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Abstract—A functional k-batch code of dimension s consists of n
servers storing linear combinations of s linearly independent infor-
mation bits. Any multiset request of size k of linear combinations
(or requests) of the information bits can be recovered by k disjoint
subsets of the servers. The goal under this paradigm is to find the
minimum number of servers for given values of s and k. A recent
conjecture states that for any k = 2s−1 requests the optimal solu-
tion requires 2s − 1 servers. This conjecture is verified for s 6 5
but previous work could only show that codes with n = 2s − 1
servers can support a solution for k = 2s−2 + 2s−4 +

⌊
2s/2√

24

⌋
re-

quests. This paper reduces this gap and shows the existence of
codes for k = b 5

6 2s−1c − s requests with the same number of
servers. Another construction in the paper provides a code with
n = 2s+1 − 2 servers and k = 2s requests, which is an optimal
result. These constructions are mainly based on Hadamard codes
and equivalently provide constructions for parallel Random I/O
(RIO) codes.

I. INTRODUCTION

Motivated by several applications for load-balancing in stor-
age and cryptographic protocols, batch codes were first pro-
posed by Ishai et al. [7]. A batch code encodes a length-s string
x into n strings, where each string corresponds to a server,
such that each batch request of k different bits (and more gen-
erally symbols) from x can be decoded by reading at most t
bits from every server. This decoding process corresponds to
the case of a single-user. There is an extended variant for batch
codes [7] which is intended for a multi-user application instead
of a single-user setting, known as the multiset batch codes. Such
codes have k different users and each requests a single data item.
Thus, the k requests can be represented as a multiset of the bits
since the requests of different users may be the same, and each
server can be accessed by at most one user.

A special case of multiset batch codes, referred as primitive
batch codes, is when each server contains only one bit. The
goal of this model is to find, for given s and k, the smallest
n such that a primitive batch code exists. This problem was
considered in several papers; see e.g. [1], [2], [7], [8], [13].
By setting the requests to be a multiset of linear combinations
of the s information bits, a batch code is generalized into a
functional batch code [17]. Again, given s and k, the goal is to
find the smallest n for which a functional k-batch code exists.

Mathematically speaking, an FB-(n, s, k) functional k-batch
code (and in short FB-(n, s, k) code) of dimension s consists of
n servers storing linear combinations of s linearly independent
information bits. Any multiset of size k of linear combinations
from the linearly independent information bits, can be recov-
ered by k disjoint subsets of servers. If all the k linear com-
binations are the same, then the servers form an FP-(n, s, k)
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functional k-Private Information Retrieval (PIR) code (and in
short FP-(n, s, k) code). Clearly, an FP-(n, s, k) code is a spe-
cial case of an FB-(n, s, k) code. It was shown that functional
k-batch codes are equivalent to the so-called linear parallel ran-
dom I/O (RIO) codes, where RIO codes were introduced by
Sharon and Alrod [10], and their parallel variation was studied
in [11], [12]. Therefore, all the results for functional k-batch
codes of this paper hold also for parallel RIO codes. If all the k
linear combinations are of a single information bit (rather than
linear combinations of information bits), then the servers form
an B-(n, s, k) k-batch code (and in short B-(n, s, k) code).

The value FP(s, k), B(s, k), FB(s, k) is defined to be the
minimum number of servers required for the existence of
an FP-(n, s, k), B-(n, s, k), FB-(n, s, k) code, respectively.
Several upper and lower bounds can be found in [17] on
these values. Wang et al. [14] showed that for k = 2s−1,
the length of an optimal k-batch code is 2s − 1, that is,
B(s, k = 2s−1) = 2s − 1. They also showed a recursive de-
coding algorithm. It was conjectured in [17] that for the same
value of k, the length of an optimal functional batch code is
2s − 1, that is, FB(s, k = 2s−1) = 2s − 1. Indeed, in [16] this
conjecture was proven for s = 3, 4, and in [17], by using a
computer search, it was verified also for s = 5. However, the
best-known result for s > 5 only provides a construction of
FB-(2s − 1, s, 2s−2 + 2s−4 +

⌊
2s/2√

24

⌋
) codes [17]. This paper

significantly improves this result and reduces the gap between
the conjecture statement and the best-known construction. In
particular, a construction of FB-(2s− 1, s, b 5

6 · 2s−1c− s) codes
is given. To obtain this important result, we first show an exis-
tence of FB-(2s − 1, s, b 3

4 · 2s−1c) code. Moreover, we show
how to construct FB-(2s + d(3α− 2) · 2s−2e− 1, s, bα · 2s−1c)
codes for all 2/3 6 α 6 1. Another result that can be found
in [17] states that FP(s, 2s) 6 2s+1 − 2. In this case, the
lower bound is the same, i.e., this result is optimal, see [5].
In this paper we will show that this optimality holds not only
for functional PIR codes but also for the more challenging
case of functional batch codes, that is, FB(s, 2s) = 2s+1 − 2.
Lastly, we show a non-recursive decoding algorithm for
B-(2s, s, k = 2s−1) codes. In fact, this construction holds not
only for k single bit requests (with respect to k-batch codes)
but also for k linear combinations of requests under some con-
straint that will be explained in the paper. All the results in the
paper are achieved using a generator matrix G of a Hadamard
codes [3] of length 2s and dimension s, where the matrix’s
columns correspond to the servers of the FB-(n, s, k) code.

The rest of the paper is organized as follows. In Section II,
we formally define functional k-batch codes and summarize the
main results of the paper. In Section III, we show a construction
of FB-(2s + d(3α− 2) · 2s−2e − 1, s, bα · 2s−1c) for α = 2/3.
This result is extended for all 2/3 6 α 6 1 in Section IV. In
Section V, a construction of FB-(2s+1 − 2, s, 2s) is presented.
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In Section VI, we present our main result, i.e., a construction of
FB-(2s− 1, s, b 5

6 · 2s−1c − s) codes. In Section VII a construc-
tion of B-(2s − 1, s, 2s−1) is presented. Finally, Section VIII
concludes the paper.

II. DEFINITIONS

For a positive integer n define [n] = {0, 1, . . . , n− 1}. All
vectors and matrices in the paper are over F2. We follow the def-
inition of functional batch codes as it was first defined in [17].

Definition 1. A functional k-batch code of length n and
dimension s consists of n servers and s information bits
x0, x1, . . . , xs−1. Each server stores a nontrivial linear combina-
tion of the information bits (which are the coded bits), i.e., for
all j ∈ [n], the j-th server stores a linear combination

y j = xi0 + xi1 + · · ·+ xi`−1
,

such that i0, i1, . . . , i`−1 ∈ [s]. For any request of k linear
bit combinations v0, v1, . . . , vk−1 (not necessarily distinct)
of the information bits, there are k pairwise disjoint sub-
sets R0, R1, . . . , Rk−1 of [n] such that the sum of the linear
combinations in the related servers of Ri, i ∈ [k], is vi, i.e.,

∑
j∈Ri

y j = vi .

Each such vi will be called a requested bit and each such subset
Ri will be called a recovery set.

A functional k-batch code can be also represented by a linear
code with an s× n generator matrix

G = [g0, g1, . . . , gn−1]

inFs×n
2 in which the vector g j has ones in positions i0, i1, . . . , i`−1

if and only if the j-th server stores the linear combination
xi0 + xi1 + · · ·+ xi`−1

. Using this matrix representation, a func-
tional k-batch code is an s× n generator matrix G, such that for
any k request vectors v0, v1, . . . , vk−1 ∈ Fs

2 (not necessarily
distinct), there are k pairwise disjoint subsets of columns in G,
denoted by R0, R1, . . . , Rk−1, such that the sum of the column
vectors whose indices are in R j is equal to the request vector
v j. The set of all recovery sets Ri , i ∈ [k], is called a solution
for the k request vectors. The sum of the column vectors whose
indices are in R j will be called the recovery sum.

A functional k-batch code of length n and dimension s over
Fs

2 is denoted by FB-(n, s, k). Every request of k vectors will be
stored as columns in a matrix M which is called the request ma-
trix or simply the request.

