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Abstract

We introduce the problem of determining the identity of a byzantine user (internal adversary) in a communication system. We
consider a two-user discrete memoryless multiple access channel where either user may deviate from the prescribed behaviour.
Owing to the noisy nature of the channel, it may be overly restrictive to attempt to detect all deviations. In our formulation, we
only require detecting deviations which impede the decoding of the non-deviating user’s message. When neither user deviates,
correct decoding is required. When one user deviates, the decoder must either output a pair of messages of which the message
of the non-deviating user is correct or identify the deviating user. The users and the receiver do not share any randomness. The
results include a characterization of the set of channels where communication is feasible, and an inner and outer bound on the
capacity region.

I. INTRODUCTION

In many modern wireless communication applications (e.g., the Internet of Things), devices with varying levels of security are

connected over a shared communication medium. Compromised devices may allow an adversary to disrupt the communication

of other devices. This motivates the question we study in this paper – is it possible to design a communication system in which

malicious actions by compromised devices can be detected so that such devices can be isolated or taken offline?

We consider a two-user Multiple Access Channel (MAC) where either user may deviate from the prescribed behaviour.

Owing to the noisy nature of the channel, it may be overly restrictive to attempt to detect all deviations. Indeed, it suffices to

detect only such deviations which impede the correct decoding of the other user’s message. We formulate a communication

problem for the MAC with the following decoding guarantee (Fig. 1): the decoder outputs either a pair of messages or declares

one of the users to be deviating. When both users are honest, the decoder must output the correct message pair with high

probability (w.h.p.); when exactly one user deviates, w.h.p., the decoder must either correctly detect the deviating user or output

a message pair of which the message of the other (honest) user is correct (see Section II). No guarantees are made if both

users deviate. Thus, we require that a deviating user cannot cause a decoding error for the other user without getting caught.

Throughout this paper, we assume that encoders and decoder do not share any randomness.

For comparison, consider the stronger guarantee of reliable communication where the decoder outputs a pair of messages

such that the message(s) of non-deviating user(s) is correct w.h.p. [1]. While achieving this clearly satisfies the requirements

of the present model, it might be too demanding. For example, in a binary erasure MAC1 [2, pg. 83], a deviating user can

run an independent copy of the honest user’s encoder and inject a spurious message which will appear equally plausible to

the decoder as the honest user’s actual message (also see section V-B). Thus, reliable communication is impossible over the

binary erasure MAC. However, our results, when specialized to this channel, will show that communication with adversary

identification is possible. That is, under our coding scheme it is impossible for a byzantine user to mount a successful attack

without getting caught. In fact, for the binary erasure MAC, we show that the capacity region of communication with adversary

identification is the same as the (non-adversarial) capacity region of the binary erasure MAC (see Section V-A).

Another decoding guarantee that is weaker than the present model allows the decoder to declare adversarial interference

(in the presence of malicious user(s)) without identifying the adversary. We called this authenticated communication and

characterized its feasibility condition and capacity region in [3]. The feasibility condition is called overwritability, a notion

which was introduced by Kosut and Kliewer for network coding [4] and AVCs [5].

The present model lies between the models for reliable communication and authenticated communication in a byzantine MAC.

However, obtaining results here appears to be significantly more challenging. On the one hand, for reliable communication

over the two-user MAC, we may treat the channel from each user to the decoder as an arbitrarily varying channel (AVC)

[6] with the other user’s input as state. Hence, the users may send their messages using the corresponding AVC codes [7].

Thus, the rectangular region defined by the capacities of the two AVCs is achievable2. On the other hand, for authenticated
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1The binary erasure MAC has binary inputs X, Y and outputs Z = X + Y where + is real addition.
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exactly like the adversary in the AVC of the other user. Note that the AVCs for binary erasure MAC have zero AVC capacity.

http://arxiv.org/abs/2105.03380v1


communication over the two-user MAC, our achievable strategy in [3] involved an unauthenticated communication phase using

a non-adversarial MAC code followed by separate (short) authentication phases for each user’s decoded message. Failure to

authenticate a user’s message implies the presence of an adversary (though not its identity since the user whose message is

being authenticated might have deviated to cause the authentication failure). In both the cases above, the decoder, when it

accounts for the byzantine nature of the users, deals with the users one at a time. However, similar decoding strategies seem

to be insufficient for adversary identification. Determining the identity of a deviating user requires dealing with the byzantine

nature of both users simultaneously, thereby complicating the decoder design (see Section III).

We characterize the infeasibility of communication with adversary identification using a channel condition we call spoofability

(see Fig. 2). It allows a deviating user to mount an attack which can be confused with an attack of the other user and which

introduces a spurious message that can be confused with the actual message of the (other) honest user. When the channel is

not spoofable, a deterministic code in the style of [7] can provide positive rates to both the users (Theorem 1). Our outer

bound is in terms of the capacity of an Arbitrarily Varying-MAC [8] (Theorem 7). Further, a comparison is drawn between

spoofability and the feasibility conditions for the reliable communication and authenticated communication models.

Related works: There is a long line of works in the information theory literature on communication in the presence of

external adversaries (see [9] for a survey). Communication in systems with byzantine users has also received some attention

[1], [3], [4], [10]–[12]. Message authentication codes where the users have pre-shared keys and communicate over noiseless

channels have been extensively studied [13]–[15]. Message authentication over noisy channels has also been considered [15]–

[18]. There has also been some recent work on authenticated communication over channels in which an external adversary

may be present; in the presence of the adversary, the decoder may declare adversarial interference instead of decoding [5],

[19]–[21] (In a 2-user MAC model in [21] when declaring the presence of an adversary, the decoder is required to decode

at least one user’s message.). These models are different from the present model, where, when declaring the presence of an

(internal) adversary, we also require the decoder to output its identity.

II. SYSTEM MODEL

User B

User A

WZ|X,Y Decoder

mB

Y

mA

X

Z
m̂A, m̂B

or

a or b

Fig. 1. MAC with byzantine users: Reliable decoding of both the messages is required when neither user deviates. When a user (say, user B) deviates, the
decoded message should either be correct for the honest user or the decoder should identify the deviating user (by outputting b) with high probability.

Notation: For a set S ∈ R
k, let conv(S) and int(S) denote its convex closure and interior respectively. Let x ∈ Xn

(resp. X distributed over Xn) denote the n-length vectors (resp. n-length random vectors). For a distribution PX on X , let T n
X

denote the set of all n-length sequences x ∈ Xn with empirical distribution PX . Unif(A) denotes the uniform distribution over

the set A. For a two-user MAC W (.|., .), we will use CMAC(W ) (or simply CMAC) to denote its (non-adversarial) capacity

region. We will use Wn to denote the n-fold product of the channel W .

Consider a two-user discrete memoryless Multiple Access Channel (MAC) as shown in Fig. 1. User A has input alphabet

X and user B has input alphabet Y . The output alphabet of the channel is Z . The sets X , Y and Z are finite. We study

communication in a MAC where either user may deviate from the communication protocol by sending any sequence of its

choice from its input alphabet. While doing so, the deviating user is unaware of other user’s input. We will refer to this channel

model as a MAC with byzantine users.

Definition 1 (Adversary identifying code). An (NA, NB, n) deterministic adversary identifying code for a MAC with byzantine

users consists of the following:

(i) Two message sets, Mi = {1, . . . , N i}, i = A,B,

(ii) Two deterministic encoders, f
(n)
A

: MA → Xn and f
(n)
B

: MB → Yn, and

(iii) A deterministic decoder, φ(n) : Zn → (MA ×MB) ∪ {a, b}.
The output symbol a indicates that user A is adversarial. Similarly, b indicates that user B is adversarial. The average

probability of error Pe(f
(n)
A

, f
(n)
B

, φ(n)) is the maximum of the average probabilities of error in the following three cases:

(1) both users are honest, (2) user A is adversarial, and (3) user B is adversarial. When both users are honest, the decoded
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Fig. 2. When (3) holds, for (x′, x̃, ỹ) ∈ Xn ×Xn × Yn, the output distributions in the three cases above will be the same.
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W

ỹ
x̃

y′

z

(a)

Q
X|X̃,Ỹ
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Fig. 3. A MAC is B-spoofable if for each x̃, ỹ, y′, z the conditional output distributions P (z|x̃, ỹ, y′) in 3(a), 3(b) and 3(c) are the same.

messages should be correct with high probability (w.h.p.). Let EmA,mB
=
{

z : φ(n)(z) 6= (mA,mB)
}

denote the corresponding

error event. The average error probability when both users are honest is

Pe,hon
def
=

1

NA ·NB

∑

(mA,mB)∈
MA×MB

Wn
(

EmA,mB
|f (n)

A
(mA), f

(n)
B

(mB)
)

.

When user A is adversarial, the decoder’s output, w.h.p., should either be the symbol a or a pair of messages of which the

message of user B is correct. The error event EmB

def
=
{

z : φ(n)(z) /∈ (MA × {mB}) ∪ {a}
}

. The average probability of error

when user A is adversarial is

Pe,mal A
def
= max

x∈Xn

(

1

NB

∑

mB∈MB

Wn
(

EmB
|x, f (n)

B
(mB)

)

)

. (1)

Similarly, for EmA

def
=
{

z : φ(n)(z) /∈ ({mA} ×MB) ∪ {b}
}

, the average probability of error when user B is adversarial is

Pe,mal B
def
= max

y∈Yn

(

1

NA

∑

mA∈MA

Wn
(

EmA
|f (n)

A
(mA),y

)

)

. (2)

We define the average probability of error as

Pe(f
(n)
A

, f
(n)
B

, φ(n))
def
= max {Pe,hon, Pe,mal A, Pe,mal B}.

Note that the probability of error under a randomized attack is the weighted average of the probabilities of errors under

the different deterministic attacks and hence maximized by a deterministic attack. Thus, Pe,mal B is an upper bound on the

probability of error for any attack by user B, deterministic or random Similarly, Pe,mal A is an upper bound for any attack by

user A. Thus, the probability of error under deterministic attacks is same as that under randomized attacks.

Definition 2 (Achievable rate pair for and capacity region of communication with adversary identification). (RA, RB) is an

achievable rate pair for communication with adversary identification if there exists a sequence of (⌊2nRA⌋, ⌊2nRB⌋, n) adversary

identifying codes {f (n)
A

, f
(n)
B

, φ(n)}∞n=1 such that limn→∞ Pe(f
(n)
A

, f
(n)
B

, φ(n)) → 0. The capacity region of communication

with adversary identification C is the closure of the set of all such achievable rate pairs. Let C
A

(resp. C
B

) be defined as the

supremum of the set {RA : (RA, RB) ∈ C for some RB} (resp. {RB : (RA, RB) ∈ C for some RA}).

III. FEASIBILITY OF COMMUNICATION WITH ADVERSARY IDENTIFICATION

Definition 3. A MAC WZ|X,Y is A-spoofable if there exist distributions QY |X̃,Ỹ and QX|X̃,X′ such that ∀x′, x̃, ỹ, z,

∑

y

QY |X̃,Ỹ (y|x̃, ỹ)WZ|X,Y (z|x′, y)

=
∑

y

QY |X̃,Ỹ (y|x′, ỹ)WZ|X,Y (z|x̃, y)



=
∑

x

QX|X̃,X′(x|x̃, x′)WZ|X,Y (z|x, ỹ). (3)

A MAC WZ|X,Y is B-spoofable (see Fig. 3.) if there exist distributions QX|X̃,Ỹ and QY |Ỹ ,Y ′ such that ∀ x̃, ỹ, y′, z,

∑

x

QX|X̃,Ỹ (x|x̃, ỹ)WZ|X,Y (z|x, y′)

=
∑

x

QX|X̃,Ỹ (x|x̃, y′)WZ|X,Y (z|x, ỹ)

=
∑

y

QY |Ỹ ,Y ′(y|ỹ, y′)WZ|X,Y (z|x̃, y). (4)

A MAC is spoofable if it is either A- or B-spoofable.

When (3) holds, for a triple (x′, x̃, ỹ) ∈ Xn ×Xn ×Yn, the output distributions in the following three cases are the same

(see Fig. 2.): (a) User A sends x′ and user B sends Y ∼ Qn
Y |X̃,Ỹ

(.|x̃, ỹ), i.e., Y is distributed as the output of the memoryless

channel QY |X̃,Ỹ on inputs x̃ and ỹ; (b) User A sends x̃ and user B sends Y ∼ Qn
Y |X̃,Ỹ

(.|x′, ỹ); (c) User B sends ỹ and user

A sends X ∼ Qn
X|X̃,X′

(.|x̃,x′). Hence, for a given code (fA, fB, φ) and independent MA ∼ Unif(MA), M
′
A
∼ Unif(MA) and

MB ∼ Unif(MB), the output distributions in the following three cases are the same: (a) User A is honest and sends fA(MA)
and user B is adversarial and attacks with Y ∼ Qn

Y |X̃,Ỹ
(.|fA(M ′

A
), fB(MB)); (b) User A is honest and sends fA(M

′
A
) and

user B is adversarial and attacks with Y ∼ Qn
Y |X̃,Ỹ

(.|fA(MA), fB(MB); (c) User B is honest and sends fB(MB) and user A

is adversarial and attacks with X ∼ Qn
X|X̃,X′

(.|fA(MA), fA(M
′
A
)). Thus, the decoder cannot determine the adversarial user

reliably, nor can it differentiate between MA and M ′
A

as the input of user A. In Lemma 6, we formally argue that for an

A-spoofable MAC, no non-zero rate can be achieved for user-A.

Our first result states that, in fact, non-spoofability characterizes the MACs in which users can work at positive rates of

communication with adversary identification.

Theorem 1. If a MAC is A-spoofable (resp. B-spoofable), communication with adversary identification from user-A (resp.

user-B) is impossible. Specifically, for any (NA, NB, n) adversary identifying code with NA ≥ 2 (resp. NB ≥ 2), the probability

of error is at least 1/12. If a MAC is neither A-spoofable nor B-spoofable, then its capacity region has a non-empty interior

(int(C) 6= ∅), that is, both users can communicate reliably with adversary identification at positive rates.

The proof of the theorem is given in Appendix A.

Corollary 2. int(C) = ∅ if and only if a MAC is spoofable.

Remark 1. Theorem 1 does not cover the case when exactly one user is spoofable. In particular, if the MAC is A-spoofable

(and thus, C
A
= 0), but not B-spoofable, can C

B
> 0? A similar case is also open for Arbitrarily Varying Multiple Access

MAC (AV-MAC) (see [22]). When encoders have private randomness, this can be resolved as was recently shown by Pereg

and Steinberg [23]. A similar resolution is possible for the present problem. We can use encoders with private randomness to

show that C
A
> 0 (resp. C

B
> 0) if and only if the MAC is not A-spoofable (resp. not B-spoofable).

