =

∑
n:yn∈Si

log

∑
j∈Si

eγ
T
ijxn

−
∑

n:yn∈S0
i

log

∑
j∈S0

i

eγ
T
ijxn

− ∑
n:yn∈S1

i

log

∑
j∈S1

i

eγ
T
ijxn

 .
This function can be optimized using stochastic gradient descent (SGD) using the derivatives

∂

∂γij
L̂(T, {γij}j∈Si

)

=
∑

n:yn∈Si

xne
γijxn∑

k∈Si
eγikxn

−
∑

n:yn∈S0
i

xne
γijxn∑

k∈S0
i
eγikxn

(17)

for j ∈ S0
i and

∂

∂γij
L̂(T, {γij}j∈Si

)

=
∑

n:yn∈Si

xne
γijxn∑

j∈Si
eγijxn

−
∑

n:yn∈S1
i

xne
γijxn∑

k∈S1
i
eγikxn

(18)

for j ∈ S1
i .

It is in place to note that adding a regularization penalty term to the empirical loss (such as the L2

norm of the parameters vectors) can potentially improve the generalization error. However, the concept
of regularization is left out of the scope of this paper. The experimental results using this method are
given in the following section.

VII. EXPERIMENTAL RESULTS

A. Synthetic Gaussian Data

Scenario N Softmax OVA COVA LCOVA
Train Test Train Test Train Test Train Test

A 105 −0.0044 0.0049 0.0012 0.0099 0.0123 0.0242 −0.0221 0.0179
A 106 −0.0004 0.0004 0.0052 0.0060 0.0178 0.0181 −0.0011 0.0037
B 105 0.7010 0.7018 0.7062 0.7063 0.7153 0.7189 0.6456 0.6786
B 106 0.7012 0.7039 0.7063 0.7088 0.7172 0.7193 0.6519 0.6606

TABLE I: Experimental results. The entries represent regret values in natural logarithm

The first set of experimental results we present were obtained using synthetic data drawn from Gaussian
distributions. There are two motivations for the use of synthetic data. The first is the ability to calculate
the true sample probabilities and the associated log-loss, which in turn, enables the calculation of the
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regret terms. The second is the ability to control the number of training samples and therefore to evaluate
the sample size vs. generalization error trade-off. The synthetic data comprise ten equiprobable classes of
dimension 100. In the experiments, the conditional probability density function associated with the kth
class is multi-dimensional Gaussian. Namely, [X|Y = i] ∼ N (µi,Σi). We tested two scenarios. In both,
the class centers {µi} are distinct with all elements independently drawn from a Gaussian distribution.
In Scenario A, all the class covariance matrices are Σi = σ2I . In Scenario B Σi = σ2I + α · ATi Ai
where Ai are class independent d×d matrices whose elements are independently drawn from a Gaussian
distribution, and α is a scaling factor set to 0.1. The class centers and covariances are drawn and held
constant while generating the training set and the test set.

The experiments were conducted using a Python environment [25]. The Softmax classifier and the
binary logistic regression classifiers were trained using a standard Python implementation [26]. The
COVA classifier is a specific hierarchical classifier that we discussed in Subsection IV-A. LCOVA, is its
leveraged version explained Section V and trained using SGD with the derivatives given in (17) and (18).
The results are summarized in Table I. N is the number of training samples, and the regrets are calculated
w.r.t. the minimal log-loss, evaluated on the sample using the knowledge of the true distribution. For
Scenario A, the near zero regrets of Softmax can be explained by the fact that the Softmax (i.e. multiclass
logistic regression) posteriors have the exact same form of the ones of the additive Gaussian model with
class independent noise covariance matrix (in fact, logistic regression is a more general model than
additive Gaussian, see for example the discussion in [27, Subsection 4.4.5]). As explained in Section VI,
LCOVA generalizes Softmax in the sense that it has the same node Bernoulli probabilities but without the
constraint that all nodes share the same parameters. However, LCOVA has a larger number of parameters
than Softmax, which explains the overfitting. Namely, for the same number of training samples it has
lower log-loss (and regret) on the training set, but a larger log-loss on the test set.
For Scenario B, the Softmax parametric family does not include the correct posterior probability as-
signment PY |X , which explains its increased regret terms. In this case LCOVA, being a richer model
that generalizes both COVA and Softmax, provides lower regrets. However, due to its larger number of
parameters it does exhibit a larger generalization error than Softmax. As expected the generalization error
diminishes with the increase in the number of training samples. Nevertheless, even for N = 105, despite
the generalization error, LCOVA still outperforms Softmax.

B. MNIST Database

In a second set of experiments we used the popular MNIST database [19], which comprises gray-scale
images of handwritten digits. The corpus contains 60, 000 training samples and 10, 000 test samples. The
image size is 28× 28 pixels, and we standardly cropped the margins to produce 20× 20 pixel images.

The results are presented in Table II. The third row in the table corresponds to a hierarchical classifier
with binary logistic regression classifier at the tree nodes (which is equivalent to hierarchical Softmax of
[11]) based on the tree of Fig. 7. The fourth row is a leveraged version of this hierarchical classifier. We
can see that while the hierarchical classifier performs poorly w.r.t. the Softmax baseline, its leveraged
version provides a dramatic improvement in terms of both error rate and log-loss on both the training set
and the test set. The numbers written near the nodes of Fig. 7 are the binary log-losses calculated on the
test set. These log-losses sum up to the total multiclass log-loss using the appropriate class weighing.