A k-batch code of length n and dimension s over Fs
2, is

denoted by B-(n, s, k) and is defined similarly to functional k-
batch codes as in Definition 1 except of the fact that each request
vector v j ∈ Fs

2 is a unit vector. A functional k-PIR code [17]
of length n and dimension s, denoted by FP-(n, s, k), is a spe-
cial case of FB-(n, s, k) in which all the request vectors are
identical. We first show some preliminary results on the param-
eters of FB-(n, s, k) and FP-(n, s, k) codes which are relevant
to our work. For that, another definition is presented.

Definition 2. Denote by FB(s, k), B(s, k), FP(s, k) the mini-
mum length n of any FB-(n, s, k), B-(n, s, k), FP-(n, s, k) code,
respectively.

Most of the following results on FB(s, k), B(s, k) and
FP(s, k) can be found in [17], while the result in (c) was
verified for s = 3, 4 in [16].

Theorem 3. For positive integers s and t, the following proper-
ties hold:
(a) FP(s, 2s−1) = 2s − 1.
(b) FP(st, 2s) 6 2t(2s − 1).
(c) For s 6 5 it holds that FB(s, 2s−1) = 2s − 1.
(d) An FB-(2s − 1, s, 2s−2 + 2s−4 +

⌊
2s/2√

24

⌋
) code exists.

(e) For a fixed k it holds that

lim
s→∞ FB(s, k)

s
>

k
log(k + 1)

.

(f) B(s, 2s−1) = 2s − 1 [14].
(g) B(s, k) = s +Θ(

√
s) for k = 3, 4, 5 [1], [13].

(h) B(s, k) = s +O(
√

s log s) for k > 6 [13].

Note that the result from Theorem 3(d) improves upon the
result of FB-(2s − 1, s, 2s−2 + 2s−4 + 1) functional batch
codes which was derived from a WOM codes construction by
Godlewski [6]. This is the best-known result concerning the
number of queries when the number of information bits is s
and the number of encoded bits is 2s − 1.

The goal of this paper is to improve some of the results sum-
marized in Theorem 3. The result in (c) holds for s 6 5, and it
was conjectured in [17] that it holds for all positive values of
s.

Conjecture 1. [17] For all s > 5, FB(s, 2s−1) = 2s − 1.

The reader can notice the gap between Conjecture 1 and the
result in Theorem 3(d). More precisely, [17] assures that an
FB-(2s − 1, s, 2s−2 + 2s−4 +

⌊
2s/2√

24

⌋
) code exists, and the goal

is to determine whether an FB-(2s − 1, s, 2s−1) code exists.
This paper takes one more step in establishing this conjecture.
Specifically, the best-known value of the number of requested
bits k is improved for the case of s information bits and 2s − 1
encoded bits. The next theorem summarizes the contributions
of this paper.

Theorem 4. For a positive integer s, the following constructions
exist:
(a) A construction of FB-(2s − 1, s, b 2

3 · 2s−1c) codes.
(b) A construction of

FB-(2s + d(3α − 2) · 2s−2e − 1, s, bα · 2s−1c)
codes where 2/3 6 α 6 1.

(c) A construction of FB-(2s+1 − 2, s, 2s) codes.
(d) A construction of FB-(2s − 1, s, b 5

6 · 2s−1c − s) codes.

We now explain the improvements of the results of Theo-
rem 4. The construction in Theorem 4(a) improves upon the
result from Theorem 3(d), where the supported number of re-
quests increases from 1

2 2s−1 + 2s−4 +
⌊

2s/2√
24

⌋
to b 2

3 · 2s−1c.
Note that by taking α = 2/3 in the result of Theorem 4(b),
we immediately get the result of (a). However, for simplic-
ity of the proof, we first show the construction for (a) sepa-
rately, and afterwards, add its extension. The result of Theo-
rem 4(d) is based on the result of Theorem 4(a) and improves
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it to b 5
6 · 2s−1c− s requests. Moreover, according to the second

result of Theorem 3(b) if t = 1 then FP(s, 2s) 6 2s+1 − 2.
Based on the result in [5] it holds that FP(s, 2s) > 2s+1 − 2.
Therefore, FP(s, 2s) = 2s+1 − 2. The construction in Theo-
rem 4(c) extends this result to functional batch codes by show-
ing that FB(s, 2s) 6 2s+1 − 2, and again, combining the result
from [5], it is deduced that FB(s, 2s) = 2s+1 − 2.

A special family of matrices that will be used extensively in
the paper are the generator matrices of Hadamard codes [3], as
defined next.

Definition 5. A matrix G = [g0, g1, . . . , g2s−1] of order
s × 2s over F2 such that {g0, g1, . . . , g2s−1} = Fs

2 is called a
Hadamard generator matrix and in short HG-matrix.

We will use HG-matrices as the generator matrices of the lin-
ear codes that will provide the constructions used in establishing
Theorem 4. More specifically, given a linear code defined by a
generator HG-matrix G of order s× n and a request M of or-
der s× k, we will show an algorithm that finds a solution for
M. This solution will be obtained by rearranging the columns
of G and thereby generating a new HG-matrix G′. This solu-
tion is obtained by showing all the disjoint recovery sets for
the request M, with respect to indices of columns of G′. Al-
though such a solution is obtained with respect to G′ instead
of G, it can be easily adjusted to G by relabeling the indices
of the columns. Thus, any HG-matrix whose column indices
are partitioned to recovery sets for M provides a solution. Note
that HG-matrices store the all-zero column vector. Such a vec-
tor will help us to simplify the construction of the algorithm
and will be removed at the end of the algorithm.

Definition 6. Let M = [v0, v1, . . . , vn/2−1] be a request of or-
der s × n/2, where n = 2s. The matrix M has a Hadamard
solution if there exists an HG-matrix G = [g0, g1, . . . , gn−1] of
order s× n such that for all i ∈ [n/2],

vi = g2i + g2i+1.

In this case, we say that G is a Hadamard solution for M.

Next, an example is shown.

Example 1. For s = 3, let

G =

g0 g1 g2 g3 g4 g5 g6 g7( )0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

.

be an HG-matrix. Given a request,

M =

v0 v1 v2 v3( )0 0 0 0
0 0 0 0
1 1 1 1

a Hadamard solution for this request may be

G′ =

g′0 g′1 g′2 g′3 g′4 g′5 g′6 g′7( )0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

.

Lastly, for the convenience of the reader, the relevant nota-
tions and terminology that will be used throughout the paper is
summarized in Table I.

TABLE I
TABLE OF DEFINITIONS AND NOTATIONS

Notation Meaning Remarks
FB-(n, s, k) A func. k-batch code of length n and dimension s Sec. II
B-(n, s, k) A k-batch code of length n and dimension s Sec. II

Ri The i-th recovery set Sec. II
(G ,B,R) A triple-set Def. 7
M(G ,B,R) A triple-matrix of M Def. 7

e A unit vector of length s with 1 at its last index Sec. III
M A request matrix Sec. III

vi , wi The i-th request/column vector in M,M Sec. III
G An HG-matrix Sec. III
gi A column vector in G representing the i-th server Sec. III

Gx(G) An x-type graph of G Def. 10
Cx(G) The partition of simple cycles of Gx(G) Def. 10

Px(gi , g j) A simple path between gi and g j in Gx(G) Def. 12
dPx (gt , gm) The sub-length from gt to gm in Px(gi , g j) Def. 12
Fx(gi , g j) A reordering function for a good-path Px(gi , g j) Def. 12

III. A CONSTRUCTION OF FB-(2s − 1, s, b 2
3 · 2s−1c) CODES

In this section a construction of FB-(2s − 1, s, b 2
3 · 2s−1c)

codes is presented. Let the request M be denoted by

M = [v0, v1, . . . , vb 2
3 ·2s−1c−1].

Let e = (0, 0, . . . , 0, 1) ∈ Fs
2 be the unit vector with 1 at its

last index. The solution for the request M will be derived by
using two algorithms as will be presented in this section. We
start with several definitions and tools that will be used in these
algorithms.

Definition 7. Three sets G ,B,R ⊆ [2s−1] are called a triple-
set (the good, the bad, and the redundant), and are denoted by
(G ,B,R), if the following properties hold,

G ⊆
[⌊2

3
· 2s−1

⌋]
,

B =
[⌊2

3
· 2s−1

⌋]
\ G ,

R = [2s−1] \
(
G ∪ B ∪ {2s−1 − 1}

)
.