In the interest of space, we limit the discussion of achievability to an informal description of the decoder. See Lemma 7

for a complete proof. For input distributions PA and PB on X and Y respectively, the decoder works by collecting potential

candidates for the messages sent by each user. A message mA is deemed a candidate for user A if it is typical with some

(attack) vector y and the output vector z according to the channel law (i.e., for some η > 0, (fA(mA),y, z) ∈ T n
XY Z

such that D (PXY Z ||PAPY W ) ≤ η). We further prune the list of candidates by only keeping the ones which can account

for all other candidates that can lead to ambiguity at the decoder. For example, for a candidate mA, suppose there are

two other candidates m̃A and m̃B of user A and user B respectively. The decoder is confused between mA and m̃A, so it

cannot reliably choose an output message for user A. Neither can it adjudge one of the users to be adversarial as both users

have valid message candidates. In order to get around this, we require that for every pair of candidates (m̃A, m̃B) such that

(fA(mA),y, fA(m̃A), fB(m̃B), z)∈T n
XY X̃Ỹ Z

, the condition I(X̃Ỹ ;XZ|Y ) < η holds. Under this condition, we may infer that

the channel output z was likely not caused by the pair (m̃A, m̃B), rather, (m̃A, m̃B) is more likely to be part of the attack

strategy employed by user B to produce its input vector y. Similarly, if there is a pair of candidates (m̃B1, m̃B2) of user B, the

decoder can neither reliably decode user B’s message, nor can it implicate either user. Thus, we require that for every pair of

candidates (m̃B1,m̃B2) of user B such that (fA(mA),y, fB(m̃B1), fB(m̃B2), z)∈T n
XY Ỹ1Ỹ2Z

, the condition I(Ỹ1Ỹ2;XZ|Y ) < η



holds. Let DA(η, z) be the set of all candidates of user A which pass these checks. We define DB(η, z) analogously by

interchanging the roles of users A and B. The decoder is as follows:

φ(z)
def
=



























(mA,mB) if DA(η, z) ×DB(η, z) = {(mA,mB)},
a (blame A) if |DA(η, z)| = 0, |DB(η, z)| 6= 0,

b (blame B) if |DB(η, z)| = 0, |DA(η, z)| 6= 0,

(1, 1) if |DA(η, z)| = |DB(η, z)| = 0.

In the spirit of [7, Lemma 4], we show in Appendix A that for a non-spoofable MAC, there exists a small enough η > 0
such that if |DA(η, z)|, |DB(η, z)| > 0 then |DA(η, z)| = |DB(η, z)| = 1. Thus, the decoder definition covers all the cases. We

also show that |DA(η, z)| = |DB(η, z)| = 0 is a low probability event. In Appendix A, we analyze the error probability of the

decoder and show that for non-spoofable channels it can support positive rates for both users.

IV. CAPACITY REGION

A. Inner bound

For distributions PA and PB over X and Y respectively, we define P(PA, PB)
def
= {PXY X̃Ỹ Z : PXỸ Z = PA × PỸ ×

W for some PỸ and PX̃Y Z = PX̃ × PB ×W for some PX̃}. Let R1(PA, PB) be the set of rate pairs (RA, RB) such that

RA ≤ min
P

XY X̃Ỹ Z
∈P(PA,PB)

I(X ;Z)

RB ≤ min
P

XY X̃Ỹ Z
∈P(PA,PB):X⊥⊥Y

I(Y ;Z|X). (5)

Similarly, let R2(PA, PB) be the set of rate pairs given by

RA ≤ min
P

XY X̃Ỹ Z
∈P(PA,PB):X⊥⊥Y

I(X ;Z|Y )

RB ≤ min
P

XY X̃Ỹ Z
∈P(PA,PB)

I(Y ;Z). (6)

Theorem 3 (Achievable rate region). When int(C) 6= ∅,

conv(∪PA,PB
(R1(PA, PB) ∪R2(PA, PB))) ⊆ C.

The proof uses a slighly modified version of the decoder used in Theorem 1. This modification imposes the additional

condition X |= Y on the distribution. Please see Appendix C.

B. Outer bound

The outer bound is provided in terms of the capacity of an Arbitrarily Varying Multiple Access Channel (AV-MAC). An

AV-MAC W = {W (z|x, y, s), (x, y, z) ∈ X × Y × Z : s ∈ S}⊆ R
|X |×|Y|×|Z| is a family of MACs parameterized by the set

of state symbols S (see [8]). The state of an AV-MAC can vary arbitrarily during the transmission. We use CAV−MAC(W) (or

simply CAV−MAC) to denote the deterministic capacity region of an AV-MAC W .

Definition 4. For a MAC W , let W̃W be the set of MACs W̃ such that for some distributions QX′|X and QY ′|Y on X × X
and Y × Y respectively and for all x, y, z ∈ X × Y × Z ,

W̃ (z|x, y) =
∑

x′

QX′|X(x′|x)W (z|x′, y)

=
∑

y′

QY ′|Y (y
′|y)W (z|x, y′) (7)

Notice that W ∈ W̃W by choosing trivial distributions QX′|X(x|x) = 1 for all x and QY ′|Y (y|y) = 1 for all y. The set W̃W

is convex because for every (QX′|X , QY ′|Y ) and (Q′
X′|X , Q′

Y ′|Y ) satisfying (7), the pair (αQX′|X +(1−α)Q′
X′|X , αQY ′|Y +

(1 − α)Q′
Y ′|Y ), α ∈ [0, 1] also satisfies (7). To get an outer bound, let us consider a situation where user A is malicious and

attacks in the following manner: it runs its encoder on a uniformly distributed message from its message set, then passes the

output of the encoder through
∏n

i=1 Q
i
X′|X where for all i ∈ [1 : n], (Qi

X′|X , Qi
Y ′|Y ) satisfy (7) for some Qi

Y ′|Y . The output

of
∏n

i=1 Q
i
X′|X is finally sent to the MAC W as input by user A. At the receiver, it is not clear if user A attacked using

∏n
i=1 Q

i
X′|X or user B attacked using

∏n
i=1 Q

i
Y ′|Y . Hence, the malicious user cannot be identified reliably. So, the decoder

must output a pair of messages. This implies that the capacity region C must be a subset of the capacity region of the AV-MAC

W̃W (Definition 4) parametrized by a pair of distributions (QX′|X , QY ′|Y ) satisfying (7). This argument is formalized in



Appendix D The outer bound obtained in this manner is valid for any protocol: deterministic, stochastic (private randomness

at the encoders) or randomized (independent randomness shared by each encoder with the decoder).

Theorem 4 (Outer bound). C ⊆ CAV−MAC(W̃W ). Moreover, there exists an AV-MAC WW such that CAV−MAC(WW ) =
CAV−MAC(W̃W ) and |WW | ≤ 2|X |2+|Y|2 .

The existence of an AV-MAC WW with a finite state-space can be shown using the fact that the CAV−MAC(W) only depends

on conv(W) and by simple geometric arguments (see Appendix D).

Remark 2. Theorem 4 also gives an outer bound for the capacity region under randomized codes (with independent randomness

shared between each encoder and the decoder).

V. EXAMPLES AND COMPARISON WITH OTHER MODELS

A. Tightness of the inner bound for the Binary Erasure MAC

We will show that for the binary erasure MAC [2, pg. 83], the inner bound on C given by Theorem 3 is the same as its

(non-adversarial) capacity region CMAC. Hence, it is tight. We choose PA and PB arbitrarily close to the uniform distribution

U on {0, 1} while ensuring that PA 6= PB. We show that P(PA, PB) = {PXY X̃Ỹ Z : PXỸ Z = PA × PB × W and PX̃Y Z =
PA × PB ×W} and for PXY X̃Ỹ Z ∈ P(PA, PB) satisfying X |= Y , X̃ = X and Ỹ = Y . Thus, (5) evaluates to RA ≤ 0.5 and

RB ≤ 1, and (6) evaluates to RA ≤ 1 and RB ≤ 0.5. Using time sharing between these two rate pairs, we obtain the entire

MAC region (This is the rate region C in Fig. 3). Please refer to Appendix E-A for a complete argument.

B. Comparison with related models

In this section we contrast the present model with reliable communication and authenticated communication models.

a) Reliable communication in a MAC with byzantine users: We consider a MAC with a stronger decoding guarantee: the

decoder, w.h.p, outputs a message pair of which the message(s) of honest user(s) is correct. In the presence of a malicious

user, the channel from the honest user to the receiver can be treated as an Arbitrarily Varying MAC (AVC) [6] with the input

of other user as state. Thus, the capacity region is outer bounded by the rectangular region defined by the AVC capacities of

the two users’ channels. Further, it is easy to see that this outer bound is achievable when both users use the corresponding

AVC codes. Csiszár and Narayan show in [7] that the capacity of an AVC is zero iff it is symmetrizable. Communication is

infeasible in an AVC if and only if it is symmetrizable [7]. Translating this to the two-user MAC, we define a MAC to be

B-symmetrizable if there exists a distribution PX|Y such that

∑

x′∈X

PX|Y (x|y′)W (z|x, y) =
∑

x′∈X

PX|Y (x|y)W (z|x, y′) (8)

for all (x, y, z) ∈ X ×Y×Z . We define an A-symmetrizable MAC analogously. A symmetrizable MAC is one which is either

A- or B-symmetrizable. Thus, reliable communication by both users is feasible in a MAC if and only if it is not symmetrizable.

We denote the reliable communication capacity of a MAC by Creliable.
b) Authenticated communication in a MAC with byzantine users [3]: This model considers a MAC with a weaker decoding

guarantee: the decoder should reliably decode the messages when both users are honest. When one user is adversarial, the

decoder either outputs a pair of messages of which the message of honest user is correct or it declares the presence of an

adversary (without identifying it). In this case, the notion of an overwritable MAC characterizes the MACs with non-empty

capacity region Cauth of authenticated communication. We say that a MAC is B-overwritable [3, (1)] if there exists a distribution

PX′|X,Y such that

∑

x′∈X

PX′|X,Y (x
′|x, y)W (z|x′, y′) = W (z|x, y) (9)

for all y, y′ ∈ Y, x ∈ X and z ∈ Z . Similarly, we can define an A-overwritable MAC. If a MAC is either A- or B-overwritable,

we say that the MAC is overwritable. Authenticated communication by both users is not feasible in an overwritable MAC.

Theorem 1 in [3] states that if the MAC is not overwritable, then authenticated communication capacity, Cauth = CMAC.

Proposition 5. All overwritable MACs are spoofable and all spoofable MACs are symmetrizable. Furthermore, both these

inclusions are strict.

While the inclusions in Proposition 5 are obvious from the problem definitions and the feasibility results, we nonetheless provide

a direct argument. Suppose a MAC is B-overwritable with PX′|X,Y as the overwriting attack in (9). For any distribution QY on

Y , let QX|X̃,Ỹ (x|x̃, ỹ)
def
=
∑

y QY (y)PX′|X,Y (x|x̃, y) for all x, x̃, ỹ and QY |Ỹ ,Y ′(y|ỹ, y′) def
= QY (y) for all y, ỹ, y′. Distributions

QX|X̃,Ỹ and QY |Ỹ ,Y ′ as defined satisfy (4). Now, suppose a MAC WZ|X,Y is B-spoofable with attacks QX|X̃,Ỹ and QY |Ỹ ,Y ′



satisfying (4). For all, x, y, let PX|Y (x|y) def
= QX|X̃,Ỹ (x|x̃, y) for any x̃ ∈ X . It can be easily seen that the attack PX|Y as

defined satisfies (8). Examples 1 and 2 below show strict inclusion (see Fig. 4).

Example 1 (symmetrizable, but not spoofable). Binary erasure MAC: It has binary inputs X,Y and outputs Z = X + Y
where + is real addition. We show in Appendix E-B that this channel is not spoofable. To show symmetrizability, we note

that the distribution PX|Y (x|y) = 1 for all x = y is a symmetrizing attack in (8).

Example 2 (spoofable, but not overwritable). Binary additive MAC: It has binary inputs X,Y and outputs Z = X ⊕ Y
where ⊕ is the XOR operation. To show spoofability, note that the attacks QX|X̃,X′(x|x̃, x′) = 1/2 for all x, x̃ and x′, and

QY |X̃,Ỹ (y|x̃, ỹ) = 1/2 for all y, x̃ and ỹ, satisfy (3) because they result in the same uniform output distribution over Z in all

the three cases in (3). We show in Appendix E-C that Example 2 is not overwritable.

symmetrizable

MACs

spoofable

MACs

overwritable
MACs

1

2
Binary additive MAC

Binary erasure MAC

Fig. 4. The set of overwritable MACs is a strict subset of the set of spoofable MACs which, in turn, is a strict subset of the set of symmetrizable MACs.

We also note from the problem definitions that Creliable ⊆ C ⊆ Cauth ⊆ CMAC. Next we give an example of a channel for

which Creliable, C and Cauth are distinct. The example is constructed by using the MACs in Examples 1 and 2 in parallel.

Example 3 ((Z1, Z2) = (X1 + Y1, X2 ⊕ Y2)). For binary inputs X1, X2, Y1, Y2, the output (Z1, Z2) = (X1 + Y1, X2 ⊕ Y2).

The channels Z1 = X1 + Y1 and Z2 = X2 ⊕ Y2 are both non-overwritable and symmetrizable. Since the MACs do not

interact when used in parallel, we can show that the resultant MAC (Z1, Z2) = (X1 + Y1, X2 ⊕ Y2) is also non-overwritable

and symmetrizable (see Appendix E-D). Thus, Creliable = {0, 0} and Cauth = CMAC. To compute C, we note that the pair

(QX′|X , QY ′|Y ) defined by QX′|X((x1, u)|(x1, x2)) = 0.5 for all u, x1, x2 ∈ {0, 1} and QY ′|Y ((y1, v)|(y1, y2)) = 0.5 for all

v, y1, y2 ∈ {0, 1} satisfies the conditions in (7). The resulting channel W̃ has the same first component as W (i.e., a binary

erasure MAC) and a second component whose output Z2 is independent of the inputs. By Theorem 4, C is outer bounded

by the (non-adversarial) capacity region of W̃ which is the capacity region of the binary erasure MAC. We can show that

this outer bound is tight by using an adversary identifying code for the binary erasure MAC component Z1 = X1 + Y1 (see

Section V-A) and any arbitrary inputs for the other component. Please see Appendix E-D for details. The capacity regions

under these three models are plotted in Fig. 5.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

RA

R
B

C
Creliable
Cauth

Fig. 5. Capacity regions for the MAC in Example 3: Creliable = {0, 0}; C = CMAC of Z1 = X1 + Y1; and Cauth = CMAC of (Z1, Z2) = (X1 +
Y1,X2 ⊕ Y2).
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APPENDIX A

PROOF OF THEOREM 1

We first prove the converse.

Lemma 6. If a channel is A-spoofable (resp. B-spoofable), then for any (NA, NB, n) strongly authenticating code with NA ≥ 2

(resp. NB ≥ 2), the probability of error is at least 1/12.

Proof. The proof uses ideas from proof of [7, Lemma 1, page 187]. Suppose the channel satisfies (3). A similar analysis

can be done when channel satisfies (4). Let QY |X̃,Ỹ and QX|X̃,X′ be attacks satisfying (3). For any given (NA, NB, n) code

(fA, fB, φ), let i, j ∈ MA be distinct. For i ∈ MA, let xi = fA(i). Similarly, for k ∈ MB, let yk denote fB(k). Consider the

following situations.

• User A sends xi. User B is adversarial and its input to the channel is produced by passing (xj ,yk) through the n-fold

product channel QY |X̃,Ỹ . For z ∈ Zn, the output distribution P(z) (denoted by Pi,j,k(z)) is given by

Pi,j,k(z) =

n
∏

t=1

∑

y∈Y

QY |X̃,Ỹ (y|xj(t),yk(t))WZ|X,Y (z(t)|xi(t), y). (10)

• User B sends yk. User A is adversarial and its input Xi,j to the channel is produced by passing (xi,xj) through the

n-fold product channel QX|X̃,X′ . For z ∈ Zn, the output distribution P(z) (denoted by Qi,j,k(z)) is given by

Qi,j,k(z) =

n
∏

t=1

∑

x∈X

QX|X̃,X′(x|xi(t),xj(t))WZ|X,Y (z(t)|x,yk(t)). (11)

By (3), we see that for all i, j ∈ MA, k ∈ MB and z ∈ Zn, Pi,j,k(z) = Pj,i,k(z) = Qi,j,k(z). From (2) and (10), we see that

Pe,mal B ≥ 1

N2
A
×NB

∑

i,j∈MA

∑

k∈MB

∑

z:φA(z)/∈{i,B}

Pi,j,k(z)



and

Pe,mal B ≥ 1

N2
A
×NB

∑

i,j∈MA

∑

k∈MB

∑

z:φA(z)/∈{j,B}

Pj,i,k(z).