We note that the tree structure can dramatically change the performance of the hierarchical and
leveraged hierarchical classifier. For example, the last row in Table II corresponds to the tree in Fig. 8. The
motivation behind this tree is to separate digits according to their graphical representation. For example,
the root separates between the curved digits {0, 2, 6, 8} and non-curved digits {1, 7, 4, 5, 3, 9}. As can
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be seen from the table, the performance of this tree is better than the baseline performance, and may
potentially be improved further by using different tree structures.

0 1 2 3

4 5 6 7 8 90.0017 0.0659

0.0315 0.0250 0.0071 0.0551

0.0614 0.0861

0.1102

Fig. 7: MNIST digits hierarchical decision tree. The numbers on the nodes are the associated test log-loss
of the leveraged hierarchical classifier

1 7 4 5

3 9 0 2 6 8
0.0156 0.0250

0.0327 0.0530 0.0187 0.0309

0.1065 0.0630

0.0759

Fig. 8: A different hierarchical decision tree for the MNIST digits. The numbers on the nodes are the
associated test log-loss of the leveraged hierarchical classifier

Method Error log-loss
Train Test Train Test

Softmax 7.0% 7.9% 0.253 0.290
OVA 8.0% 8.4% 0.347 0.368

Hierarchical 16.8% 17.3% 0.543 0.571
L-Hierarchical 4.5% 6.0% 0.154 0.225
L-Hierarchical 4.1% 5.6% 0.141 0.207

permuted

TABLE II: MNIST results

C. Discussion

The results presented in the previous subsection show the potential of leveraged hierarchical classifi-
cation to improve upon Softmax. The following aspects can be inferred from the simulation results and
are left for further research

1) The hierarchical tree structure: As mentioned in Section V, for any tree structure, a multiclass
classifier can be factorized into binary elements using (13), (14). Then, the binary log-losses will
sum up to the multiclass regret, given the appropriate weighing. However, independent training of

17



the binary classifier can yield different log-losses and total performance as seen in the MNIST
experiments. A judicious tree architecture can either be based on some knowledge of the nature
of the data (a suggested for natural language processing in [11]), or can be set on-the-fly using a
different algorithm, which is out of the scope of this contribution.

2) The number of parameters: A standard Softmax classifier is characterized by a set of K vectors of
size d: {βi}K−1i=0 . In a hierarchical Softmax based tree, the number of vectors in each node is equal
to the number of members in its class subset Si. Therefore, the total number of vectors in a COVA
tree is ≈ K2/2 and for a balanced hierarchical tree with depth ≈ logK it is ≈ K logK. While a
COVA tree might better suite specific data structure, it is clear that a balanced tree is preferable in
terms of complexity (both training and probability assignment) and can potentially yield a smaller
generalization gap due to its smaller number of parameters.
That being said, in the regime where deep neural nets (DNNs) are used, one often has a number
of training samples far exceeding the number of classes. Consequently, replacing the last layer in
a DNN with a hierarchical classifier (that has a larger number of parameters, but more flexibility)
might still yield improved results.
Even if PXY is such that there exist weights for which Softmax provides small log-loss, during
training (before the weights are well tuned) the log-loss for the QY |X output by the DNN classifier
is large. Since the leveraged hierarchical classifier can offer significant gains in this regime, we
suspect that using it instead of Softmax may lead to a speed-up in the training time.

3) Regularization: The results in Table II show a consistent gap between train and test performance
for all methods of both error and log-loss. All methods in this table are non-regularized and it
makes sense that standard regularization (using for example L1 or L2 penalty) might reduce the
generalization gap. We regard the main contribution in this paper as theoretical, providing qualitative
tools to analyze the log-loss of various classifier architecture. The experimental part is deliberately
concise and is designated to demonstrate the theoretic tools, but not to optimize the result nor to
compete with the vast body of work in the area. For this reason, we did not apply regularization in
the experiments.

VIII. CONCLUDING REMARKS

We have studied the problem of soft classification under log-loss and have focused on constructions
of multiclass classifiers from binary classifiers. For the popular one vs. all method, we have shown that
the total regret is upper bounded by the sum of regrets corresponding to the underlying binary classifiers.
We have then considered the hierarchical classification method, and derived an exact expression for the
total regret of this method in terms of the regrets corresponding to the binary classifiers used at each
node of the hierarchical classification tree.

Building on this expression, we have noticed that the performance of every multiclass classifier is
solely dictated by that of the binary classifiers at each node of that tree. This observation suggests that
improved performance may be obtained by optimizing the “projected” binary classifiers separately. We
have provided some numerical evidence showing that this is often indeed the case.

Our analysis heavily relied on properties special to the logarithmic loss. However, using Pinsker’s
inequality we also applied our results for obtaining bounds on the zero-one loss. Furthermore, we note
that cross-entropy is commonly used as the loss function for the training process even when performance
is eventually assessed using different losses. In these cases, the clean and elegant nature of the regret
expressions we obtained under logarithmic loss shed much insight on the terms dominating the training
procedure.
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