Given a matrix M = [v0, v1, . . . , vb 2
3 ·2s−1c−1] of order s ×

b 2
3 · 2s−1c, the matrixM(G ,B,R) = [w0, w1, . . . , w2s−1−1]

of order s× 2s−1 is referred as a triple-matrix of M if it holds
that

wt =


vt t ∈ G
vt + e t ∈ B
e t ∈ R

.

Note that, we did not demand anything about the vector
w2s−1−1, i.e., it can be any binary vector of length s. Further-
more, by Definition 7, the set B uniquely defines the triple-set
(G ,B,R). We proceed with the following claim.

Claim 1. For any triple-set (G ,B,R) if |B| 6 b 1
3 · 2s−1c then

|B| 6 |R|.
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Proof: According to the definition of (G ,B,R) and since
G ∪ B = [b 2

3 · 2s−1c] it holds that

|R| =
∣∣∣[2s−1] \

(
G ∪ B ∪ {2s−1 − 1}

)∣∣∣
= 2s−1 −

⌊2
3
· 2s−1

⌋
− 1.

Thus, in order to prove that |B| 6 |R|, since |B| 6 b 1
3 · 2s−1c,

we will prove inequality (a) in

|R| = 2s−1 −
⌊2

3
· 2s−1

⌋
− 1

(a)
>
⌊1

3
· 2s−1

⌋
> |B|.

This inequality equivalent to

2s−1 − 1 >
⌊2

3
· 2s−1

⌋
+
⌊1

3
· 2s−1

⌋
.

We separate the proof for the following two cases.
Case 1: If s is even, then

2s ≡ 1(mod3), 2s−1 ≡ 2(mod3).

Thus,⌊2
3
· 2s−1

⌋
+
⌊1

3
· 2s−1

⌋
=
⌊2s

3

⌋
+
⌊2s−1

3

⌋
=

2s − 1
3

+
2s−1 − 2

3
=

3 · 2s−1 − 3
3

= 2s−1 − 1.

Case 2: If s is odd, then

2s ≡ 2(mod3), 2s−1 ≡ 1(mod3).

Thus,⌊2
3
· 2s−1

⌋
+
⌊1

3
· 2s−1

⌋
=
⌊2s

3

⌋
+
⌊2s−1

3

⌋
=

2s − 2
3

+
2s−1 − 1

3
=

3 · 2s−1 − 3
3

= 2s−1 − 1.

Therefore, it is deduced that in both cases if |B| 6 b 1
3 · 2s−1c

then |B| 6 |R|.
As mentioned above, our strategy is to construct two algo-

rithms. We start by describing the first one which is the main
algorithm. This algorithm receives as an input the request M
and outputs a set B and a Hadamard-solution for some triple-
matrix M(G ,B,R) of M. Using the matrix M(G ,B,R), it
will be shown how to derive the solution for M. This connec-
tion is established in the next lemma. For the rest of this section
we denote n = 2s and for our ease of notations both of them
will be used.

Lemma 8. If there is a Hadamard solution for M(G ,B,R)
such that |B| 6 b 1

3 · 2s−1c, then there is a solution for
M = [v0, v1, . . . , vb 2

3 ·2s−1c−1].

Proof: Let the HG-matrix G = [g0, g1, . . . , gn−1] be a
Hadamard solution for M(G ,B,R). Our goal is to form all
disjoint recovery sets Rt for t ∈ G ∪ B = [b 2

3 · 2s−1c] for M.
Since G is a Hadamard solution for M(G ,B,R), for all t ∈
[2s−1], it holds that

wt = g2t + g2t+1.

By definition of M(G ,B,R)

wt =


vt t ∈ G
vt + e t ∈ B
e t ∈ R

.

Thus, if t ∈ G then

vt = wt = g2t + g2t+1,

and each recovery set for vt is of the form Rt = {2t, 2t + 1}.
If t ∈ B then

vt + e = wt = g2t + g2t+1,

and if t′ ∈ R then

e = wt′ = g2t′ + g2t′+1.

Therefore, for all t ∈ B and t′ ∈ R,

vt = g2t + g2t+1 + g2t′ + g2t′+1.

By Claim 1, since |B| 6 b 1
3 · 2s−1c, it holds that |B| 6 |R|.

Thus, for all t ∈ B, each recovery set Rt for vt will have a
different t′ ∈ R such that

Rt = {2t, 2t + 1, 2t′, 2t′ + 1}.

In Lemma 8, it was shown that obtainingM(G ,B,R) which
holds |B| 6 b 1

3 · 2s−1c provides a solution for M. Therefore, if
the first algorithm outputs a set B for which |B| 6 b 1

3 · 2s−1c,
then the solution for M is easily derived. Otherwise, the first al-
gorithm outputs a set B such that |B| > b 1

3 · 2s−1c. In this case,
the second algorithm will be used in order to reduce the size
of the set B to be at most b 1

3 · 2s−1c. For that, more definitions
are required, and will be presented in the next section.

A. Graph Definitions

In the two algorithms of the construction, we will use undi-
rected graphs, simple paths, and simple cycles that will be de-
fined next. These graphs will be useful to represent the HG-
matrix G in some graph representation and to make some swap
operations on its columns.

Definition 9. An undirected graph or simply a graph will be
denoted by G = (V, E), where V = {u0, u1, . . . , um−1} is its
set of m nodes (vertices) and E ⊆ {{ui , u j} | ui , u j ∈ V} is
its edge set. A finite simple path of length ` is a sequence of
distinct edges e0, e1, . . . , e`−1 for which there is a sequence of
vertices ui0 , ui1 , . . . , ui` such that e j = {ui j , ui j+1}, j ∈ [`]. A
simple cycle is a simple path in which ui0 = ui` . The degree of
a node ui is the number of edges that are incident to the node,
and will be denoted by deg(ui).

Note that in Definition 9 we did not allow parallel edges, i.e.,
different edges which connect between the same two nodes. By
a slight abuse of notation, we will use graphs in which at most 2
parallel edges are allowed between any two nodes. That implies
that cycles of length 2 may appear in the graph. In this case, we
will use some notations for distinguishing between two parallel
edges as will be done in the following definition.
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Definition 10. Given an HG-matrix G = [g0, g1, . . . , gn−1],
and a vector x ∈ Fs

2, denote the x-type graph Gx(G) =
(V, Ex(G)) of G and x such that V = Fs

2 and a multi-set

Ex(G) =
{
{gi , gi + x} | i ∈ [n]

}
∪
{
{g2t−1, g2t} | t ∈ [n/2]

}
.

For all t ∈ [n/2], we say that g2t−1 and g2t are a pair. An edge
{g2t−1, g2t} will be called a pair-type edge and will be denoted
by {g2t−1, g2t}p. An edge {gi , gi + x} will be called an x-type
edge and will be denoted by {gi , gi + x}x. Note that for any
g ∈ V, it holds that deg(g) = 2. Thus, the graph Gx(G) has
a partition of ` > 1 disjoint simple cycles, that will be denoted
by Cx(G) = {Ci}`−1

i=0 , where every Ci is denoted by its set of
edges.

Note that Ex(G) is a multi-set since in case that g2t−1 =
g2t + x, we have two parallel edges {g2t−1, g2t}p and
{g2t−1, g2t}x between g2t−1 and g2t. For the following defi-
nitions assume that G = [g0, g1, . . . , gn−1] is an HG-matrix
of order s× n.

Definition 11. Given an x-type graph Gx(G) such that
x ∈ Fs

2, let gi , g j be two vertices connected by a simple path
Px(gi , g j, G) of length `− 1 in Gx(G) which is denoted by

gi = gs0
− gs1

− · · · − gs`−1
= g j.

The path Px(gi , g j, G) will be called a good-path if the edges
{gs0

, gs1
} and {gs`−2

, gs`−1
} are both x-type edges. For all gt

and gm on Px(gi , g j, G), denote by dPx(gt, gm, G) the length of
the simple sub-path from gt to gm on Px(gi , g j, G). This length
will be called the sub-length from gt to gm in Px(gi , g j, G).
When the graph G will be clear from the context we will use
the notation Px(gi , g j), dPx(gt, gm) instead of Px(gi , g j, G),
dPx(gt, gm, G), respectively.