Using (1) and (11), we obtain

Pe,mal A ≥ 1

N2
A
×NB

∑

i,j∈MA

∑

k∈MB

∑

z:φB(z)/∈{k,A}

Qi,j,k(z).

Thus,

3Pe(fA, fB, φ) ≥ Pe,mal B + Pe,mal B + Pe,mal A

≥ 1

N2
A
×NB

∑

i,j∈MA

∑

k∈MB





∑

z:φA(z)/∈{i,B}

Pi,j,k(z) +
∑

z:φA(z)/∈{j,B}

Pj,i,k(z) +
∑

z:φB(z)/∈{k,A}

Qi,j,k(z)





(a)
=

1

N2
A
×NB

∑

i,j∈MA

∑

k∈MB





∑

z:φA(z)/∈{i,B}

Pi,j,k(z) +
∑

z:φA(z)/∈{j,B}

Pi,j,k(z) +
∑

z:φB(z)/∈{k,A}

Pi,j,k(z)





≥ 1

N2
A
×NB

∑

i,j∈MA,i6=j

∑

k∈MB

(

∑

z∈Zn

Pi,j,k(z)

)

=
NA(NA − 1)NB

2N2
A
×NB

=
NA − 1

2NA

≥ 1

4

where (a) follows by noting that Pi,j,k(z) = Pj,i,k(z) = Qi,j,k(z). Thus, for any given code (fA, fB, φ), for a spoofable

channel Pe(fA, fB, φ) ≥ 1
12 . A similar analysis follows when the channel is B-spoofable.

Next, we show our positive result.

Lemma 7. The rate region for deterministic codes is non-empty if the channel is non-spoofable.

Proof. Encoding. For some PA and PB satisfying minx∈X PA(x) > 0 and miny∈Y PB(y) > 0 respectively, and ǫ > 0 (TBD),

the codebook is given by Lemma 9. For mA ∈ MA, fA(mA) = xmA
and for mB ∈ MB, fB(mB) = ymB

.

Decoding. For a parameter η > 0, let Dη be the set of joint distributions defined as Dη
def
=

{

PXY Z ∈ Pn
X×Y×Z : D (PXY Z ||PXPY W ) ≤ η

}

. For the given codebook, the parameter η and the received output

sequence z, let DA(η, z) be defined as the set of messages mA ∈ MA such that there exists y ∈ Yn satisfying the following

conditions:

(i) (fA(mA),y, z) ∈ T n
XY Z for some PXY Z ∈ Dη.

(ii) For every (m̃A, m̃B) ∈ MA×MB, m̃A 6= mA and (y′, x′) ∈ Yn×Xn such that (fA(mA),y, fA(m̃A),y
′,x′, fB(m̃B), z) ∈

T n
XY X̃Y ′X′Ỹ Z

, PX̃Y ′Z ∈ Dη and PX′Ỹ Z ∈ Dη , we require that I(X̃Ỹ ;XZ|Y ) < η.

(iii) For every m̃B1, m̃B2 ∈ MB, and x′
1, x

′
2 ∈ Xn such that (fA(mA),y,x

′
1, fB(m̃B1),x

′
2, fB(m̃B2), z) ∈ T n

XYX′
1
Ỹ1X′

2
Ỹ2Z

,

PX′
1
Ỹ1Z

∈ Dη and PX′
2
Ỹ2Z

∈ Dη, we require that I(Ỹ1Ỹ2;XZ|Y ) < η.



We define DB(η, z) analogously (by interchanging the roles of user A and B).

φ(z)
def
=















































(mA,mB), if DA(η, z)×DB(η, z) = {(mA,mB)}

a, if |DA(η, z)| = 0, |DB(η, z)| 6= 0

b, if |DB(η, z)| = 0, |DA(η, z)| 6= 0

(1, 1) otherwise

For small enough choice of η > 0, Lemma 8 implies that if |DA(η, z)|, |DB(η, z)| ≥ 1, then |DB(η, z)| = |DA(η, z)| = 1.

To see this, suppose |DA(η, z)| ≥ 2 and |DB(η, z)| ≥ 1. Let mA, m̃A ∈ DA(η, z) and m̃B ∈ DB(η, z). This implies that

there exist x, y and y′ such that for (fA(mA),y, fA(m̃A),y
′,x′, fB(m̃B), z) ∈ T n

XY X̃Y ′X′Ỹ Z
, PXY Z ∈ Dη, PX̃Y ′Z ∈ Dη,

PX′Ỹ Z ∈ Dη, I(X̃Ỹ ;XZ|Y ) < η, I(XỸ ; X̃Z|Y ′) < η and I(XX̃; Ỹ Z|X ′) < η. This is not possible because of Lemma 8.

Lemma 8. For a channel which is not A-spoofable, there does not exist a distribution PXY X̃Y ′X′Ỹ Z ∈ Pn
XY X̃Y ′X′Ỹ Z

with

minx PX(x),minx̃ PX̃(x̃),minỹ PỸ (ỹ) ≥ α > 0 which, for a small enough η > 0, satisfies the following:

(A) PXY Z ∈ Dη,

(B) PX̃Y ′Z ∈ Dη,

(C) PX′Ỹ Z ∈ Dη,

(D) I(X̃Ỹ ;XZ|Y ) < η,

(E) I(XỸ ; X̃Z|Y ′) < η and

(F) I(XX̃; Ỹ Z|X ′) < η.

Similarly, for a channel which is not B-spoofable, there does not exist a distribution PX′
1
Ỹ1X′

2
Ỹ2XY Z ∈ Pn

X′
1
Ỹ1X′

2
Ỹ2XY Z

with

minx PX(x),minỹ1
PỸ1

(ỹ1),minỹ2
PỸ2

(ỹ2) ≥ α > 0 which, for a small enough η > 0, satisfies the following:

(A) PXY Z ∈ Dη,

(B) PX′
1
Ỹ1Z

∈ Dη,

(C) PX′
2
Ỹ2Z

∈ Dη,

(D) I(Ỹ1Ỹ2;XZ|Y ) < η,

(E) I(XỸ2; Ỹ1Z|X ′
1) < η and

(F) I(XỸ1; Ỹ2Z|X ′
2) < η.

Proof. Suppose for a channel which is not A-spoofable, there exists PXY X̃Y ′X′Ỹ Z ∈ Pn
XY X̃Y ′X′Ỹ Z

which satisfies (A)-(F).

Using (A) and (D), we obtain that

2η ≥ D(PXY Z ||PXPY W ) + I(X̃Ỹ ;XZ|Y )

= D(PXY Z ||PXPY WZ|X,Y ) +D(PXY X̃Ỹ Z ||PY PX̃Ỹ |Y PXZ|Y )

=
∑

x,y,x̃,ỹ,z

PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

(

log

{

PXY Z(x, y, z)

PX(x)PY (y)WZ|X,Y (z|x, y)

}

+ log

{

PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

PY (y)PX̃Ỹ |Y (x̃, ỹ|y)PXZ|Y (x, z|y)

})

=
∑

x,y,x̃,ỹ,z

PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

(

log

{

PXY Z(x, y, z)× PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

PX(x)PY (y)WZ|X,Y (z|x, y)× PY (y)PX̃Ỹ |Y (x̃, ỹ|y)PXZ|Y (x, z|y)

})

=
∑

x,y,x̃,ỹ,z

PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

(

log

{

PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

PX(x)PY (y)WZ|X,Y (z|x, y)PX̃Ỹ |Y (x̃, ỹ|y)

})



=
∑

x,y,x̃,ỹ,z

PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

(

log

{

PXY X̃Ỹ Z(x, y, x̃, ỹ, z)

PX(x)WZ|X,Y (z|x, y)PY X̃Ỹ (y, x̃, ỹ)

})

= D(PXY X̃Ỹ Z ||PXPX̃Ỹ PY |X̃Ỹ W )

(a)

≥ D(PXX̃Ỹ Z ||PXPX̃Ỹ V
1
Z|XX̃Ỹ

)

where V
(1)

Z|XX̃Ỹ
(z|x, x̃, ỹ) def

=
∑

y PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y) and (a) follows from the log sum inequality. Using Pinsker’s

inequality,

dTV

(

PXX̃Ỹ Z , PXPX̃Ỹ V
(1)

Z|XX̃Ỹ

)

<
√
η. (12)

Similarly, using (B) and (E), we obtain

dTV

(

PX̃XỸ Z , PX̃PXỸ V
(2)

Z|XX̃Ỹ

)

<
√
η (13)

where V
(2)

Z|XX̃Ỹ
(z|x, x̃, ỹ) def

=
∑

y′ PY ′|XỸ (y
′|x, ỹ)W (z|x̃, y′). Finally, using (C) and (F), we get

dTV

(

PXX̃Ỹ Z , PXX̃PỸ V
(3)

Z|XX̃Ỹ

)

<
√
η (14)

where V
(3)

Z|XX̃Ỹ
(z|x, x̃, ỹ) def

=
∑

x′ PX′|XX̃(x′|x, x̃)W (z|x′, ỹ).

2dTV

(

PXPX̃Ỹ V
(1)

Z|XX̃Ỹ
, PXPX̃PỸ V

(1)

Z|XX̃Ỹ

)

=
∑

x,x̃,ỹ,z

∣

∣

∣PX(x)PX̃Ỹ (x̃, ỹ)V
(1)

Z|XX̃Ỹ
(z|x, x̃, ỹ)− PX(x)PX̃(x̃)PỸ (ỹ)V

(1)

Z|XX̃Ỹ
(z|x, x̃, ỹ)

∣

∣

∣

=
∑

x,x̃,ỹ

(

∑

z

V
(1)

Z|XX̃Ỹ
(z|x, x̃, ỹ)

)

|PX(x)PX̃Ỹ (x̃, ỹ)− PX(x)PX̃(x̃)PỸ (ỹ)|

=

(

∑

x

PX(x)

)

∑

x̃,ỹ

|PX̃Ỹ (x̃, ỹ)− PX̃(x̃)PỸ (ỹ)|

= 2dTV (PX̃Ỹ , PX̃PỸ ) <
√
η by using (13).

We use this and (12), to show

3
√
η/2 ≥ dTV

(

PXX̃Ỹ Z , PXPX̃Ỹ V
(1)

Z|XX̃Ỹ

)

+ dTV

(

PXPX̃Ỹ V
(1)

Z|XX̃Ỹ
, PXPX̃PỸ V

(1)

Z|XX̃Ỹ

)

(a)

≥ dTV

(

PXX̃Ỹ Z , PXPX̃PỸ V
(1)

Z|XX̃Ỹ

)

where (a) uses the triangle inequality. Thus,

dTV

(

PXX̃Ỹ Z , PXPX̃PỸ V
(1)

Z|XX̃Ỹ

)

≤ 3
√
η/2. (15)

Similarly, using (12) to show that dTV

(

PX̃PXPỸ V
(2)

Z|XX̃Ỹ
, PX̃PXỸ V

(2)

Z|XX̃Ỹ

)

<
√
η/2 and (13), we obtain

dTV

(

PXX̃Ỹ Z , PXPX̃PỸ V
(2)

Z|XX̃Ỹ

)

≤ 3
√
η/2 (16)

and using (12) to show that dTV

(

PXPX̃PỸ V
(3)

Z|XX̃Ỹ
, PXX̃PỸ V

(3)

Z|XX̃Ỹ

)

and (14), we obtain

dTV

(

PXX̃Ỹ Z , PXPX̃PỸ V
(3)

Z|XX̃Ỹ

)

≤ 3
√
η/2. (17)



Suppose the channel is not A-spoofable (i.e. (3) does not hold), then there exists ζ > 0 such that for every QY |X̃Ỹ and

QX|X̃X′ , at least one of the following two conditions hold:

max
x′,x̃,ỹ,z

∣

∣

∣

∣

∣

∑

y

QY |X̃Ỹ (y|x̃, ỹ)WZ|XY (z|x′, y)−
∑

y

QY |X̃Ỹ (y|x′, ỹ)WZ|XY (z|x̃, y)
∣

∣

∣

∣

∣

> ζ (18)

max
x′,x̃,ỹ,z

∣

∣

∣

∣

∣

∑

y

QY |X̃Ỹ (y|x̃, ỹ)WZ|XY (z|x′, y)−
∑

y

QX|X̃X′(x|x̃, x′)WZ|XY (z|x, ỹ)
∣

∣

∣

∣

∣

> ζ (19)

Suppose (19) holds. We use (15) and (17) to write the following:

dTV

(

PXPX̃PỸ V
(1)

Z|XX̃Ỹ
, PXPX̃PỸ V

(3)

Z|XX̃Ỹ

)

≤ dTV

(

PXX̃Ỹ Z , PXPX̃PỸ V
(1)

Z|XX̃Ỹ

)

+ dTV

(

PXX̃Ỹ Z , PXPX̃PỸ V
(3)

Z|XX̃Ỹ

)

≤ 3
√
η.

Thus,

max
x,x̃,ỹ,z

α3

∣

∣

∣

∣

∣

∑

y

PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)−
∑

x′

PX′|XX̃(x′|x, x̃)W (z|x′, ỹ)

∣

∣

∣

∣

∣

≤ max
x,x̃,ỹ,z

PX(x)PX̃(x̃)PỸ (ỹ)

∣

∣

∣

∣

∣

∑

y

PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)−
∑

x′

PX′|XX̃(x′|x, x̃)W (z|x′, ỹ)

∣

∣

∣

∣

∣

= max
x,x̃,ỹ,z

∣

∣

∣

∣

∣

PX(x)PX̃(x̃)PỸ (ỹ)
∑

y

PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)− PX(x)PX̃(x̃)PỸ (ỹ)
∑

x′

PX′|XX̃(x′|x, x̃)W (z|x′, ỹ)

∣

∣

∣

∣

∣

≤
∑

x,x̃,ỹ,z

∣

∣

∣

∣

∣

PX(x)PX̃(x̃)PỸ (ỹ)
∑

y

PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)− PX(x)PX̃(x̃)PỸ (ỹ)
∑

x′

PX′|XX̃(x′|x, x̃)W (z|x′, ỹ)

∣

∣

∣

∣

∣

= 2dTV

(

PXPX̃PỸ V
(1)

Z|XX̃Ỹ
, PXPX̃PỸ V

(3)

Z|XX̃Ỹ

)

≤ 3
√
η.

This contradicts (19) for ζ > 3
√
η/α3. Next, we consider the case when (18) holds. In this case, for any PY |X̃Ỹ and PY ′|XỸ ,

2 max
x,x̃,ỹ,z

∣

∣

∣

∣

∣

∣

∑

y

PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)−
∑

y′

PY ′|XỸ (y
′|x, ỹ)W (z|x̃, y′)

∣

∣

∣

∣

∣

∣

= max
x,x̃,ỹ,z

∣

∣

∣

∣

∣

∣

∑

y

PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)−
∑

y′

PY ′|XỸ (y
′|x, ỹ)W (z|x̃, y′)

∣

∣

∣

∣

∣

∣

+ max
x,x̃,ỹ,z

∣

∣

∣

∣

∣

∣

∑

y

PY ′|XỸ (y|x̃, ỹ)W (z|x, y)−
∑

y′

PY |X̃Ỹ (y
′|x, ỹ)W (z|x̃, y′)

∣

∣

∣

∣

∣

∣

≥ 2 max
x,x̃,ỹ,z

∣

∣

∣

∣

∣

∣

∑

y

(

PY |X̃Ỹ (y|x̃, ỹ) + PY ′|XỸ (y|x̃, ỹ)
2

)

W (z|x, y)−
∑

y′

(

PY ′|XỸ (y
′|x, ỹ) + PY |X̃Ỹ (y

′|x, ỹ))
2

)

W (z|x̃, y′)

∣

∣

∣

∣

∣

∣

(a)
= 2 max

x,x̃,ỹ,z

∣

∣

∣

∣

∣

∣

∑

y

QY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)−
∑

y′

QY |X̃Ỹ (y
′|x, ỹ)W (z|x̃, y′)

∣

∣

∣

∣

∣

∣

(b)

≥ 2ζ



where (a) follows by defining QY |X̃Ỹ
def
=

P
Y ′|XỸ

(y′|x,ỹ)+P
Y |X̃Ỹ

(y′|x,ỹ))

2 and (b) follows from (18). Thus,

max
x,x̃,ỹ,z

∣

∣

∣

∣

∣

∣

∑

y

PY |X̃Ỹ (y|x̃, ỹ)W (z|x, y)−
∑

y′

PY ′|XỸ (y
′|x, ỹ)W (z|x̃, y′)

∣

∣

∣

∣

∣

∣

≥ ζ. (20)

Using (15) and (16), we can show that (20) (and thus, (18)) does not hold for ζ > 3
√
η/α3.