We next state the following claim.

Claim 2. Given a good-path Px(gi , g j) of length `− 1 in Gx(G)

gi = gs0
− gs1

− · · · − gs`−1
= g j,

where x ∈ Fs
2, the following properties hold.

a) The value of ` is even.
b) For all m ∈ [`/2− 1] the edge {gs2m+1

, gs2m+2
}p is a pair-

type edge.
c) For all t ∈ [`/2], gs2t

= gs2t+1
+ x.

d) If gi , g j is not a pair, then the pair of gi and the pair of g j
are not in Px(gi , g j).

Proof: We prove this claim as follows.
a) Since Px(gi , g j) is a good-path, by definition the edge
{gs0

, gs1
}x is an x-type edge. We also know that for

all t ∈ [`] it holds that deg(gst
) = 2. Thus, the edge

{gs1
, gs2
}p is a pair-type edge, the edge {gs2

, gs3
}x is an

x-type edge, and so on. More formally, for all t ∈ [`/2]
the edge {gs2t

, gs2t+1
}x is an x-type edge and for all

m ∈ [`/2− 1] the edge {gs2m+1
, gs2m+2

}p is a pair-type
edge. Since the last edge {gs`−2

, gs`−1
}x is also an x-type

edge, we deduce that ` − 1 is odd or equivalently ` is
even.

b) The proof of this part holds due to a).
c) In a) we proved that for all t ∈ [`/2] the edge
{gs2t

, gs2t+1
}x is an x-type edge. Thus, by definition

gs2t
= gs2t+1

+ x.
d) Let gm be a pair of gi and we will prove that gm /∈

Px(gi , g j). Note that gm 6= g j and deg(gm) = 2. There-
fore, if gm ∈ Px(gi , g j), then gi has to appear more than
once in Px(gi , g j). This is in contradiction to the fact that
Px(gi , g j) is a simple path.

Another useful property on good-paths in x-type graphs is
proved in the next claim.

Claim 3. If gi , g j is a pair, then there is a good-path Px(gi , g j)
in Gx(G).

Proof: We know that all nodes in Gx(G) are of degree 2.
Therefore, there is a simple cycle in C ∈ Cx(G) including the
edges {gi , gm}x and {g j, gp}x for some m, p ∈ [n], and the
edge {gi , g j}p . By removing the edge {gi , g j}p from C we get
a simple path P starting with the edge {gi , gm}x and ending
with the edge {g j, gp}x. Thus, by definition, P is a good-path
Px(gi , g j).

The next definition will be used for changing the order of
the columns in G.

Definition 12. LetHs be the set of all HG-matrices of order s×
n. Let Ps ⊆ Fs

2 × Fs
2 be the set of all couples of column vectors

gm, gp of G such that there is a good-path Px(gm, gp). For every
two column vectors gi , g j with a good-path Px(gi , g j) of length
`− 1 in Gx(G)

gi = gs0
− gs1

− · · · − gs`−1
= g j,

denote the reordering function Fx : Ps ×Hs → Hs that gen-
erates an HG-matrix Fx(gi , g j, G) from G by adding x to every
column gsm

, m ∈ [`]. We will use the notation Fx(gi , g j) for
shorthand.

The following claim proves that the function Fx is well de-
fined.

Claim 4. The matrix Fx(gi , g j) is an HG-matrix of order s× n.

Proof: Let Px(gi , g j) be a good-path of length ` − 1 in
Gx(G) denoted by

gi = gs0
− gs1

− · · · − gs`−1
= g j.

By using the function Fx(gi , g j), the vector x is added to every
column gsm

, m ∈ [`]. In Claim 2(c) it was shown that for all
t ∈ [`/2],

gs2t
= gs2t+1

+ x.

Therefore, adding x to all the columns gsm
, m ∈ [`], is equiva-

lent to swapping the column vectors gs2t
, gs2t+1

for all t ∈ [`/2]
in G. Since after rearranging the columns of G, it is still an
HG-matrix, it is deduced that Fx(gi , g j) is an HG-matrix.

To better explain these definitions and properties, the follow-
ing example is presented.
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Example 2. For s = 3, let G be the following HG-matrix

G =

g0 g1 g2 g3 g4 g5 g6 g7( )0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

.

Let x = (1, 0, 1). The matrix Gx(G) will be defined as in Fig-
ure 1. Note that in this case, the graph Gx(G) is partitioned

𝒈𝟎

𝒈𝟎 𝒈𝟏

𝒈𝟑 𝒈𝟒

𝒈𝟓 𝒈𝟔

𝒈𝟕 𝒈𝟎

𝒈𝟏 𝒈𝟐

𝒈𝟑 𝒈𝟒

𝒈𝟓 𝒈𝟔

𝒈𝟕

𝒈𝟕

𝒈𝟎 𝒈𝟏

𝒈𝟐 𝒈𝟑

𝒈𝟒 𝒈𝟓

𝒈𝟔

Fig. 1. The Gx(G) graph. The green edges are the x-type edges and the dashed
edges are the pair-type edges.

into two disjoint cycles. While the path g0 − g5 is a good-path
between g0 and g5, the path

g0 − g1 − g4 − g5

is not a good-path between g0 and g5. Note that there is no
good-path between g0 and g4. Let Px(g0, g1) be the good-path
between g0 and g1,

g0 − g5 − g4 − g1.

Thus, G′ = Fx(g0, g1) is the following HG-matrix

G′ =

g′0 g′1 g′2 g′3 g′4 g′5 g′6 g′7( )1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1
g5 g4 g2 g3 g1 g0 g6 g7

,

with a new graph Gx(G′) as depicted in Figure 2.

𝒈𝟕
′

𝒈𝟎
′ 𝒈𝟏

′

𝒈𝟐
′ 𝒈𝟑

′

𝒈𝟒
′ 𝒈𝟓

′

𝒈𝟔
′

𝒈𝟕

𝒈𝟓 𝒈𝟒

𝒈𝟐 𝒈𝟑

𝒈𝟏 𝒈𝟎

𝒈𝟔

(a) The graph Gx(G′) represented by
the nodes {g0 , g1 , . . . , g7}.

𝒈𝟕
′

𝒈𝟎
′ 𝒈𝟏

′

𝒈𝟐
′ 𝒈𝟑

′

𝒈𝟒
′ 𝒈𝟓

′

𝒈𝟔
′

𝒈𝟕

𝒈𝟓 𝒈𝟒

𝒈𝟐 𝒈𝟑

𝒈𝟏 𝒈𝟎

𝒈𝟔

(b) The graph Gx(G′) represented by
the nodes {g′0 , g′1 , . . . , g′7}.

Fig. 2. The graph Gx(G′).

The next lemma shows a very important property that will be
used in the construction of the first algorithm. This algorithm
will have a routine of b 2

3 · 2s−1c iterations. In iteration t 6
b 2

3 · 2s−1c, we will modify the order of the column vectors of
G such that only the sums g2t + g2t+1 and gn−2 + gn−1 will be
changed by x ∈ Fs

2, and all other sums g2p + g2p+1 where p 6=
t, n/2− 1 will remain the same. The goal on the t-th iteration
is to get that

g2t + g2t+1 = vt + 1te,

where 1t ∈ {0, 1} and remember that e = (0, 0, . . . , 0, 1) ∈
Fs

2.

Lemma 13. Let Px(gr1
, gr2

) be a good-path in Gx(G) where
x ∈ Fs

2 and r1, r2 ∈ [n] such that gr1
, gr2

is not a pair. If r1 ∈
{2i, 2i + 1}, r2 ∈ {2 j, 2 j + 1} (and note that i 6= j), then, the
HG-matrix

G′ = Fx(gr1
, gr2

) = [g′0, g′1, . . . , g′n−1]

satisfies the following equalities

g′2p + g′2p+1 = g2p + g2p+1 + x p ∈ {i, j},
g′2p + g′2p+1 = g2p + g2p+1 p 6= i, j,

where p ∈ [n/2].