This completes the proof of the first statement. The proof of the second statement is along the same lines as the proof of the

first statement. It can be obtained by interchanging the roles of users A and B and making the following replacements in the

above proof: X → Ỹ1, Y → X ′
1, X̃ → Ỹ2, Y

′ → X ′
2, X

′ → Y, and Ỹ → X .

Fix RA = RB = δ for some positive δ (TBD). We start by showing that Pe,hon can be upper bounded by sum of Pe,mal A

and Pe,mal B. So, we only need to analyse the case when a user is malicious. To show this, we note that EmA,mB
= EmA

∪EmB
.

Thus,

Pe,hon=
1

NA ·NB

∑

(mA,mB)∈MA×MB

Wn (EmA
∪ EmB

|fA(mA), fB(mB))

≤ 1

NA ·NB

∑

(mA,mB)∈MA×MB

(

Wn (EmA
|fA(mA), fB(mB)) +Wn (EmB

|fA(mA), fB(mB))
)

=
1

NB

∑

mB∈MB

(

1

NA

∑

mA∈MA

Wn (EmA
|fA(mA), fB(mB))

)

+
1

NA

∑

mA∈MA

(

1

NB

∑

mB∈MB

Wn (EmB
|fA(mA), fB(mB))

)

≤ Pe,mal A + Pe,mal B.

So, if Pe,mal A and Pe,mal B are small, Pe,hon is also small. We will first analyse Pe,mal B. Suppose user B attacks with an attack

vector y ∈ Yn. For some η/3 > ǫ > 0, we define the following sets.

H1 =
{

mA : (xmA
,y) ∈ ∪PXY ∈Pn

X×Y
T n
XY , I(X ;Y ) > ǫ

}

H2 =
{

mA : (xmA
,y) ∈ ∪PXY ∈Pn

X×Y
T n
XY , I(X ;Y ) ≤ ǫ

}

For notational convenience, let φ(z) = (φA(z), φB(z)) and the output symbols a = (A,A) and b = (B,B). Thus, the decoder

always outputs a pair.

Pe,mal B ≤ 1

NA

|H1|+
1

NA

∑

mA∈H2





∑

PXY Z∈Dc
η

∑

z∈Tn
Z|XY

(xm
A
,y)

Wn(z|xmA
,y)





+
1

NA

∑

mA∈H2





∑

PXY Z∈Dη

∑

z∈Tn
Z|XY

(xm
A
,y),φA(z)/∈{mA,B}

Wn(z|xmA
,y)



 (21)

The first term on the RHS is upper bounded by

|Pn
X×Y | ×

| {mA : (xmA
,y) ∈ T n

XY , I(X ;Y ) > ǫ} |
NA

which goes to zero as n → ∞ by (25) and noting that there are only polynomially many types. Analysing the second term,

for mA ∈ H2 and PXY Z ∈ Dc
η ,

∑

PXY Z∈Dc
η

∑

z∈Tn
Z|XY

(xm
A
,y)

Wn(z|xmA
,y) ≤ |Dc

η| exp (−nD(PXY Z ||PXY W ))



= |Dc
η| exp (−n (D(PXY Z ||PXPY W )− I(X ;Y )))

≤ |Dc
η| exp (−n (η − ǫ)) → 0 when ǫ < η.

We are left to analyse the last term. For (xmA
,y, z) ∈ PXY Z such that PXY Z ∈ Dη and mA ∈ H2, φA(z) /∈ {mA,B} when

one of the following happens (follows from Lemma 8).

• |DA(η, z)| = |DB(η, z)| = 1, but mA /∈ DA(η, z).

• |DA(η, z)| = 0.

To formalize this, we define the following sets. For mA ∈ MA,

GmA
= {z : (xmA

,y, z) ∈ PXY Z , PXY Z ∈ Dη, I(X,Y ) ≤ ǫ}

GmA,0 = GmA
∩ {z : φA(z) /∈ {mA,B}}

GmA,1 = GmA
∩ {z : |DA(η, z)| = |DB(η, z)| = 1,mA /∈ DA(η, z)}

GmA,2 = GmA
∩ {z : |DA(η, z)| = 0}

GmA,3 = GmA
∩ {z : mA /∈ DA(η, z)}

We are interested in GmA,0. Note that GmA,0 ⊆ GmA,1 ∪GmA,2 ⊆ GmA,3. So, it suffices to upper bound the probability of GmA,3

when xmA
is sent by user A and y by user B. From the definition of DA(η, z), we see that GmA,3 is the set of z ∈ Zn which

satisfy decoding condition (i) (this is because z ∈ GmA,3 implies z ∈ GmA
) but do not satisfy either decoding condition (ii) or

decoding condition (iii). We capture this by defining the following sets of distributions:

P1 = {PXX̃Y Ỹ Z ∈ Pn
X×X×Y×Y×Z : PXY Z ∈ Dη, I(X ;Y ) ≤ ǫ, PX̃Y ′Z ∈ Dη for some Y ′,

PX′Ỹ Z ∈ Dη for some X ′, PX = PX̃ = PA, PỸ = PB and I(X̃Ỹ ;XZ|Y ) ≥ η}

P2 = {PXỸ1Ỹ2Y Z ∈ Pn
X×Y×Y×Y×Z : PXY Z ∈ Dη, I(X ;Y ) ≤ ǫ, PX′

1
Ỹ1Z

∈ Dη for some X ′
1,

PX′
2
Ỹ2Z

∈ Dη for some X ′
2, PX = PA, PỸ1

= PỸ2
= PB and I(Ỹ1Ỹ2;XZ|Y ) ≥ η}.

For PXX̃Y Ỹ Z ∈ P1 and PXỸ1Ỹ2Y Z ∈ P2, let

EmA,1(PXX̃Y Ỹ Z) =
{

z : ∃(m̃A, m̃B) ∈ MA ×MB, m̃A 6= mA, (xmA
,xm̃A

,y,ym̃B
, z) ∈ T n

XX̃Y Ỹ Z

}

and

EmA,2(PXỸ1Ỹ2Y Z) =
{

z : ∃m̃B1, m̃B2 ∈ MB, m̃B1 6= m̃B2, (xmA
,ym̃B1

,ym̃B2
,y, z) ∈ T n

XỸ1Ỹ2Y Z

}

.

Note that GmA,3 =
(

∪P
XX̃Y Ỹ Z

∈P1
EmA,1(PXX̃Y Ỹ Z)

)

∪
(

∪P
XỸ1 Ỹ2Y Z

∈P2
EmA,2(PXỸ1Ỹ2Y Z)

)

.

Thus, the last term in (21) can be analysed as below.

1

NA

∑

mA∈H2





∑

PXY Z∈Dη

∑

z∈Tn
Z|XY

(xm
A
,y),φA(z)/∈{mA,B}

Wn(z|xmA
,y)





≤ 1

NA

∑

mA∈H2

∑

P
XX̃Y Ỹ Z

∈P1

Wn (EmA,1(PXX̃Y Ỹ Z)|xmA
,y)

+
1

NA

∑

mA∈H2

∑

P
XỸ1Ỹ2Y Z

∈P2

Wn
(

EmA,2(PXỸ1Ỹ2Y Z)|xmA
,y
)

. (22)



We see that |P1| and |P2| are at most polynomial and clearly |H2| ≤ NA. So, it will suffice to uniformly upper bound

Wn (EmA,1(PXX̃Y Ỹ Z)|xmA
,y) and Wn

(

PXỸ1Ỹ2Y Z)|xmA
,y
)

by a term exponentially decreasing in n for all PXX̃Y Ỹ Z ∈ P1

and PXỸ1Ỹ2Y Z ∈ P2. We start with the first term in the RHS of (22). By using (26), we see that for PXX̃Y Ỹ Z ∈ P1 such that

I
(

X ; X̃Ỹ Y
)

> |RA − I(X̃; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+ + ǫ

∣

∣

∣

{

mA : (xmA
,xm̃A

,ymB
,y) ∈ T n

XX̃Ỹ Y
for some m̃A 6= mA and some mB

}∣

∣

∣

NA

≤ exp {−nǫ/2} .

So,

1

NA

∑

mA∈H2

Wn (EmA,1(PXX̃Y Ỹ Z)|xmA
,y)

=
1

NA

∑

mA:(xm
A
,xm̃

A
,ym

B
,y)∈Tn

XX̃Ỹ Y
,

m̃A∈MA,m̃A 6=mA,mB∈MB

∑

z∈Tn

Z|XX̃Y Ỹ
(xm

A
,xm̃

A
,y,ym̃

B
)

Wn (z|xmA
,y)

≤ exp {−nǫ/2} .

Thus, it is sufficient to consider distributions PXX̃Y Ỹ Z ∈ P1 for which

I
(

X ; X̃Ỹ Y
)

≤ |RA − I(X̃; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+ + ǫ (23)

For PXX̃Y Ỹ Z ∈ P1 satisfying (23),

∑

z∈Em
A
,1(PXX̃Y Ỹ Z

)

Wn(z|xmA
,y)

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

∑

z:(xm
A
,xm̃

A
,ym̃

B
,y,z)∈Tn

XX̃Ỹ Y Z

Wn(z|xmA
,y)

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

|T n
Z|XX̃Ỹ Y

(xmA
,xm̃A

,ym̃B
,y)|

|T n
Z|XY (xmA

,y)|

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

exp
(

nH(Z|XX̃Ỹ Y )
)

(n+ 1)−|X ||Y||Z| exp (nH(Z|XY ))

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

exp
(

−n
(

I(Z; X̃Ỹ |XY )− ǫ
))

for large n.

(a)

≤ exp
(

n
(

|RA − I(X̃; Ỹ XY )|+ + |RB − I(Ỹ ;XY )|+ − I(Z; X̃Ỹ |XY ) + 2ǫ
))

where (a) follows using (27). We see that

I(Z; X̃Ỹ |XY ) = I(XZ; X̃Ỹ |Y )− I(X ; X̃Ỹ |Y )

(a)

≥ η − I(X ; X̃Ỹ Y )

(b)

≥ η − |RA − I(X̃; Ỹ Y )|+ − |RB − I(Ỹ ;Y )|+ − ǫ



where (a) uses the condition I(XZ; X̃Ỹ |Y ) ≥ η from definition of P1 and the fact that I(X ; X̃Ỹ Y ) ≥ I(X ; X̃Ỹ |Y ) and (b)

follows from (23). This implies that

∑

z∈Em
A
,1(PXX̃Y Ỹ Z

)

Wn(z|xmA
,y)

≤ exp
(

n
(

|RA − I(X̃; Ỹ XY )|+ + |RB − I(Ỹ ;XY )|+ + |RA − I(X̃ ; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+ − η + 3ǫ
))

≤ exp (n (4δ − η + 3ǫ))

→ 0 when η > 3ǫ+ 4δ.

Now, we move on to the second term in the RHS of (22). We see that by using (28), it is sufficient to consider distribution

PXỸ1Ỹ2Y Z ∈ P2 for which

I
(

X ; Ỹ1Ỹ2Y
)

≤ |RB − I(Ỹ1;Y )|+ + |RB − I(Ỹ2; Ỹ1Y )|+ + ǫ. (24)

For PXỸ1Ỹ2Y Z ∈ P2 satisfying (24),

∑

z∈Em
A
,y,2(PXỸ1Ỹ2Y Z

)

Wn(z|xmA
,y)

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

∑

z:(xm
A
,ym̃

B1
,ym̃

B2
,y,z)∈Tn

XỸ1Ỹ2Y Z

Wn(z|xmA
,y)

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

|T n
Z|XỸ1Ỹ2Y

(xmA
,ym̃B1

,ym̃B2
,y)|

|T n
Z|XY (xmA

,y)|

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

exp
(

nH(Z|XỸ1Ỹ2Y )
)

(n+ 1)−|X ||Y||Z| exp (nH(Z|XY ))

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

exp
(

−n
(

I(Z; Ỹ1Ỹ2|XY )− ǫ
))

for large n.

(a)

≤ exp
(

n
(

|RB − I(Ỹ1;XY )|+ + |RB − I(Ỹ2; Ỹ1XY )|+ − I(Z; Ỹ1Ỹ2|XY ) + 2ǫ
))

(b)

≤ exp
(

n
(

|RB − I(Ỹ1;XY )|+ + |RB − I(Ỹ2; Ỹ1XY )|+ + |RB − I(Ỹ1;Y )|+

+ |RB − I(Ỹ2; Ỹ1Y )|+ − η + 3ǫ
))

≤ exp (n (4δ − η + 3ǫ))

→ 0 when η > 3ǫ+ 4δ.

where (a) follows using (29) and (b) follows from (24) and definition of P2.

Similarly, we can show that if η > 3ǫ+ 4δ the probability of error goes to zero with n when user A is malicious.



APPENDIX B

CODEBOOK FOR THEOREM 1 AND 3

Lemma 9 (codebook lemma). Suppose X ,Y,Z are finite. Let PA ∈ Pn
X and PB ∈ Pn

Y . For any ǫ > 0, there exists n0(ǫ) such

that for all n ≥ n0(ǫ), NA, NB ≥ exp(nǫ), there exists codebooks {x1,x2, . . . ,xNA
} of type PA and {y1,y2, . . . ,yNB

} of type

PB such that for every x,x′ ∈ Xn and y,y′ ∈ Yn, and joint types PXX̃Ỹ Y ∈ Pn
X×X×Y×Y and PX′Ỹ1Ỹ2Y ′ ∈ Pn

X×Y×Y×Y

such that PX = PX̃ = PX′ = PA, PỸ1
= PỸ1

= PB, (x,y) ∈ T n
XY and (x′,y′) ∈ T n

X′Y ′ , and for RA

def

= (1/n) logNA and

RB

def

= (1/n) logNB where RA ≤ H(X) and RB ≤ H(Ỹ1) = H(Ỹ2), the following holds:

|{mA : (xmA
,y) ∈ T n

XY }|
NA

≤ exp {−nǫ/2} , if I(X ;Y ) > ǫ (25)
∣

∣

∣

{

mA : (xmA
,xm̃A

,ymB
,y) ∈ T n

XX̃Ỹ Y
for some m̃A 6= mA and some mB

}∣

∣

∣

NA

≤ exp {−nǫ/2}

if I(X ; X̃Ỹ Y )− |RA − I(X̃ ; Ỹ Y )|+ − |RB − I(Ỹ ;Y )|+ > ǫ (26)

∣

∣

{

(m̃A, m̃B) : (x,xm̃A
,ym̃B

,y) ∈ T n
XX̃Ỹ Y

}∣

∣

≤ exp
{

n
(

|RA − I(X̃ ; Ỹ XY )|+ + |RB − I(Ỹ ;XY )|+ + ǫ
)}

(27)
∣

∣

∣

{

mA : (xmA
,ym̃B1

,ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′ for some m̃B1, m̃B2,
}∣

∣

∣

NA

≤ exp {−nǫ/2}

if I(X ′; Ỹ1Ỹ2Y
′)− |RB − I(Ỹ1;Y

′)|+ − |RB − I(Ỹ2; Ỹ1Y
′)|+ > ǫ (28)

and

∣

∣

∣

{

(m̃B1, m̃B2) : (x
′,ym̃B1

,ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣

≤ exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + |RB − I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ
)}

. (29)

Analogous statements hold when the roles of users A and B are interchanged.