Proof: We prove this lemma only for r1 = 2i and r2 = 2 j
where i < j while all other cases are proved similarly. Suppose
that the good-path Px(g2i , g2 j) is of length `− 1 and denote it
by

g2i = gs0
− gs1

− · · · − gs`−1
= g2 j.

Let S be the set S = {s0, s1, . . . , s`−1}. Let

G′ = [g′0, g′1, . . . , g′n−1]

be an HG-matrix of order s × 2s generated by applying
Fx(g2i , g2 j, G). Thus, it is deduced that for all m ∈ [n]

g′m = gm if m /∈ S,
g′m = gm + x if m ∈ S.

Since Px(g2i , g2 j) is as good-path and due to Claim 2(b), for
all 1 6 t 6 `/2− 1, it holds that {gs2t−1

, gs2t
}p is a pair-type

edge. Thus, for all 1 6 t 6 `/2− 1

g′s2t−1
+ g′s2t

= gs2t−1
+ x + gs2t

+ x = gs2t−1
+ gs2t

.

Therefore, it is deduced that for all p ∈ [n/2] \ {i, j}, it holds
that

g′2p + g′2p+1 = g2p + g2p+1.

In case that p = i or p = j, by Claim 2(d) the columns g2i+1
and g2 j+1 are not on the path Px(g2i , g2 j). Thus, g′2i+1 = g2i+1
and g′2 j+1 = g2 j+1. Therefore,

g′2p + g′2p+1 = g2p + g2p+1 + x.

Before proceeding to the next section, the following Find-
ShortPath(G, x, t, m) function is presented. Let G be an
HG-matrix and Gx(G) be its graph for some x ∈ Fs

2. Let
{g2t, g2t+1}p be a pair-type edge in Gx(G). Assume that
there is another pair-type edge {g2m, g2m+1}p in Gx(G) such
that m > t. The FindShortPath(G, a, t, m) function will be
used under the condition that there is a cycle Ci ∈ Cx(G) such
that both {g2t, g2t+1}p and {g2m, g2m+1}p are in Ci.

The FindShortPath(G, x, t, m) function is presented since it
will be used several times in this paper.
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FindShortPath(G, x, t, m)
1: Px ← the good-path Px(g2t, g2t+1, G)
2: d1 ← dPx(g2t+1, g2m)
3: d2 ← dPx(g2t+1, g2m+1)
4: if d1 < d2 then
5: j← 2m
6: else
7: j← 2m + 1

B. The FindGoodOrBadRequest(G, t, v) function

Let G be an HG-matrix, let v ∈ Fs
2, and let t ∈ [n/2]. De-

note y = g2t + g2t+1. In this section we will show the function
called FindGoodOrBadRequest(G, t, v). This function will be
used by the first algorithm which will be presented in the next
section. The task of this function is to update the sum of the
pair g2t, g2t+1 to either v or v + y. It also changes the sum of
the last pair g2t, g2t+1, but, this pair is used as a “redundancy
pair”, i.e., it is not important what the sum of this pair. Another
important thing to mention, is that the algorithm FindGoodOr-
BadRequest(G, t, v) do not update the sum of the pairs on in-
dices 2p and 2p + 1 for all p 6= t, even though these columns
could be reordered. The case g2t + g2t+1 = v, g2t + g2t+1 =
v + y is called a good, bad case and t will, won’t be inserted
in B, respectively. We now ready to present the function.

FindGoodOrBadRequest(G, t, v)
1: y← g2t + g2t+1
2: if v = y then
3: Return G and B
4: u← g2t+1 + gn−2
5: for p = 1, 2, 3 do
6: if p = 1 then
7: a← v + y
8: if p = 2 then
9: a← v + y + u

10: Swap the columns g2t+1 and gn−2 in G

11: if p = 3 then
12: a← v + u
13: Swap the columns g2t and gn−2 in G

14: Pa ← the good-path Pa(g2t, g2t+1, G)
15: r← {gn−2, gn−1}p
16: if r ∈ Pa then
17: j← FindShortPath(G, a, t, n/2)
18: G′ ← Fa(g2t+1, g j)

19: Return G′ and B′
20: G′ ← Fa(g2t, g2t+1)
21: Swap the columns g′2t and g′n−2 of G′

22: B′ ← B ∪ {t}
23: Return G′ and B′

An explanation of the FindGoodOrBadRequest(G, t, v) func-
tion is shown in the next example.

Example 3. In Fig 3 we illustrate three good situations in which
Step 16 in the function FindGoodOrBadRequest(G, t, v) suc-
ceeds, and one bad case in which Step 16 in the function Find-
GoodOrBadRequest(G, t, v) fails. The solid green line in all fig-

𝒈2𝑡 𝒈2𝑡+1 𝒈𝑛−2 𝒈𝑛−1

𝒚

𝑃𝒂

𝒖

𝒖

𝑃𝒂

𝒚 + 𝒖

𝒆 + 𝒖

𝑃𝒂

𝒖

𝒖

𝑃𝒂

𝒚 + 𝒖

𝒈2𝑡 𝒈2𝑡+1 𝒈𝑛−2 𝒈𝑛−1

𝒈2𝑡 𝒈2𝑡+1 𝒈𝑛−2 𝒈𝑛−1 𝒈2𝑡 𝒈2𝑡+1 𝒈𝑛−2 𝒈𝑛−1

(a) The p = 1 case, a = v + y.
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(b) The p = 2 case, a = v + y + u.
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(c) The p = 3 case, a = v + u.
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(d) The bad case, a = v + u.

Fig. 3. Explanation of the function FindGoodOrBadRequest(G, t, v).

ures is a sub-path of the good-path Pa (which is a path between
the nodes g2t, g2t+1 in Ga(G)). The dashed lines represent the
edges between the signed nodes. The green dashed line is an
edge on Pa. Without loss of generality, it is assumed that the
closest node between gn−2 and gn−1 to g2t+1 in Pa is gn−2.
The labels of the edges represent the summation of the vectors
of its incident nodes. Each of the three good cases illustrated
in (a)-(c) lead to the fact that a pair g′2t, g′2t+1 will be summed
up to v (Step 18). In the bad case illustrated by (d), this pair
will be summed up only to v + y (Steps 20-21).

Denote by 1 ∈ {0, 1} a binary indicator such that 1 =
1 if and only if the function FindGoodOrBadRequest(G, t, v)
reaches Step 20. Our next goal is to prove the following impor-
tant lemma.

Lemma 14. The function FindGoodOrBadRequest(G, t, v) will
generate a matrix

G′ = [g′0, g′1, . . . , g′n−1]

such that

g′2p + g′2p+1 =

{
g2p + g2p+1 p 6= t, n/2− 1
v + 1y p = t

.

Proof: First we show that if the function reaches Step 19,
then

g2t + g2t+1 + a = v. (1)

We separate the proof for the three cases of p ∈ {1, 2, 3}. To
better understand these cases we refer the reader to Fig. 3(a)-
(c). Remember that by Step 4, u = g2t+1 + gn−2.

a) If p = 1, then g2t + g2t+1 = y. By Step 7, a = v + y,
and therefore equality (1) holds.

b) If p = 2, then by Step 10, after swapping g2t+1 and gn−2,
it is deduced that

g2t + g2t+1 = y + u.

By Step 9, a = v + y + u, which concludes the correct-
ness of equality (1).

c) If p = 3, then by Step 13, after swapping g2t and gn−2,
it is deduced that

g2t + g2t+1 = u.
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By Step 12, a = v + u, corresponding to (1).

Note that by Claim 3, there is always a good-path between
g2t and g2t+1. Now, suppose that in one of these 3 cases,
there is a good-path Pa(g2t, g2t+1) in Ga(G) which includes
the edge {gn−2, gn−1}p (with respect to Step 16). By ex-
ecuting FindShortPath(G, a, t, n/2) we find the closest node
between gn−2 and gn−1 to g2t+1 on the path Pa. This node is
denoted by g j. Thus, the first and the last edges on the path
Pa(g2t+1, g j) have to be x-type edges. By definition, it is de-
duced that Pa(g2t+1, g j) is a good-path. According to Step 18,
G′ = Fa(g2t+1, g j). By Lemma 13 this step changes the pair
summations of only the pairs g2t, g2t+1 and gn−2, gn−1. More
precisely,

g′2t + g′2t+1 = g2t + g2t+1 + a = v

and the sum of the pair g′n−2, g′n−1 does not matter.
Finally, if the function does not succeed to find any of these

good-paths, we will show that it will create a matrix G′ such
that the pair g′2t, g′2t+1 will be almost correct, that is,

g′2t + g′2t+1 = v + y.