Proof. This proof is along the lines of the proof of [7, Lemma 3]. We will generate the codebook by a random experiment. For

fixed x,x′, y,y′,PXX̃Ỹ Y and PX′Ỹ1Ỹ2Y ′ satisfying the conditions of the Lemma, we will show that the probability that each

of the statements (25) - (29) does not hold falls doubly exponentially in n. Since, |Xn|, |Yn|, |PX×X×Y×Y| and |PX×Y×Y×Y |
grow at most exponentially in n, a union bound will imply that the probability that any of the statements (25) - (29) fail

for some x,x′,y,y′,PXX̃Ỹ Y and PX′Ỹ1Ỹ2Y ′ also falls doubly exponentially. This will show existence of a codebook which

satisfies (25) - (29). The proof will employ [7, Lemma A1], which is stated below.

Lemma 10. [7, Lemma A1] Let Z1, . . . , ZN be arbitrary random variables, and let fi(Z1, . . . , Zi) be arbitrary with 0 ≤
fi ≤ 1, i = 1, . . . , N . Then the condition

E [fi(Z1, . . . , Zi)|Z1, . . . , Zi−1] ≤ a a.s., i = 1, . . . , N, (30)

implies that

P

{

1

N

N
∑

i=1

fi(Z1, . . . , Zi) > t

}

≤ exp {−N(t− a log e)}. (31)

We denote the type classes of PA and PB by T n
A

and T n
B

respectively. Let X1,X2, . . . ,XNA
be independent random

vectors each uniformly distributed on T n
A

and Y1,Y2, . . . ,YNB
be another set of independent random vectors (independent of

X1,X2, . . . ,XNA
) with each element uniformly distributed on T n

B
. (X1,X2, . . . ,XNA

) and (Y1,Y2, . . . ,YNB
) are the random



codebooks for user A and B respectively. Fix PXX̃Ỹ Y ∈ PX×X×Y×Y , PX′Ỹ1Ỹ2Y ′ ∈ Pn
X×Y×Y×Y , x,x′ ∈ T n

A
and y,y′ ∈ Yn

such that PX = P ′
X = PX̃ = PA, PỸ1

= PỸ1
= PB, (x,y) ∈ T n

XY and (x′,y′) ∈ T n
X′Y ′ .

Analysis of (27)

Define

gi(y1,y2, . . . ,yi)
def
=











1, if yi ∈ T n
Ỹ |XY

(x,y)

0, otherwise,

(32)

and for ỹ ∈ T n
Ỹ |XY

(x,y),

hỹ
i (x1,x2, . . . ,xi)

def
=











1, if xi ∈ T n
X̃|Ỹ XY

(ỹ,x,y)

0, otherwise.

(33)

Let events E , E1 and E ỹ
2 be defined as

E =
{

∣

∣

{

(m̃A, m̃B) : (x,Xm̃A
,Ym̃B

,y) ∈ T n
XX̃Ỹ Y

}∣

∣

> exp
{

n
(

|RA − I(X̃;XY Ỹ )|+ + |RB − I(Ỹ ;XY )|+ + ǫ
)}}

,

E1 =

{

NB
∑

i=1

gi(Y1,Y2, . . . ,Yi) > exp
{

n
(

|RB − I(Ỹ ;XY )|+ +
ǫ

2

)}

}

, and

E ỹ
2 =







NA
∑

j=1

hỹ
j (X1,X2, . . . ,Xj) > exp

{

n
(

|RA − I(X̃; Ỹ XY )|+ +
ǫ

2

)}







.

We note that

∣

∣

{

(m̃A, m̃B) : (x,Xm̃A
,Ym̃B

,y) ∈ T n
XX̃Ỹ Y

}∣

∣

=

NB
∑

i=1

gi(Y1,Y2, . . . ,Yi)





NA
∑

j=1

hYi

j (X1,X2, . . . ,Xj)



 .

Thus, E ⊆
(

∪ỹ∈TỸ |XY (x,y)E ỹ
2

)

∪ E1. In order to apply Lemma 10 to (32) with (Y1, . . . ,YNB
) as the random variables

(Z1, . . . , ZN), we note that

E [gi(Y1, . . . ,Yi)|Y1, . . . ,Yi−1] =P

{

Yi ∈ T n
Ỹ |XY

(x,y)
}

=
|T n

Ỹ |XY
(x,y)|

|T n
B
|

(a)

≤
exp

(

nH(Ỹ |XY )
)

(n+ 1)−|Y| exp
(

nH(Ỹ )
)

=(n+ 1)|Y| exp
(

−nI(Ỹ ;XY )
)

,

where (a) follows because PB = PỸ and thus |T n
B
| = |T n

Ỹ
|. Taking t = 1

NB

exp
{

n
(

|RB − I(Ỹ ;XY )|+ + ǫ
2

)}

and n ≥ n1(ǫ),

where n1(ǫ)
def
=min

{

n : (n+ 1)|Y| log e < 1
2 exp(

nǫ
2 )
}

, we see that NB(t− a log e) ≥ (1/2) exp(nnǫ
2 ). Using (31), this gives

us

P(E1) ≤ exp

{

−1

2
exp

{nǫ

2

}

}

. (34)



Similarly, we apply Lemma 10 to (33) with (X1, . . . ,XNA
) as the random variables (Z1, . . . , ZN). We can show that a =

(n+ 1)|X | exp
(

−nI(X̃; Ỹ XY )
)

satisfies (30). We take t = 1
NA

exp
{

n
(

|RA − I(X̃ ; Ỹ XY )|+ + ǫ
2

)}

and n ≥ n2(ǫ) where

n2(ǫ)
def
= min

{

n : (n+ 1)|X | log e < 1
2 exp(

nǫ
2 )
}

. This gives NA(t − a log e) ≥ (1/2) exp(nǫ2 ) which, when plugged in (31),

gives

P

(

E ỹ
2

)

≤ exp

{

−1

2
exp

{nǫ

2

}

}

. (35)

Using (34) and (35),

P (E) ≤
(

|T n
Ỹ |XY

(x,y)|+ 1
)

exp

{

−1

2
exp

{nǫ

2

}

}

. (36)

This shows that the probability that (27) does not hold falls doubly exponentially.

Analysis of (25)

We will use the same arguments as used in obtaining (35). We replace X̃ with X , (Ỹ , X, Y ) with Y , to obtain

P

{

|{mA : (xmA
,y) ∈ T n

XY , }| > exp
{

n
(

|RA − I(X ;Y )|+ +
ǫ

2

)}}

≤ exp

{

−1

2
exp

{nǫ

2

}

}

.

So,

P

{

1

NA

|{mA : (xmA
,y) ∈ T n

XY , }| > exp
{

n
(

|RA − I(X ;Y )|+ −RA +
ǫ

2

)}

}

≤ exp

{

−1

2
exp

{nǫ

2

}

}

.

We are given that I(X ;Y ) > ǫ. When RA > I(X ;Y ), we have |RA − I(X ;Y )|+−RA + ǫ
2 = ǫ

2 − I(X ;Y ) ≤ − ǫ
2 . When

RA ≤ I(X ;Y ), we have |RA − I(X ;Y )|+−RA + ǫ
2 = ǫ

2 −RA ≤ − ǫ
2 (because R ≥ ǫ). Thus

P

{

1

NA

|{mA : (xmA
,y) ∈ T n

XY , }| > exp

{−nǫ

2

}}

≤ P

{

1

NA

|{mA : (xmA
,y) ∈ T n

XY , }| > exp
{

n
(

|RA − I(X ;Y )|+ −RA +
ǫ

2

)}

}

≤ exp

{

−1

2
exp

{nǫ

2

}

}

.

Analyses of (26)

For i ∈ [1 : NA], let Ai be the set of indices (j, k) ∈ [1 : NA] × [1 : NB], j < i such that (xj ,yk) ∈ T n
X̃Ỹ |Y

(y) provided

|Ai| ≤ exp
{

n
(

|RA − I(X̃ ; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+
)

+ ǫ
4

}

. Otherwise, Ai = ∅. Let

f
[y1,y2,...,yN

B
]

i (x1,x2, . . . ,xi) =











1, if xi ∈ ∪(j,k)∈Ai
T n
X|X̃Ỹ Y

(xj ,yk,y)

0, otherwise.

Then,

P

{

NA
∑

i=1

f
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) 6=
∣

∣

∣

{

i : Xi ∈ T n
X|X̃Ỹ Y

(Xj ,Yk,y) for some j < i and some k
}∣

∣

∣

}

=P

{

∣

∣

{

(m̃A, m̃B) : (Xm̃A
,Ym̃B

,y) ∈ T n
X̃Ỹ Y

}∣

∣ > exp
{

n
(

|RA − I(X̃ ; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+
)

+
ǫ

4

}}

≤
(

|TỸ |Y (y)|+ 1
)

exp

{

−1

2
exp

{nǫ

8

}

}

, (37)

where the last inequality can be obtained from the definition of event E and (36) where we replace (X,Y ) with Y , (x,y)

with y, and ǫ with ǫ/4.



For yi ∈ T n
B
, i = 1, . . . , NB, we will apply Lemma 10 on f

[y1,y2,...,yN
B
]

i with (X1, . . . ,XNA
) as the ran-

dom variables (Z1, . . . , ZN). We will first compute the value of a in (30). We note that, for i ∈ [1 : NA],

E
[

f
[y1,y2,...,yN

B
]

i (X1,X2, . . . ,Xi)
∣

∣

∣X1,X2, . . . ,Xi−1

]

, being a random function of (X1,X2, . . . ,Xi−1), is a random

variable. We will compute it for (X1,X2, . . . ,Xi−1) = (x1,x2, . . . ,xi−1).

E
[

f
[y1,y2,...,yN

B
]

i (X1,X2, . . . ,Xi)
∣

∣

∣
(X1,X2, . . . ,Xi−1) = (x1,x2, . . . ,xi−1)

]

= P

(

Xi ∈ ∪(j,k)∈Ai
T n
X|X̃Ỹ Y

(xj ,yk,y)
)

(a)

≤ |Ai|
exp

{

nH(X |X̃Ỹ Y )
}

(n+ 1)−|X | exp(nH(X))

= (n+ 1)|X | exp
{

n
(

|RA − I(X̃; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+
)

− I(X ; X̃Ỹ Y ) +
ǫ

4

}

,

where (a) follows by union bound over (j, k) ∈ Ai and by noting that |T n
A
| = |T n

X |. For all i ∈ [1 : NA], this upper bound holds

for every realization of (X1,X2, . . . ,Xi−1). Thus, in (30), we may take a = (n+ 1)|X | exp
{

n
(

|RA − I(X̃; Ỹ Y )|++|RB −
I(Ỹ ;Y )|+

)

−I(X ; X̃Ỹ Y )+ ǫ
4

}

. If I(X ; X̃Ỹ Y ) > |RA−I(X̃; Ỹ Y )|++|RB−I(Ỹ ;Y )|++ǫ (as postulated in (26)), (30) holds

with a = (n+1)|X | exp
{

− 3
4nǫ
}

. For t = exp
{

−nǫ
2

}

and n ≥ n2(ǫ) with n2(ǫ)
def
= min

{

n : (n+ 1)|X | log e < 1
2 exp

{

nǫ
4

}}

,

we get

P

{

1

NA

NA
∑

i=1

f
[y1,y2,...,yN

B
]

i (X1,X2, . . . ,Xi) > exp

{−nǫ

2

}

}

≤ exp

{

−NA

2
exp

{

−nǫ

2

}

}

≤ exp

{

−1

2
exp

{nǫ

2

}

}

,

where the last inequality uses the assumption that NA ≥ exp {nǫ}.

Averaging over (Y1, . . . ,YB), we get

P

{

1

NA

NA
∑

i=1

f
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) > exp

{−nǫ

2

}

}

≤ exp

{

−1

2
exp

{nǫ

2

}

}

. (38)

Let events F1 and F2 be defined as

F1 =

{

1

NA

∣

∣

∣

{

i : Xi ∈ T n
X|X̃Ỹ Y

(Xj ,Yk,y) for some, j < i and k
}∣

∣

∣ > exp

{−nǫ

2

}}

,

F2 =

{

NA
∑

i=1

f
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) 6=
∣

∣

∣

{

i : Xi ∈ T n
X|X̃Ỹ Y

(Xj ,Yk,y) for some j < i and some k
}∣

∣

∣

}

,

F3 =

{

NA
∑

i=1

f
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) > exp

{−nǫ

2

}

}

.

We are interested in P (F1). We see that

P (F1) = P (F1 ∩ F2) + P (F1 ∩ Fc
2)

≤ P (F2) + P (F1 ∩ Fc
2)

≤ P (F2) + P (F3)



(a)

≤
(

|TỸ |Y (y)|+ 1
)

exp

{

−1

2
exp

{nǫ

8

}

}

+ exp

{

−1

2
exp

{nǫ

2

}

}

≤
(

|TỸ |Y (y)|+ 2
)

exp

{

−1

2
exp

{nǫ

8

}

}

,

where (a) follows from (37) and (38). Thus,

P

(

1

NA

∣

∣

∣

{

i : Xi ∈ T n
X|X̃Ỹ Y

(Xj ,Yk,y) for some, j < i and k
}∣

∣

∣ > exp

{−nǫ

2

})

≤
(

|TỸ |Y (y)|+ 2
)

exp

{

−1

2
exp

{nǫ

8

}

}

.

By symmetry, we get the same upper bound when j > i. Thus,

P







∣

∣

∣

{

mA : (XmA
,Xm̃A

,YmB
,y) ∈ T n

XX̃Ỹ Y
for some m̃A 6= mA and some mB

}∣

∣

∣

NA

> exp {−nǫ/2}







< 2
(

|TỸ |Y (y)|+ 2
)

exp

{

−1

2
exp

{nǫ

8

}

}

.

This completes the analysis for (26).

Analysis of (29)

We will split the analysis in two parts as suggested by the inequalities below.

P

{∣

∣

∣

{

(m̃B1, m̃B2) : (x
′,ym̃B1

,ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣ > exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + |RB − I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ
)}}

≤ P

{ ∣

∣

∣

{

(m̃B1, m̃B2) : m̃B1 6= m̃B2, (x
′,Ym̃B1

,Ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣

> 1/2 exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + |RB − I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ
)}}

+ P

{ ∣

∣

∣

{

(m̃B1, m̃B2) : m̃B1 = m̃B2, (x
′,Ym̃B1

,Ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣

> 1/2 exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + |RB − I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ
)}}

≤ P

{ ∣

∣

∣

{

(m̃B1, m̃B2) : m̃B1 6= m̃B2, (x
′,Ym̃B1

,Ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣

> exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + |RB − I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ′
)}}

+ P

{ ∣

∣

∣

{

(m̃B1, m̃B2) : m̃B1 = m̃B2, (x
′,Ym̃B1

,Ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣

> exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + |RB − I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ′
)}}

for ǫ′ = ǫ/2. We first consider the case when m̃B1 6= m̃B2.

We follow arguments similar to those for (27) and get the upper bound. We define

g̃i(y1,y2, . . . ,yi)
def
=











1, if yi ∈ T n
Ỹ1|X′Y ′(x

′,y′)

0, otherwise.

(39)

For ỹ ∈ T n
Ỹ1|X′Y ′(x

′,y′),

h̃ỹ
i (y1,y2, . . . ,yi)

def
=











1, if yi ∈ T n
Ỹ2|Ỹ1X′Y ′(ỹ,x

′,y′)

0, otherwise.