This will be done in Steps 20–21. First, the path Pa(g2t, g2t+1)
does not include the edge {gn−2, gn−1}p since Step 16 has
failed. Second, the function makes two swaps in Step 10 and
Step 13 such that

g2t + g2t+1 = u,

and

g2t+1 + gn−2 = u + y,

and by Step 12, a = v + u. This is illustrated in Fig. 3(d).
Thus, according to Step 20, G′ = Fa(g2t, g2t+1) such that

g′2t + g′2t+1 = g2t + g2t+1 = u,

and the column vectors gn−2, gn−1 are not changed. Therefore,

g′2t+1 + g′n−2 = g2t+1 + gn−2 + a = v + y.

By Step 21 in which the columns g′2t, g′n−2 are swapped we
get

g′2t + g′2t+1 = v + y.

We conclude that the function will generate an HG-matrix

G′ = [g′0, g′1, . . . , g′n−1]

such that

g′2p + g′2p+1 =

{
g2p + g2p+1 p 6= t, n/2− 1
v + 1y p = t

where 1 = 1 if and only if the function reached Step 20.

C. The First Algorithm

We start with the first algorithm which is referred by FBSo-
lution(τ ,M), where M is the request and τ will be the number
of iterations in the algorithm, which is the number of columns
in M. We define more variables that will be used in the routine
of FBSolution(τ ,M), and some auxiliary results. The τ itera-
tions in the algorithm operate as follows. First, we demand that
the initial state of the matrix

G = [g0, g1, . . . , gn−1]

will satisfy

g2t + g2t+1 = e, t ∈ [n/2]. (2)

The matrix G exists due to the following claim.

Claim 5. There is an HG-matrix G = [g0, g1, . . . , gn−1] such
that for all t ∈ [n/2]

g2t + g2t+1 = e.

Proof: Such an HG-matrix G is constructed by taking an
order of its column vectors such that for all t ∈ [n/2],

g2t = (z0, z1, . . . , zs−2, 0), g2t+1 = (z0, z1, . . . , zs−2, 1).

The following corollary states that Claim 5 holds for all x ∈
Fs

2 instead of e. The proof of this corollary is similar to the one
of Claim 5.

Corollary 15. For any M that has one kind of request v j, there
is a Hadamard solution for M.

Extending Corollary 15 to the cases where there are at most
a fixed number of different requests d is an interesting problem
by itself, which is out of the scope of this paper. For the case
of d = 3 we believe we have a proof, however it is omitted
since we found it to be long and cumbersome. Finding a simple
solution for this case and in general for arbitrary d is left for
future research.

According to Corollary 15, for the rest of this section we
assume that M has at least two kinds of requests v j. It is also
assumed that τ = b 2

3 · 2s−1c. The HG-matrix at the end of the
t-th iteration will be denoted by

G(t+1) = [g(t+1)
0 , g(t+1)

1 , . . . , g(t+1)
n−1 ].

Now we are ready to present the FBSolution(τ ,M) algorithm.

Algorithm 1 FBSolution(τ , M)

1: G(0) ← G
2: B(0) = ∅
3: for t = 0, . . . , τ − 1 do
4: G(t+1),B(t+1) ← FindGoodOrBadRequest(G(t), t, vt)
5: Return G(τ) and B(τ)

At the end of the FBSolution(τ ,M) algorithm we obtained the
set B1 = B(τ) and the matrix G(τ) = [g(τ)0 , g(τ)1 , . . . , g(τ)n−1].
By Definition 7, the set B1 uniquely defines the triple-set
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(G1,B1,R1). Since in our case y = e, by Lemma 14, for all
t ∈ [n/2], the matrix G(τ) satisfies that

g(τ)2t + g(τ)2t+1 =


vt t ∈ G1

vt + e t ∈ B1

e t ∈ R1

.

Let M1 = [w0, w1, . . . , w2s−1−1] be the matrix such that for
all t ∈ [n/2]

wt = g(τ)2t + g(τ)2t+1.

Therefore, it is deduced that M1 = M1(G1,B1,R1) is a
triple-matrix of M. By definition of M1(G1,B1,R1), the
matrix G(τ) is its Hadamard solution. If the set B1 satis-
fies |B1| 6 b 1

3 · 2s−1c then by Lemma 8 there is a solution
for M. Otherwise, we will make another reordering on the
columns of G(τ) in order to obtain a new bad set B2 for which
|B2| 6 b 1

3 · 2s−1c. This will be done in the next section by
showing our second algorithm.

D. The Second Algorithm

From now on we assume that

G(τ) = G = [g0, g1, . . . , gn−1]

and B = B1. Before showing the third second we start with the
following definition.

Definition 16. Let Ce(G) be a partition of simple cycles
in Ge(G). A pair of distinct indices t1, t2 ∈ B is called a
bad-indices pair in Ce(G) if both edges {g2t1

, g2t1+1}p and
{g2t2

, g2t2+1}p are in the same simple cycle in Ge(G).

Now we show the algorithm ClearBadCycles(G,B) in which
the columns of the HG-matrix G are reordered, and the set B
will be modified and its size will be decreased.

Algorithm 2 ClearBadCycles(G,B)
1: Ce(G)← The partition of simple cycles in Ge(G)
2: while ∃t1, t2 a bad-indices pair in Ce(G) do
3: j← FindShortPath(G, e, t1, t2)
4: G← Fe(g2t1+1, g j)
5: Ce(G)← The partition of simple cycles in Ge(G)
6: Remove t1, t2 from B
7: Return G and B

Let G2 = [g?0 , g?1 , . . . , g?n−1] be the HG-matrix and B2 be the
bad set output of the ClearBadCycles(G,B) algorithm. We re-
mind the reader that M = [v0, v1, . . . , vb 2

3 ·2s−1c−1]. LetM2 =

[w0, w1, . . . , w2s−1−1] be the matrix such that for all t ∈ [n/2]

wt = g?2t + g?2t+1.

Since B2 uniquely defines the triple set (G2,B2,R2), it is de-
duced that the matrix M2 is a triple-matrix M2(G2,B2,R2)
of M. Next, it will be shown that the algorithm ClearBadCy-
cles(G,B) will stop and |B2| will be bounded from above by
b 1

3 · 2s−1c after the execution of the algorithm.

Lemma 17. The algorithm ClearBadCycles(G,B) outputs a set
B2 such that |B2| 6 b 1

3 · 2s−1c.

Proof: According to Step 2 if there is a simple cycle con-
taining a bad-indices pair t1, t2 in Ce(G), the algorithm will en-
ter the routine. Thus, there is a good-path between g2t1+1 and
one of the nodes g2t2

, g2t2+1 (the closest one between them to
g2t1+1), and the index of this node is denoted by j (Step 3).
Since t1, t2 ∈ B, before the algorithm reaches Step 4, it holds

g2t1
+ g2t1+1 = vt1 + e, g2t2

+ g2t2+1 = vt2 + e.

By executing Fe(g2t1+1, g j), due to Lemma 13, the matrix G
is updated to a matrix G′ such that only the two following pair
summations are correctly changed to

g′2t1
+ g′2t1+1 = vt1 , g′2t2

+ g′2t2+1 = vt2 .

Thus, the indices t1 and t2 are removed from B (Step 6). There-
fore, Step 2 will fail when each simple cycle will have at most
one t ∈ B such that

g2t + g2t+1 = vt + e,

and we will call it a “bad cycle”. Suppose that there are p bad
cycles at the end of the algorithm. We are left with showing
that p 6 b 1

3 · 2s−1c.
Observe that for all t ∈ R, the nodes g2t and g2t+1 are con-

nected by two parallel edges, and therefore they create cycles
of length 2. These cycles are not bad cycles by definition. Since
there are 2|R| such columns in G and together with the pair
gn−2, gn−1 and |R| = 2s−1 −

⌊
2
3 · 2s−1

⌋
− 1, only the first

2 · |B ∪ G| = 2 ·
⌊2

3
· 2s−1

⌋
columns of G can be partitioned into bad cycles. Our next goal
is to prove that the size of each bad cycle is at least 4. Assume
to the contrary that there is a bad cycle of length 2. Since we
are using the graph Ge(G), such a simple cycle of two nodes
g2t, g2t+1, t ∈ B, satisfies that

g2t + g2t+1 = e.