(40)

Define events Ẽ and Ẽ1 as

Ẽ =
{ ∣

∣

∣

{

(m̃B1, m̃B2) : m̃B1 6= m̃B2, (x
′,Ym̃B1

,Ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣



> exp
{

n
(

|RB − I(Ỹ2;X
′Y ′Ỹ1)|+ + |RB − I(Ỹ1;X

′Y ′)|+ + ǫ′
)}}

,

Ẽ1 =

{

NB
∑

i=1

g̃i(Y1,Y2, . . . ,Yi) > exp

{

n

(

|RB − I(Ỹ1;X
′Y ′)|+ +

ǫ′

2

)}

}

.

Let R′
B

def
= log (NB−1)

n =
log (2nR

B−1)
n . For i ∈ [1 : NB] and ỹ ∈ T n

Ỹ1|X′Y ′(x
′,y′), define events Ẽ i,ỹ

2 and Ẽ i,ỹ
2,† as

Ẽ i,ỹ
2 =







NB
∑

j=1,j 6=i

h̃ỹ
j (Y1,Y2, . . . ,Yj) > exp

{

n

(

|RB − I(Ỹ2; Ỹ1X
′Y ′)|+ +

ǫ′

2

)}







Ẽ i,ỹ
2,† =







NB
∑

j=1,j 6=i

h̃ỹ
j (Y1,Y2, . . . ,Yj) > exp

{

n

(

|R′
B − I(Ỹ2; Ỹ1X

′Y ′)|+ +
ǫ′

2

)}







Note that

∣

∣

∣

{

(m̃B1, m̃B2) : m̃B1 6= m̃B2 and (x′,Ym̃B1
,Ym̃B2

,y′) ∈ T n
X′Ỹ1Ỹ2Y ′

}∣

∣

∣

=

NB
∑

i=1

g̃i(Y1,Y2, . . . ,Yi)





NB
∑

j=1,j 6=i

h̃Yi

j (Y1,Y2, . . . ,Yj)



 .

Since,

P

(

Ẽ2
i,Yi
)

=
∑

ỹ∈Yn

P (Yi = ỹ)P
(

Ẽ2
i,Yi |Yi = ỹ

)

=
∑

ỹ∈Yn

P (Yi = ỹ)P
(

Ẽ2
i,ỹ
)

,

and Ẽ i,ỹ
2 ⊆ Ẽ i,ỹ

2,† for all i ∈ [1 : NB],

Ẽ ⊆
(

∪i∈2nR
B
∪ỹ∈TỸ1|X′Y ′(x′,y′) Ẽ i,ỹ

2

)

∪ Ẽ1

⊆
(

∪i∈2nR
B
∪ỹ∈TỸ1|X′Y ′(x′,y′) Ẽ i,ỹ

2,R′
B

)

∪ Ẽ1.

We apply Lemma 10 to (39) with (Y1, . . . ,YNB
) as the random variables (Z1, . . . , ZN ). We can show that a = (n +

1)|Y| exp
(

−nI(Ỹ1;X
′Y ′)

)

satisfies (30). We take t = 1
NB

exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + ǫ′

2

)}

and n ≥ n1(ǫ
′) (recall that

n1(ǫ
′) = min

{

n : (n+ 1)|Y| log e < 1
2 exp(

nǫ′

2 )
}

). This gives NB(t−a log e) ≥ (1/2) exp(nǫ
′

2 ) which, when plugged in (31),

gives

P

(

Ẽ1
)

≤ exp

{

−1

2
exp

{

nǫ′

2

}}

. (41)

Similarly, for i ∈ [1 : NB], we can apply Lemma 10 to (40) with (Y1, . . . ,Yi−1,Yi+1,YNB
) as the random

variables (Z1, . . . , ZN ). We can show that a = (n + 1)|Y| exp
(

−nI(Ỹ2; Ỹ1X
′Y ′)

)

satisfies (30). Choose, t =

1
NB−1 exp

{

n
(

|R′
B
− I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ′

2

)}

and n ≥ n1(ǫ
′) to obtain

P

(

Ẽ i,ỹ
2,†

)

≤ exp

{

−1

2
exp

{

nǫ′

2

}}

, ỹ ∈ TỸ1|X′Y ′(x
′,y′). (42)

Using (41) and (42), we see that

P

(

Ẽ
)

≤
(

2nRB |TỸ |X′Y ′(x
′,y′)|+ 1

)

exp

{

−1

2
exp

{

nǫ′

2

}}

.



When m̃B1 = m̃B2 and Ỹ1 6= Ỹ2,

∣

∣

∣

{

(m̃B1, m̃B2) : (x
′,Ym̃B1

,Ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣ = 0 w.p. 1.

When m̃B1 = m̃B2 and Ỹ1 = Ỹ2,

P

{∣

∣

∣

{

(m̃B1, m̃B2) : (x
′,Ym̃B1

,Ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣ > exp
{

n
(

|RB − I(Ỹ2;X
′Y ′Ỹ1)|+ + |RB − I(Ỹ1;X

′Y ′)|+ + ǫ′
)}}

= P

{∣

∣

∣

{

m̃B1 : (x′,Ym̃B1
,y′) ∈ T n

X′Ỹ1Y ′

}∣

∣

∣ > exp
(

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + ǫ′

))}

≤ exp {−1/2 exp(nǫ′)} .

The equality follows from the condition that RB ≤ H(Ỹ2) and the inequality follows from [7][(A7)]. Thus,

P

{∣

∣

∣

{

(m̃B1, m̃B2) : (x
′,ym̃B1

,ym̃B2
,y′) ∈ T n

X′Ỹ1Ỹ2Y ′

}∣

∣

∣ > exp
{

n
(

|RB − I(Ỹ1;X
′Y ′)|+ + |RB − I(Ỹ2; Ỹ1X

′Y ′)|+ + ǫ′
)}}

≤
(

2nRB |TỸ |X′Y ′(x
′,y′)|+ 1

)

exp

{

−1

2
exp

{

nǫ′

2

}}

+ exp {−1/2 exp(nǫ′)}

≤
(

2nRB |TỸ |X′Y ′(x
′,y′)|+ 1

)

exp

{

−1

2
exp

{nǫ

4

}

}

+ exp

{

−1

2
exp

{nǫ

2

}

}

. (43)

This completes the analysis of (29)

Analysis of (28)

Let A be the set of indices (j, k) ∈ [1 : NB] × [1 : NB] such that (yj ,yk) ∈ T n
Ỹ1Ỹ2|Y ′(y

′) provided |A| ≤
exp

{

n
(

|RB − I(Ỹ2; Ỹ1Y
′)|+ + |RB − I(Ỹ1;Y

′)|+
)

+ ǫ
4

}

. Otherwise, A = ∅. Let

f̃
[y1,y2,...,yN

B
]

i (x1,x2, . . . ,xi) =











1, if xi ∈ ∪(j,k)∈AT
n
X′|Ỹ1Ỹ2Y ′

(yj ,yk,y
′)

0, otherwise.

P

{

NA
∑

i=1

f̃
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) 6=
∣

∣

∣

{

i : Xi ∈ T n
X|Ỹ1Ỹ2Y ′(Yj ,Yk,y

′) for some j 6= k
∣

∣

∣

}

}

=P

{

∣

∣

∣

{

(m̃B1, m̃B2) : (Ym̃B1
,Ym̃B2

,y′) ∈ T n
Ỹ1Ỹ2Y ′

}∣

∣

∣

> exp
{

n
(

|RB − I(Ỹ1; Ỹ2Y
′)|+ + |RB − I(Ỹ1;Y

′)|+
)

+
ǫ

4

}

}

≤
(

2nRB |TỸ |Y ′(y
′)|+ 1

)

exp

{

−1

2
exp

{nǫ

8

}

}

+ exp

{

−1

2
exp {nǫ}

}

. (44)

where last inequality follows from (43) by replacing (x′,y′) with y′, (X ′,Y ′) with Y ′ and ǫ
2 (or ǫ′) with ǫ

4 .

For yi ∈ T n
A
, i = 1, . . . ,yNB

, we will apply Lemma 10 on f̃
[y1,y2,...,yN

B
]

i with (X1, . . . ,XNA
) as the random variables

(Z1, . . . , ZN). We will first compute the value of a in (30).

E
[

f̃
[y1,y2,...,yN

B
]

i (X1,X2, . . . ,Xi)
∣

∣

∣(X1,X2, . . . ,Xi−1)
]

= P

(

Xi ∈ ∪(j,k)∈AT
n
X′|Ỹ1Ỹ2Y ′(yj ,yk,y

′)
)

(a)

≤ |A|
exp

{

nH(X ′|Ỹ1Ỹ2Y
′)
}

(n+ 1)−|X | exp(nH(X ′))



≤ (n+ 1)|X | exp
{

n
(

|RB − I(Ỹ2; Ỹ1Y
′)|+ + |RB − I(Ỹ1;Y

′)|+
)

− I(X ′; Ỹ1Ỹ2Y
′) +

ǫ

4

}

.

where (a) follows by union bound over (j, k) ∈ A and by noting that |T n
A
| = |T n

X′ |. If I(X ′; Ỹ1Ỹ2Y
′) > |RB−I(Ỹ2; Ỹ1Y

′)|++

|RB−I(Ỹ1;Y
′)|++ ǫ (which (28) postulates), (30) holds with a = (n+1)|X | exp

{

− 3
4nǫ
}

. For t = exp
{

−nǫ
2

}

and n ≥ n2(ǫ)

(recall that n2(ǫ) = min
{

n : (n+ 1)|X | log e < 1
2 exp

{

nǫ
4

}}

, we get

P

{

1

NA

NA
∑

i=1

f̃
[y1,y2,...,yN

B
]

i (X1,X2, . . . ,Xi) > exp

{−nǫ

2

}

}

≤ exp

{

−NA

2
exp

{

−nǫ

2

}

}

≤ exp

{

−1

2
exp

{nǫ

2

}

}

where the last inequality uses the assumption that NA ≥ exp {nǫ}. Averaging over (Y1, . . . ,YB), we get

P

{

1

NA

NA
∑

i=1

f̃
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) > exp

{−nǫ

2

}

}

≤ exp

{

−1

2
exp

{nǫ

2

}

}

(45)

Let events F̃1 and F̃2 be defined as

F̃1 =

{

1

NA

∣

∣

∣

{

i : Xi ∈ T n
X|Ỹ1Ỹ2Y ′(Yj ,Yk,y

′) for some, j
}∣

∣

∣ > exp

{−nǫ

2

}}

,

F̃2 =

{

NA
∑

i=1

f̃
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) 6=
∣

∣

∣

{

i : Xi ∈ T n
X|Ỹ1Ỹ2Y ′(Yj ,Yk,y

′) for some j
}∣

∣

∣

}

,

F̃3 =

{

NA
∑

i=1

f̃
[Y1,Y2,...,YN

B
]

i (X1,X2, . . . ,Xi) > exp

{−nǫ

2

}

}

.

We are interested in P

(

F̃1

)

. We see that

P

(

F̃1

)

= P

(

F̃1 ∩ F̃2

)

+ P

(

F̃1 ∩ F̃c
2

)

≤ P

(

F̃2

)

+ P

(

F̃1 ∩ F̃c
2

)

≤ P

(

F̃2

)

+ P

(

F̃3

)

(a)

≤
(

2nRB |TỸ |Y ′(y
′)|+ 1

)

exp

{

−1

2
exp

{nǫ

8

}

}

+ exp

{

−1

2
exp {nǫ}

}

+ exp

{

−1

2
exp

{nǫ

2

}

}

=
(

2nRB |TỸ |Y ′(y
′)|+ 3

)

exp

{

−1

2
exp

{nǫ

8

}

}

,

where (a) follows from (44) and (45).

APPENDIX C

Proof of Theorem 3

Proof. Encoding. For some PA and PB satisfying minx∈X PA(x) > 0 and miny∈Y PB(y) > 0 respectively, and ǫ > 0 (TBD),

consider a codebook of rate (RA, RB) (TBD) as given by Lemma 9. For mA ∈ MA, fA(mA) = xmA
and for mB ∈ MB,

fB(mB) = ymB
.

Decoding. For a parameter η > 0, let Dη be the set of joint distributions defined as Dη
def
=

{

PXY Z ∈ Pn
X×Y×Z : D (PXY Z ||PXPY W ) ≤ η

}

. Decoding happens in five steps. In the first step, we populate sets



A1 and B1 containing candidate messages for user A and B respectively. In steps 2−5, we sequentially remove the candidates.

Step 1: Let A1 = {mA ∈ MA : (fA(mA),y, z) ∈ T n
XY Z for some y ∈ Yn such that PXY Z ∈ Dη} and

B1 = {mB ∈ MB : (x, fB(mB), z) ∈ T n
XY Z for some x ∈ Xn such that PXY Z ∈ Dη}.

Step 2: Let C1 = {mA ∈ A1 : For every m̃B1, m̃B2 ∈ B1, such that for every y ∈ Yn with

(fA(mA),y, fB(m̃B1), fB(m̃B2), z) ∈ T n
XY Ỹ1Ỹ2Z

and PXY Z ∈ Dη , I(Ỹ1Ỹ2;XZ|Y ) > η}. Let A2 = A1 \ C1.

Step 3: Let C2 = {mB ∈ B1 : For every m̃A1, m̃A2 ∈ A2, such that for every x ∈ Xn with

(x, fB(mB), fA(m̃A1), fA(m̃A2), z) ∈ T n
XY X̃1X̃2Z

and PXY Z ∈ Dη and I(X̃1X̃2;Y Z|X) > η}. Let B2 = B1 \ C2.

Step 4: Let C3 = {mA ∈ A2 : For every (m̃A, m̃B) ∈ A2 × B2, m̃A 6= mA such that for every y ∈ Yn with

(fA(mA),y, fA(m̃A), fB(m̃B), z) ∈ T n
XY X̃Ỹ Z

and PXY Z ∈ Dη , I(X̃Ỹ ;XZ|Y ) > η}. Let A3 = A2 \ C3.

Step 5: Let C4 = {mB ∈ B2 : For every (m̃A, m̃B) ∈ A3 × B2, m̃B 6= mB such that for every x ∈ Xn with

(x, fB(mB), fA(m̃A), fB(m̃B), z) ∈ T n
XY X̃Ỹ Z

and PXY Z ∈ Dη , I(X̃Ỹ ;Y Z|X) > η}. Let B3 = B2 \ C4.

After steps 1-5, the decoded output is as follows.

φ(z) =















































(mA,mB) if A3 ×B3 = {(mA,mB)},

a if |A3| = 0, |B3| 6= 0,

b if |A3| 6= 0, |B3| = 0 and

(1, 1) otherwise.

For small enough choice of η > 0, Lemma 8 implies that if |A3|, |B3| ≥ 1, then |A3| = |B3| = 1. Suppose the channel is

non-spoofable. We start by showing that Pe,hon can be upper bounded by sum of Pe,mal A and Pe,mal B. So, we only need to

analyse the case when a user is malicious. To show this, we note that EmA,mB
= EmA

∪ EmB
. Thus,

Pe,hon=
1

NA ·NB

∑

(mA,mB)∈MA×MB

Wn (EmA
∪ EmB

|fA(mA), fB(mB))

≤ 1

NA ·NB

∑

(mA,mB)∈MA×MB

(

Wn (EmA
|fA(mA), fB(mB)) +Wn (EmB

|fA(mA), fB(mB))
)

=
1

NB

∑

mB∈MB

(

1

NA

∑

mA∈MA

Wn (EmA
|fA(mA), fB(mB))

)

+
1

NA

∑

mA∈MA

(

1

NB

∑

mB∈MB

Wn (EmB
|fA(mA), fB(mB))

)

≤ Pe,mal A + Pe,mal B.

So, if Pe,mal A and Pe,mal B are small, Pe,hon is also small. Thus, it is sufficient to analyze the cases when one of the user is

adversarial.

We consider the case when user B is malicious while user A is honest. Let E be defined as

E = {z : φ(z) ∈ {MA \ {mA} ×MB, a, (1, 1)}}.

Then, the probability of error is

Pe,mal B = max
y∈Yn

1

NA

∑

mA∈MA

Wn(E|fn
A (mA),y)



For each y′ ∈ Yn, we will get a uniform upper bound on Pe,mal B which goes to zero with n. So, let us fix an attack vector

y ∈ Yn and analyze

P :=
1

NA

∑

mA∈MA

Wn(E|fn
A (mA),y).

For some ǫ satisfying 0 < ǫ < η/3, let

H =
{

mA : (xmA
,y) ∈ ∪PXY ∈Pn

X×Y
T n
XY , I(X ;Y ) > ǫ

}

.

Then,

P ≤ 1

NA

|H|+
∑

mA∈Hc

Wn(E|fn
A (mA),y)

:= P1 + P2.

The first term on the RHS,

P1 ≤ |Pn
X×Y | ×

| {mA : (xmA
,y) ∈ T n

XY , I(X ;Y ) > ǫ} |
NA

which goes to zero as n → ∞ by using (25) and noting that there are only polynomially many types.

Using the decoder definition and Lemma 8, we note that E ⊆ {z : mA /∈ A3}. Thus, Wn(E|fn
A
(mA),y) ≤ Wn({z : mA /∈

A3}|fn
A
(mA),y).

For y′ ∈ Yn, let E1(y′) be defined as

E1(y′) = {z : (xmA
,y′, z) ∈ T n

XY Z such that PXY Z ∈ Dη}

Then (∪ỹ∈YnE1(ỹ))c = {z : mA /∈ A1}. Note that (∪ỹ∈YnE1(ỹ))c ⊆ E1(y)c. Then,

P2 ≤ 1

NA

∑

mA∈Hc

Wn(E|fn
A
(mA),y)

=
1

NA

∑

mA∈Hc

Wn((E1(y)c ∩ E) ∪ (E1(y) ∩ E) |fn
A
(mA),y)

≤ 1

NA

∑

mA∈Hc

Wn((E1(y)c) |fn
A
(mA),y) +Wn((E1(y) ∩ E) |fn

A
(mA),y)

=
1

NA

∑

mA∈Hc





∑

PXY Z∈Dc
η

∑

z∈Tn
Z|XY

(xm
A
,y)

Wn(z|xmA
,y)





+
1

NA

∑

mA∈Hc





∑

PXY Z∈Dη

∑

z∈Tn
Z|XY

(xm
A
,y)∩E

Wn(z|xmA
,y)





=:P2a + P2b

For any mA ∈ Hc,

∑

PXY Z∈Dc
η

∑

z∈Tn
Z|XY

(xm
A
,y)

Wn(z|xmA
,y) ≤ |Dc

η| exp (−nD(PXY Z ||PXY W ))

= |Dc
η| exp (−n (D(PXY Z ||PXPY W )− I(X ;Y )))



≤ |Dc
η| exp (−n (η − ǫ))

Thus,

P2a ≤ |Hc|
NA

|Dc
η| exp (−n (η − ǫ))

→ 0 as ǫ < η/3 and |Dc
η| grows as a polynomial in n.

We are left to analyze

P2b =
1

NA

∑

mA∈Hc





∑

PXY Z∈Dη

∑

z∈Tn
Z|XY

(xm
A
,y)∩E

Wn(z|xmA
,y)



 .

Let

Pη
1 = {PXX̃Ỹ Y Z ∈ Pn

X×X×Y×Y×Z : PXY Z ∈ Dη, I(X ;Y ) ≤ ǫ, PX̃Y ′Z ∈ Dη for some Y ′,

PX′Ỹ Z ∈ Dη for some X ′, PX = PX̃ = PA, PỸ = PB, I(Ỹ ;X) ≤ η, I(Ỹ ; X̃) ≤ η

and I(X̃Ỹ ;XZ|Y ) ≥ η}

Pη
2 = {PXỸ1Ỹ2Y Z ∈ Pn

X×Y×Y×Y×Z : PXY Z ∈ Dη, I(X ;Y ) ≤ ǫ, PX′
1
Ỹ1Z

∈ Dη for some X ′
1,

PX′
2
Ỹ2Z

∈ Dη for some X ′
2, PX = PA, PỸ1

= PỸ2
= PB and I(Ỹ1Ỹ2;XZ|Y ) ≥ η}.

For PXX̃Ỹ Y Z ∈ Pη
1 and PXỸ1Ỹ2Y Z ∈ Pη

2 , let

EmA,1(PXX̃Ỹ Y Z) =
{

z : ∃(m̃A, m̃B) ∈ MA ×MB, m̃A 6= mA, (xmA
,xm̃A

,y,ym̃B
, z) ∈ T n

XX̃Y Ỹ Z

}

and

EmA,2(PXỸ1Ỹ2Y Z) =
{

z : ∃m̃B1, m̃B2 ∈ MB, (xmA
,ym̃B1

,ym̃B2
,y, z) ∈ T n

XỸ1Ỹ2Y Z

}

.

Note that the extra conditions I(Ỹ ;X) ≤ η and I(Ỹ ; X̃) ≤ η in Pη
1 are due the Lemma 11 (stated below) and using the

decoder definition where we only consider m̃B which are in B2, that is, they have passed the check in Step 3.

Lemma 11. For a distribution PXY X̃Y ′X′Ỹ Z ∈ Pn
X×Y×X×Y×X×Y×Z satisfying

(A) PXY Z ∈ Dη

(B) PX̃Y ′Z ∈ Dη

(C) PX′Ỹ Z ∈ Dη

(D) I(XỸ ; X̃Z|Y ′) < η

The following holds: I(Ỹ X ; X̃) ≤ η.

The proof of this Lemma follows from arguments in the proof of Lemma 8. In particular, the claim follows from (13).

E1(y) ∩ E = {z : mA ∈ A1 ∩ Ac
2} ∪ {z : mA ∈ A2 ∩ Ac

3}

=
(

∪P
XỸ1 Ỹ2Y Z

∈Pη
2
EmA,2(PXỸ1Ỹ2Y Z)

)

∪
(

∪P
XX̃Ỹ Y Z

∈Pη
1
EmA,1(PXX̃Ỹ Y Z)

)

Thus,

P2b =
1

NA

∑

mA∈Hc





∑

PXY Z∈Dη

∑

z∈Tn
Z|XY

(xm
A
,y)∩E

Wn(z|xmA
,y)







≤ 1

NA

∑

mA∈Hc

∑

P
XX̃Ỹ Y Z

∈Pη
1

Wn (EmA,1(PXX̃Ỹ Y Z)|xmA
,y)

+
1

NA

∑

mA∈Hc

∑

P
XỸ1 Ỹ2Y Z

∈Pη
2

Wn
(

EmA,2(PXỸ1Ỹ2Y Z)|xmA
,y
)

. (46)

We see that |Pη
1 | and |Pη

2 | are at most polynomial and clearly |Hc| ≤ NA. So, it will suffice to uniformly upper bound

Wn (EmA,1(PXX̃Y Ỹ Z)|xmA
,y) and Wn

(

PXỸ1Ỹ2Y Z)|xmA
,y
)

by a term exponentially decreasing in n for all PXX̃Y Ỹ Z ∈ Pη
1

and PXỸ1Ỹ2Y Z ∈ Pη
2 . We start with the first term in the RHS of (46). By using (26), we see that for PXX̃Ỹ Y Z ∈ Pη

1 such that

I
(

X ; X̃Ỹ Y
)

> |RA − I(X̃; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+ + ǫ

∣

∣

∣

{

mA : (xmA
,xm̃A

,ymB
,y) ∈ T n

XX̃Ỹ Y
for some m̃A 6= mA and some mB

}∣

∣

∣

NA

≤ exp {−nǫ/2} .

So,

1

NA

∑

mA∈Hc

Wn (EmA,1(PXX̃Y Ỹ Z)|xmA
,y)

=
1

NA

∑

mA:(xm
A
,xm̃

A
,ym

B
,y)∈Tn

XX̃Ỹ Y
,

m̃A∈MA,m̃A 6=mA,mB∈MB

∑

z∈Tn

Z|XX̃Y Ỹ
(xm

A
,xm̃

A
,y,ym̃

B
)

Wn (z|xmA
,y)

≤ exp {−nǫ/2} .

Thus, it is sufficient to consider distributions PXX̃Ỹ Y Z ∈ Pη
1 for which

I
(

X ; X̃Ỹ Y
)

≤ |RA − I(X̃; Ỹ Y )|+ + |RB − I(Ỹ ;Y )|+ + ǫ (47)

For PXX̃Ỹ Y Z ∈ Pη
1 satisfying (47),

∑

z∈Em
A
,1(PXX̃Y Ỹ Z

)

Wn(z|xmA
,y)

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

∑

z:(xm
A
,xm̃

A
,ym̃

B
,y,z)∈Tn

XX̃Ỹ Y Z

Wn(z|xmA
,y)

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

|T n
Z|XX̃Ỹ Y

(xmA
,xm̃A

,ym̃B
,y)|

|T n
Z|XY (xmA

,y)|

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

exp
(

nH(Z|XX̃Ỹ Y )
)

(n+ 1)−|X ||Y||Z| exp (nH(Z|XY ))

≤
∑

m̃A,m̃B:
(xm

A
,xm̃

A
,ym̃

B
,y)∈Tn

XX̃Ỹ Y

exp
(

−n
(

I(Z; X̃Ỹ |XY )− ǫ
))

for large n.

(a)

≤ exp
(

n
(

|RA − I(X̃; Ỹ XY )|+ + |RB − I(Ỹ ;XY )|+ − I(Z; X̃Ỹ |XY ) + 2ǫ
))

(48)

where (a) follows using (27). We will separately consider the following cases which together cover all possibilities.

1) RA ≤ I(X̃ ; Ỹ Y ) and RB ≤ I(Ỹ ;Y )

2) I(X̃ ; Ỹ Y ) < RA and RB ≤ I(Ỹ ;XY )



3) RA ≤ I(X̃ ; Ỹ XY ) and I(Ỹ ;Y ) < RB

4) I(X̃ ; Ỹ XY ) < RA and I(Ỹ ;XY ) < RB

Case 1: RA ≤ I(X̃ ; Ỹ Y ) and RB ≤ I(Ỹ ;Y )

In this case, (47) implies that I(X ; X̃Ỹ Y ) ≤ ǫ Thus, using the condition I(XZ; X̃Ỹ |Y ) ≥ η from definition of Pη
1 , we see

that

I(Z; X̃Ỹ |XY ) = I(XZ; X̃Ỹ |Y )− I(X ; X̃Ỹ |Y )

≥η − ǫ.

This implies that

∑

z∈Em
A
,1(PXX̃Y Ỹ Z )

Wn(z|xmA
,y) ≤ exp (−n (η − 3ǫ))

→ 0 because η > 3ǫ.

Case 2: I(X̃ ; Ỹ Y ) < RA and RB ≤ I(Ỹ ;XY )

Using (47), we have

RA − I(X̃ ; Ỹ Y )− I(X ; X̃Ỹ Y ) + ǫ ≥ −|RB − I(Ỹ ;Y )|+,

RA − I(X̃; Ỹ XY ) + ǫ ≥ I(X ; Ỹ Y )− |RB − I(Ỹ ;Y )|+.

We will argue that the RHS is non-negative. When RB ≤ I(Ỹ ;Y ), RHS is I(X ; Ỹ Y ) which is non-negative. When I(Ỹ ;Y ) <

RB ≤ I(Ỹ ;XY )

I(X ; Ỹ Y )− |RB − I(Ỹ ;Y )|+ = I(X ; Ỹ Y )−RB + I(Ỹ ;Y )

= I(X ;Y ) + I(X ; Ỹ |Y )−RB + I(Ỹ ;Y )

= I(Ỹ ;XY )−RB + I(X ;Y ) ≥ 0.

So, again the RHS is non-negative and RA ≥ I(X̃ ; Ỹ XY )− ǫ. Hence |RA − I(X̃; Ỹ XY )|+ ≤ RA − I(X̃ ; Ỹ XY ) + ǫ. Thus,

∑

z∈Em
A
,1

Wn(z|xmA
,y) ≤ exp

(

n
(

RA − I(X̃ ; Ỹ XY )− I(Z; X̃Ỹ |XY ) + 3ǫ
))

= exp
(

n
(

RA − I(X̃ ;ZỸ XY )− I(Z; Ỹ |XY ) + 3ǫ
))

≤ exp
(

n
(

RA − I(X̃ ;ZỸ ) + 3ǫ
))

Taking limit Pη
1 → P0

1 , we get the following rate bound

RA ≤ min
PXX̄Ȳ Y Z∈P0

1
,X̄ |= Ȳ

I(X̄;Z|Ȳ ) (49)

Thus,

Case 3 RA ≤ I(X̃ ; Ỹ XY ) and I(Ỹ ;Y ) < RB

Using (47), we obtain that

RB − I(Ỹ ;Y )− I(X ; X̃Ỹ Y ) + ǫ ≥ −|RA − I(X̃ ; Ỹ Y )|+,



RB − I(Ỹ ;XY ) + ǫ ≥ I(X ;Y ) + I(X ; X̃|Ỹ Y )− |RA − I(X̃ ; Ỹ Y )|+.

We will argue that RHS is non-negative. When RA ≤ I(X̃ ; Ỹ Y ), it is clearly true. When I(X̃ ; Ỹ Y ) < RA ≤ I(X̃; Ỹ XY ),

then

I(X ; X̃|Ỹ Y )− |RA − I(X̃ ; Ỹ Y )|+ = I(X ; X̃|Ỹ Y )−RA + I(X̃; Ỹ Y )

= I(X̃ ; Ỹ XY )−RA ≥ 0.

Thus, for RA ≤ I(X̃ ; Ỹ XY ) and I(Ỹ ;Y ) < RB, RB − I(Ỹ ;XY ) + ǫ ≥ 0. This imples that |RB − I(Ỹ ;XY )|+ ≤ RB −
I(Ỹ ;XY ) + ǫ. So,

∑

z∈Em
A
,1(PXX̃Y Ỹ Z)

Wn(z|xmA
,y) ≤ exp

(

n
(

RB − I(Ỹ ;XYZ)− I(Z; X̃|XY Ỹ ) + 3ǫ
))

→ 0

if RB < I(Ỹ ;XY Z) + I(Z; X̃|XY Ỹ )− 3ǫ.

Thus,

RB ≤ min
PXY X̄Ȳ Z∈P 0

1
,X |= Ȳ

I(Ȳ ;Z|X) (50)

Case 4: I(X̃ ; Ỹ XY ) < RA and I(Ỹ ;XY ) < RB

∑

z∈Em
A
,1(PXX̃Y Ỹ Z

)

Wn(z|xmA
,y) ≤ exp

(

n
(

RA − I(X̃ ; Ỹ XY ) +RB − I(Ỹ ;XY )− I(Z; X̃Ỹ |XY ) + 2ǫ
))

≤ exp
(

n
(

RA +RB − I(X̃Ỹ ;XY Z)− I(X̃ ; Ỹ ) + 3ǫ
))

→ 0

if RA +RB < I(X̃Ỹ ;XYZ) + I(X̃; Ỹ )− 3ǫ.