In that case g2t + g2t+1 6= vt + e since vt is non-zero vector,
so g2t + g2t+1 = vt = e. According to Step 2 in the function
FindGoodOrBadRequest(G, t, v), t /∈ B, which results with a
contradiction. Therefore, indeed all simple cycles are of size at
least 4. Thus,

|B| 6 p 6
⌊1

4
·
(

2 ·
⌊2

3
· 2s−1

⌋)⌋
=
⌊1

3
2s−1

⌋
,

where the last equality holds since by the nested division⌊
bx/yc

z

⌋
= b x

yz c for real x, y and a positive integer z.
We are finally ready to prove the main result of this section.

Theorem 18. An FB-(2s − 1, s, b 2
3 · 2s−1c) code exists.

Proof: Using the result of Lemma 17 it is deduced that
the algorithm ClearBadCycles(G,B) outputs the set B2 such
that it size is at most b 1

3 · 2s−1c. The HG-matrix G2 is again a
Hadamard solution for a triple-matrix M2(G2,B2,R2) of M.
Thus, by using Lemma 8, it is deduced that there is a solution
for M. After removing the all-zero column vector from G, the
proof of this theorem is immediately deduced.
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IV. A CONSTRUCTION OF
FB-(2s + d(3α − 2) · 2s−2e − 1, s, bα · 2s−1c) CODES

In this section we show how to construct FB-(2s + d(3α −
2) · 2s−2e − 1, s, bα · 2s−1c) codes where 2/3 6 α 6 1. For
convenience, throughout this section let n = 2s and m = 2s +
d(3α− 2) · 2s−2e. Note that since α > 2/3 it holds that m > n.
Let e = (0, 0, . . . , 0, 1) ∈ Fs

2.
The following two definitions extend HG-matrices from Def-

inition 5 and triple-matrices from Definition 7.

Definition 19. A matrix G = [g0, g1, . . . , gm−1] of order s×m
over F2 is called an extended-HG-matrix if the matrix HG =
[g0, g1, . . . , gn−1] is an HG-matrix of order s × n and for all
n 6 i 6 m − 1 it holds gi = e. The HG-matrix HG will be
called the H-part of G.

Definition 20. Three sets G ,B,R ⊆ [2s−1] are called an
α-triple-set, and are denoted by α-(G ,B,R), if the following
properties hold

G ⊆
[⌊
α · 2s−1

⌋]
,

B =
[⌊
α · 2s−1

⌋]
\ G ,

R = [2s−1] \
(
G ∪ B ∪ {2s−1 − 1}

)
.

Given a matrix M = [v0, v1, . . . , vbα·2s−1c−1] of order
s× bα · 2s−1c, a matrixM(G ,B,R) = [w0, w1, . . . , w2s−1−1]
of order s × 2s−1 is referred as an α-triple-matrix of M if it
holds that

wt =


vt t ∈ G
vt + e t ∈ B
e t ∈ R

.

Note that by taking α = 2/3, Definition 20 will be equiv-
alent to Definition 7. Denote N = [m] \ [n] and note that
|N | = d(3α − 2) · 2s−2e. We seek to design an algorithm
which is very similar to the FBSolution(τ , M) algorithm in the
following respect. This algorithm will output an HG-matrix
HG which will be the H-part of an extended-HG-matrix
G = [g0, g1, . . . , gm−1], and a set B. The set B will define
uniquely the α-triple-set α-(G ,B,R). For all t ∈ G we will
get

g2t + g2t+1 = vt,

and for all t ∈ B we will get an almost desirable solution, that
is,

g2t + g2t+1 = vt + e.

The summation of the last pair gn−2, gn−1 will be arbitrary.
Similarly to the technique that was shown in Section III, the set
R will be used to correct the summations vt + e to vt, where
t ∈ B. For that, the ClearBadCycles(G,B) algorithm will be
used as it was done in Section III in order to obtain an extended-
HG-matrix G and a set B such that |B| 6 b 1

2α · 2s−1c. Even
though |B| 6 b 1

2α · 2s−1c, the size of R will not be bigger than
the size of B for α > 2/3. Thus, in this case, not all bad sum-
mation can be corrected. For that, we define the set N that is
also used to correct the summations vt + e to vt, where t ∈ B.

This will be done based on the property that for all t ∈ N it
holds that gt = e. In case that α < 1, together with R and
N , the last pair gn−2, gn−1 will be used for the correction of
these summations. Thus, if the inequality |B| 6 |R|+ |N |+ 1
holds, then it is possible to construct a solution for M. In case
that α = 1, we obtain |R| = 0. In this case, we will show how
to get the inequality |B| 6 |N |, which will similarly lead to
a solution for M. Even though the last pair gn−2, gn−1 has an
arbitrary summation, it will still be shown how to obtain the re-
quest vn/2−1 from this pair. Therefore, our first goal is to show
a condition which assures that either |B| 6 |R|+ |N |+ 1 or
|B| 6 |N |. This is done in Claim 6.

Claim 6. Let (G ,B,R) be anα-triple-set where |B| 6 b 1
2α · 2s−1c.

If 2/3 6 α < 1, then |B| 6 |R|+ |N |+ 1, and if α = 1 then
|B| 6 |N |.

Proof: Let 2/3 6 α < 1. According to the definition of
α-(G ,B,R), since G ∪ B = [bα · 2s−1c] it holds that

|R| =
∣∣∣[2s−1] \

(
G ∪ B ∪ {2s−1 − 1}

)∣∣∣
= 2s−1 −

⌊
α · 2s−1

⌋
− 1.

We also know that |N | = d(3α− 2) · 2s−2e. Thus, in order to
prove that |B| 6 |R|+ |N |+ 1, since |B| 6 b 1

2α · 2s−1
⌋

, it
is enough to prove inequality (a) in

|R|+ |N |+ 1 =2s−1 −
⌊
α · 2s−1

⌋
+
⌈
(3α − 2) · 2s−2

⌉
(a)
>
⌊1

2
α · 2s−1

⌋
> |B|.

Inequality (a) is equivalent to

2s−1 >
⌊

2α · 2s−2
⌋
+
⌊
α · 2s−2

⌋
−
⌈
(3α − 2) · 2s−2

⌉
,

which holds since⌊
2α · 2s−2

⌋
+
⌊
α · 2s−2

⌋
−
⌈
(3α − 2) · 2s−2

⌉
6 2α · 2s−2 +α · 2s−2 − (3α − 2) · 2s−2

= 2s−2(2α +α − (3α − 2)) = 2 · 2s−2 = 2s−1.

Now if α = 1, then |B| 6 b 1
2 · 2s−1c = 2s−2. By the definition

of R, it holds that |R| = 0 and by the definition of N it holds
that |N | = 2s−2. Therefore |B| 6 2s−2 = |N |.

Let M = [v0, v1, . . . , vbα·2s−1c−1] be a request of order s×
bα · 2s−1c. Our goal is to construct an extended-HG-matrix of
order s×m which will provide a solution for M. For that, the
α-FBSolution(M) algorithm is presented. In this algorithm, the
matrix H is represented by H = [g0, g1, . . . , gn−1].