Thus,

RA +RB ≤ min
PXY X̄Ȳ Z∈P 0

1
,X̄ |= Ȳ

I(X̄Ȳ ;Z) (51)

Collecting (49), (50) and (51), the first term in the RHS of (46) goes to zero as n → ∞ if:

RA ≤ min
PXY X̄Ȳ Z∈P 0

1
,X̄ |= Ȳ

I(X̄ ;Z|Ȳ ) (52)

RB ≤ min
PXY X̄Ȳ Z∈P 0

1
,X |= Ȳ

I(Ȳ ;Z|X) (53)

RA +RB ≤ min
PXY X̄Ȳ Z∈P 0

1
,X̄ |= Ȳ

I(X̄Ȳ ;Z) (54)

where P 0
1 is

P0
1 = {PXX̃Ỹ Y Z ∈ Pn

X×Y×X×Y×Z : PXY Z ∈ D0, PX̃Y ′Z ∈ D0 for some Y ′,

PX′Ỹ Z ∈ D0 for some X ′, PX = PX̃ = PA, PỸ = PB and I(X̃ ; Ỹ ) = 0, I(X ; Ỹ ) = 0}



Now, we move on to the second term in the RHS of (46). We see that by using (28), it is sufficient to consider distribution

PXY Ỹ1Ỹ2Z
∈ Pη

2 for which

I
(

X ; Ỹ1Ỹ2Y
)

≤ |RB − I(Ỹ1;Y )|+ + |RB − I(Ỹ2; Ỹ1Y )|+ + ǫ. (55)

For PXY Ỹ1Ỹ2Z
∈ Pη

2 satisfying (55),

∑

z∈Em
A
,y,2(PXY Ỹ1Ỹ2Z

)

Wn(z|xmA
,y)

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

∑

z:(xm
A
,ym̃

B1
,ym̃

B2
,y,z)∈Tn

XỸ1Ỹ2Y Z

Wn(z|xmA
,y)

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

|T n
Z|XỸ1Ỹ2Y

(xmA
,ym̃B1

,ym̃B2
,y)|

|T n
Z|XY (xmA

,y)|

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

exp
(

nH(Z|XỸ1Ỹ2Y )
)

(n+ 1)−|X ||Y||Z| exp (nH(Z|XY ))

≤
∑

m̃B1,m̃B2:
(xm

A
,ym̃

B1
,ym̃

B2
,y)∈Tn

XỸ1Ỹ2Y

exp
(

−n
(

I(Z; Ỹ1Ỹ2|XY )− ǫ
))

for large n.

(a)

≤ exp
(

n
(

|RB − I(Ỹ1;XY )|+ + |RB − I(Ỹ2; Ỹ1XY )|+ − I(Z; Ỹ1Ỹ2|XY ) + 2ǫ
))

, (56)

where (a) follows using (29).

Note that, in the analysis of first term in the RHS of (46), if we replace RA with RB, Ỹ with Ỹ1 and X̃ with Ỹ2, (48)

changes to (56) and the conditions on the distribution (47) to (55). We see that (56) goes to zero when the following hold (cf.

(52),(53),(54)):

RB < I(Ỹ2;ZỸ1XY ) + I(Z; Ỹ1|XY )− 3ǫ

RB < I(Ỹ1;XY Z) + I(Z; Ỹ2|XY Ỹ1)− 3ǫ

2RB < I(Ỹ2Ỹ1;XYZ) + I(Ỹ2; Ỹ1)− 3ǫ

For

P0
2 = {PXY Ỹ1Ỹ2Z

∈ Pn
X×Y×Y×Y×Z : PXY Z ∈ D0, PX′

1
Ỹ1Z

∈ D0 for some X ′
1,

PX′
2
Ỹ2Z

∈ D0 for some X ′
2, PX = PA, PỸ1

= PỸ2
= PB}

This gives us the following rate bounds

RB ≤ min
PXY Ȳ1Ȳ2Z∈P 0

2

I(Ȳ2;Z) (57)

RB ≤ min
PXY Ȳ1Ȳ2Z∈P 0

2

I(Ȳ1;Z) (58)

2RB ≤ min
PXY Ȳ1Ȳ2Z∈P 0

2

I(Ȳ2;Z) + I(Ȳ2;Z) (59)



When user A is malicious, error will occur either in Step 1 or Step 3 or Step 5. Error will not happen in Step 1 w.h.p. because

of typicality. For Step 3 and Step 5, we wil get bounds of the form (52), (53) and (54). This is because we only consider the

candidates which have passes Step 2. Hence, we get independence conditions from Lemma 11.

Thus, combining (52), (53), (54), (57), (58),(59) and bounds from the case when user A is malicious, we get the following

rate region

Let P be the set of distribution

P = {PXY ′X′Y Z : PXY ′Z = PAPY ′W, PX′Y Z = PX′PBW, X |= Y }

RA ≤ min
PXY ′X′Y Z∈P

I(X ;Z|Y )

RB ≤ min
PXY ′X′Y Z∈P

I(Y ;Z)

This gives us one corner point (given by (6)) of the rate region, we get the other corner point (given by (5)) by changing the

order of decoding by performing Step 3 before Step 2.

APPENDIX D

PROOF OF THEOREM 4

Consider an (NA, NB, n) adversary identifying code (F
(n)
A

, F
(n)
B

,Φ(n)) (with potential shared randomness between the

encoder and the decoder) such that Pe(F
(n)
A

, F
(n)
B

,Φ(n)) ≤ ǫ(n) where ǫ(n) → 0 as n → 0. For for all i ∈ [1 : n], let

(Qi
X′|X , Qi

Y ′|Y ) be an arbitrary sequence of pairs of channel distributions satisfying (7). Define W̃i as

W̃i(z|x, y) def
=
∑

x′

Qi
X′|X(x′|x)W (z|x′, y) =

∑

y′

Qi
Y ′|Y (y

′|y)W (z|x, y′)

for all x, y, z. Let Q
(n)
X′|X

def

=
∏n

i=1 Q
i
X′|X , Q

(n)
Y ′|Y

def

=
∏n

i=1 Q
i
Y ′|Y and W̃ (n) =

∏n
i=1 W̃i.

Then,

Pe,mal A ≥ 1

NA ·NB

∑

mA,mB

∑

x

Q
(n)
X′|X(x|F (n)

A
(mA))W

n
({

z : Φ(n)(z) = b

} ∣

∣

∣x, F
(n)
B

(mB)
)

and

Pe,mal B ≥ 1

NA ·NB

∑

mA,mB

∑

y

Q
(n)
Y ′|Y (x|F

(n)
B

(mB))W
n
({

z : Φ(n)(z) = a

} ∣

∣

∣F
(n)
A

(mA),y
)

.

Using these two equations, we get

2ǫ(n) ≥ Pe,mal A + Pe,mal B ≥ 1

NA ·NB

∑

mA,mB

(

∑

x

Q
(n)
X′|X(x|F (n)

A
(mA))W

n
({

z : Φ(n)(z) = b

} ∣

∣

∣x, F
(n)
B

(mB)
)

+
∑

y

Q
(n)
Y ′|Y (y|F

(n)
B

(mB))W
n
({

z : Φ(n)(z) = a

} ∣

∣

∣
F

(n)
A

(mA),y
))

=
1

NA ·NB

∑

mA,mB

W̃ (n)
({

z : Φ(n)(z) ∈ {a,b}
} ∣

∣

∣F
(n)
A

(mA), F
(n)
B

(mB)
)

.

Thus,

1

NA ·NB

∑

mA,mB

W̃ (n)
({

z : Φ(n)(z) 6= (mA,mB)
}

|F (n)
A

(mA), F
(n)
B

(mB)
)

=
1

NA ·NB

∑

mA,mB

W̃ (n)
({

z : Φ(n)(z) ∈ MA ×MB \ {(mA,mB)}
}

|F (n)
A

(mA), F
(n)
B

(mB)
)



+
1

NA ·NB

∑

mA,mB

W̃ (n)
({

z : Φ(n)(z) ∈ {a,b}
} ∣

∣

∣F
(n)
A

(mA), F
(n)
B

(mB)
)

≤ ǫ(n) + 2ǫ(n)

= 3ǫ(n).

Recall that every pair (QX′|X , QY ′|Y ) satisfying (7) corresponds to an element in W̃W which is a convex set (see the discussion

in Section IV-B). Thus, any adversary identifying code for the MAC W with probability of error ǫ(n) is also a communication

code for the AV-MAC W̃W with probability of error at most 3ǫ(n). So, capacity region of W is outer bounded by the capacity

region of the AV-MAC W̃W .

The capacity of an AV-MAC only depends on its convex hull [8]. So, capacity of W̃W is same as capacity of another AV-MAC

WW which consists of vertices of the convex polytope W̃W ⊆ R
|X |×|Y|×|Z|. The elements in the set W̃W are parameterized

by (QX′|X , QY ′|Y ) pairs. It consists of the vertices of the polytope formed using constraints in (7) and constraints of the

form: (1)
∑

x′ PX′|X(x′|x) = 1 for all x, and (2) PX′|X(x′|x) ≥ 0. There are similar constraints for PY ′|Y . Note that there

are |X |2 + |Y |2 inequality constraints. Every point in the resulting polytope satisfies all the equality constraints. We will get

faces, edges, vertices etc. depending on the number of additional inequality constraints satisfied at that point. Thus, number

of vertices ≤ 2|X|2+|Y |2 .

APPENDIX E

EXAMPLES

A. Tightness of inner bound for the Binary Erasure MAC

Recall that for distributions PA and PB over X and Y , P(PA, PB) = {PXY X̃Ỹ Z : PXỸ Z = PA × PỸ ×
W for some PỸ and PX̃Y Z = PX̃ × PB ×W for some PX̃}. Consider PXY X̃Ỹ Z ∈ P(PA, PB).

P(Z = 0) = PA(0)PỸ (0) = PX̃(0)PB(0). (60)

P(Z = 2) = (1− PA(0))(1− PỸ (0)) = (1− PX̃(0))(1 − PB(0))

= 1 + PA(0)PỸ (0)− PA(0)− PỸ (0) = 1 + PX̃(0)PB(0)− PX̃(0)− PB(0).

Using (60), we get PA(0) + PỸ (0) = PX̃(0) + PB(0). Thus,

PX̃(0) = PA(0) + PỸ (0)− PB(0). (61)

Substituting this in (60), we get PA(0)PỸ (0) = PA(0)PB(0) + PỸ (0)PB(0)− PB(0)PB(0). This implies that

(PA(0)− PB(0)) (PỸ (0)− PB(0)) = 0.

Thus, either PA(0) = PB(0) or PỸ (0) = PB(0). Substituting this in (61), we get either PA(0) = PB(0) and PX̃(0) = PỸ (0),
or PỸ (0) = PB(0) and PX̃(0) = PA(0). If we choose PA and PB such that PA 6= PB, then for every PXY X̃Ỹ Z ∈ P(PA, PB),
PỸ = PY = PB and PX̃ = PX = PA.

We know from the definition of P(PA, PB), that X |= Ỹ and X̃ |= Y . We now analyse the case when there is further restriction

of X |= Y on the distributions. From the definition of P(PA, PB), we note that PX̃Y |XỸ (0, 0|0, 0) = 1 and PX̃Y |XỸ (1, 1|1, 1) =
1. Let PX̃Y |XỸ (0, 1|0, 1) = α and PX̃Y |XỸ (1, 0|0, 1) = 1 − α (Note that PX̃Y |XỸ ((0, 0)|0, 1)) = PX̃Y |XỸ ((1, 1)|0, 1)) = 0
by definition of P(PA, PB)). Similarly, let PX̃Y |XỸ (1, 0|1, 0) = β and PX̃Y |XỸ (0, 1|1, 0) = 1 − β. Thus, PXY (0, 0) =
PXỸ (0, 0)PX̃Y |XỸ (0, 0|0, 0) + PXỸ (0, 1)PX̃Y |XỸ (1, 0|0, 1) = PX(0)PỸ (0) · 1 + PX(0)PỸ (1) · (1 − α). Also, PXY (0, 0) =
PX(0)PY (0) = PX(0)PỸ (0) (The last equality follows from the choice of PX and PY 6= PX ). This implies that α = 1. By

evaluating PXY (1, 1), we can show that β = 1. This implies that X̃ = X and Ỹ = Y .

We choose PA and PB arbitrarily close to uniform distributions such that PA 6= PB. Following the arguments above, it is

easy to see that the rate pairs given by (5) and (6) are arbitrarily close to (0.5, 1) and (1, 0.5) respectively.

B. Binary erasure MAC is not spoofable

Suppose the channel is A-spoofable, that is, there exist distributions QY |X̃,Ỹ and QX|X̃,X′ such that ∀x′, x̃, ỹ, z,

∑

y

QY |X̃,Ỹ (y|x̃, ỹ)WZ|X,Y (z|x′, y)

=
∑

y

QY |X̃,Ỹ (y|x′, ỹ)WZ|X,Y (z|x̃, y)



=
∑

x

QX|X̃,X′(x|x̃, x′)WZ|X,Y (z|x, ỹ).

For (x′, x̃, ỹ, z) = (1, 0, 1, 2), this gives QY |X̃Ỹ (1|0, 1) = 0 = QX|X̃X′(1|0, 1) and for (x′, x̃, ỹ, z) = (1, 0, 0, 0), we get

0 = QY |X̃Ỹ (0|1, 0) = QX|X̃X′(0|0, 1). However, QX|X̃X(1|0, 1) = QX|X̃X(0|0, 1) = 0 is not possible. Thus, the channel is

not A-spoofable. Similarly, we can show that the channel is not B-spoofable.

C. Binary additive MAC is not overwritable

Suppose binary additive MAC Z = X ⊕ Y is B-overwritable. Let PX′|X,Y be the overwriting attack by user A which

satisfies (9). Then for all y′

PX′|X,Y (0|1, 1)W (0|0, y′) + PX′|X,Y (1|1, 1)W (0|1, y′) = W (0|1, 1) = 1.

For y′ = 0 and 1, this implies that PX′|X,Y (0|1, 1) = 1 and PX′|X,Y (1|1, 1) = 1 respectively, which is not possible

simultaneously. Thus, the channel cannot be B-overwritable. Similarly, we can argue that the channel is not A-overwritable.

D. Capacity of (Z1, Z2) = (X1 + Y1, X2 ⊕ Y2) under different decoding guarantees

We will first show that this channel is B-symmetrizable, that is, there exists distribution PX|Y such that
∑

x′∈X

PX|Y (x|y′)W (z|x, y) =
∑

x′∈X

PX|Y (x|y)W (z|x, y′)

for all x, y, z. Consider PX|Y ((x1, x2)|(y1, y2)) = 1 when (x1, x2) = (y1, y2). Then for y′ = (y′1, y
′
2), y = (y1, y2) and

z = (y′1 + y1, y
′
2 ⊕ y2), both LHS and RHS of the above equation evaluate to 1, and for every other z, they evaluate to 0. So,

the channel is B-symmetrizable. Similarly, we can show that the channels in A-symmetrizable.

Next, we show that this channel is not overwritable. Suppose the channel is B-overwritable. Let PX′|X,Y be the overwriting

attack by user A which satisfies (9). Then for all (y′1, y
′
2),

∑

(x′
1
,x′

2
)

PX′|X,Y ((x
′
1, x

′
2)|(1, 1), (1, 1))W ((2, 0)|(x′

1, x
′
2), (y

′
1, y

′
2)) = W ((2, 0)|(1, 1), (1, 1)).

However, for (y′1, y
′
2) = (0, 0), LHS evaluates to 0 whereas RHS evaluates to 1. Hence, the channel is not B-overwritable.

Similarly, we can show that the channel is not A-overwritable.

For the capacity region C, continuing the discussion in Section E-A (following Example 3), the given attack distributions

satisfying (7), gives an outer bound which is the capacity of the binary erasure MAC. This outer bound is also achievable

using an adversary identifying code for the binary erasure channel in the first component Z1 = X1 + Y1. The inputs X2 and

Y2 can be chosen arbitrarily.
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