Denote by G = [g0, g1, . . . , gm−1] an extended-HG-matrix
of order s × m such that the output matrix H from the
α-FBSolution(M) algorithm is its H-part, i.e., HG = H. Note
that Steps 5–6 define the set B. This set is obtained using a
similar technique to the one from Section III, except to the
fact that here 2/3 6 α 6 1, while in Section III, α = 2/3.
It is important to note that the size of B is bounded due to
the execution of the ClearBadCycles(H,B) algorithm (Step 6).
Therefore, we only state the following lemma since its proof
is very similar to the one that was shown in Lemma 17.
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Algorithm 3 α-FBSolution(M)
1: if α < 1 then
2: τ ← bα · 2s−1c
3: else if α = 1 then
4: τ ← 2s−1 − 1
5: H,B ← FBSolution(τ ,M)
6: H,B ← ClearBadCycles(H,B)
7: if α < 1 and gn−2 6= e then
8: H ← Fgn−2+e(gn−2, gn−1)

9: if α = 1 and gn−2 6= vn/2−1 then
10: H ← Fgn−2+vn/2−1(gn−2, gn−1)

11: Return H and B

Lemma 21. The α-FBSolution(M) algorithm outputs a set B
such that |B| 6 b 1

2α · 2s−1c.

We will use Lemma 21 while proving the main theorem of
this section.

Theorem 22. For any 2/3 6 α 6 1, a functional batch code

FB-(2s + d(3α − 2) · 2s−2e − 1, s, bα · 2s−1c)

exists.

Proof: After finishing the α-FBSolution(M) algorithm, we
obtain an HG-matrix H which is the H-part of the extended-
HG-matrix G = [g0, g1, . . . , gm]. Remember that by the def-
inition of G and N , for all t ∈ N , it holds that gt = e. In
Step 5 we invoke the algorithm FBSolution(τ ,M). Therefore,
for all t < τ , there exists 1t ∈ {0, 1} such that

g2t + g2t+1 = vt + 1te.

Let α-(G ,B,R) be an α-triple-set that is uniquely defined by
B according to Definition 20. Clearly, for all t ∈ G, the recov-
ery set Rt is Rt = {2t, 2t + 1}. By Lemma 21 it holds that
|B| 6 b 1

2α · 2s−1c. We separate this proof for two cases.

Case 1: Assume that α < 1. Due to Lemma 21 and Claim 6,
if α < 1, it is deduced that |B| 6 |R|+ |N |+ 1. Let t be the
maximum number in B and let B′ = B \ {t}. Thus, |B′| 6
|R|+ |N |. Therefore, for all t ∈ B′, Rt will have a different
t′ such that Rt equals to either {2t, 2t + 1, 2t′, 2t′ + 1} where
t′ ∈ R, or {2t, 2t + 1, t′} where t′ ∈ N . Thus, we showed
the recovery sets for all requests except of vt. Remember that
g2t + g2t+1 = vt + e, and note that if gn−2 = e, this case is
finished. Otherwise, gn−2 6= e. This is handled by Steps 7–8
as follows. By Claim 3, since gn−2 and gn−1 is a pair, we
know that there is a good-path Px(gn−2, gn−1) in an x-type
graph Gx(G) for all x ∈ Fs

2. Thus, if gn−2 6= e, by taking
x = gn−2 + e, the algorithm can use the reordering function
Fgn−2+e(gn−2, gn−1), as it is done in Step 8. By Lemma 13,
we obtain two new column vectors g′n−2 and g′n−1 such that

g′n−2 =gn−2 + gn−2 + e = e,
g′n−1 =gn−1 + gn−2 + e,

without changing the summations of all other pairs on
this path. Therefore, the recovery set for vt will be Rt =

{2t, 2t + 1, n− 2}, which concludes this case.

Case 2: Assume thatα = 1. Due to Lemma 21 and Claim 6 if
α = 1 then |B| 6 |N |. Thus, similarly to Case 1, for all t ∈ B,
the recovery sets Rt can be obtained. However, we do not have
a recovery set for vn/2−1 since the sum of the pair gn−2, gn−1
is arbitrary. If gn−2 = vn/2−1, then Rn/2−1 = {n− 2}. Other-
wise, as in Case 1, by Step 10 it is deduced that g′n−2 = vn/2−1.
Again Rn/2−1 = {n− 2}, which concludes this case.

In both cases, after removing the all-zero column from G,
we conclude the proof.

V. A CONSTRUCTION OF FB-(2s+1 − 2, s, 2s) CODES

In this section, a construction for FB-(2s+1 − 2, s, 2s)
codes will be shown by using the algorithm FBSolu-
tion(τ ,M). Throughout this section let n = 2s+1 and let
e = (0, 0, . . . , 0, 1) ∈ Fs+1

2 . We start with the following
definition.

Definition 23. A matrix G = [g0, g1, . . . , g2s+1−1] of order s×
2s+1 over F2 such that each vector of Fs

2 appears as a column
vector in G exactly twice, is called a double-HG-matrix.

Note that by removing the last row from any HG-matrix of
order (s + 1) × n, we get a double-HG-matrix of order s ×
n. Also, note that each double-HG-matrix has exactly two all-
zero columns. These columns will be removed at the end of the
procedure, obtaining only 2s+1 − 2 column vectors. Next, the
definition of a Hadamard solution is extended with respect to
Definition 6.

Definition 24. Let M = [v0, v1, . . . , v2s−1] be a request of order
s× 2s. The matrix M has a Hadamard solution if there exists
a double-HG-matrix G = [g0, g1, . . . , g2s+1−1] of order s × n
such that for all t ∈ [2s − 1],

vt = g2t + g2t+1,

and for t = n/2− 1 either vt = gn−2 + gn−1, or vt = gn−2,
or vt = gn−1.

Let M = [v0, v1, . . . , v2s−1] be a request of order s × 2s.
Our goal is to construct a double-HG-matrix of order s× 2s+1

which will provide a Hadamard solution for M. Let M =
[w0, w1, . . . , w2s−1] be a new matrix of order (s + 1) × 2s

generated by adding the all-zero row to M. Let τ = n/2− 1
and 0` be the all-zero vector of length `. We now show the
algorithm OptFBSolution(M), which receives as an input the
matrix M and outputs a double-HG-matrix G that will be a
solution for M. As mentioned in the Introduction the returned
solution is optimal.

The following lemma proves the correctness of Algorithm
OptFBSolution(M).

Lemma 25. The algorithm OptFBSolution(M) outputs a
double-HG-matrix G′ which is a Hadamard solution for M.

Proof: According to Step 2, the algorithm FBSolu-
tion(τ ,M) is used with τ = n/2− 1. Thus, by Lemma 14 we
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Algorithm 4 OptFBSolution(M)
1: τ ← n/2− 1
2: G← FBSolution(τ ,M)
3: y← ∑

2s−1
i=0 wi

4: if y 6= 0s+1 then
5: G← Fgn−2+y(gn−2, gn−1)

6: Remove the last row from G

obtain an HG-matrix G = [g0, g1, . . . , gn−1] such that for all
t ∈ [n/2− 1]

g2t + g2t+1 = wt + 1te, (3)

where 1t ∈ {0, 1}. Let G′ = [g′0, g′1, . . . , g′n−1] be a double-
HG-matrix of order s× n generated by removing the last row
from G according to Step 6. Since M = [w0, w1, . . . , w2s−1]
is generated by adding the all-zero row to M, by removing the
last row from G before Step 3, for all t ∈ [n/2− 1] we could
obtain G′ such that

g′2t + g′2t+1 = vt. (4)

However, G′ would provide a solution for M except for the last
request vn/2−1. We handle the last request using Steps 3–5 that
will be explained as follows.

Assume that ∑
2s−1
i=0 wi = y and note that

2s+1−1

∑
i=0

gi = 0s+1. (5)

Denote

1n/2−1 =
2s−2

∑
t=0

1t(mod2). (6)

Thus, it is deduced that

gn−2 + gn−1
(a)
=

2s+1−3

∑
i=0

gi
(b)
=

2s−2

∑
t=0

(wt + 1te)

(c)
= wn/2−1 + y + 1n/2−1e.

Equality (a) holds due to (5), equality (b) holds according
to (3), and equality (c) holds by the definition of y and by (6).
Now if y = 0s+1, according to Step 6, after removing the last
row from G, we get G′ such that equation (4) holds also for
t = n/2− 1, that is,

g′n−2 + g′n−1 = vn/2−1.

Clearly, in this case G′ is a Hadamard solution for M. Oth-
erwise, if y 6= 0s+1 then the algorithm enters the if condi-
tion in Step 4. By Claim 3, since gn−2 and gn−1 is a pair,
we know that there is a good-path Px(gn−2, gn−1) in an x-
type graph Gx(G) for all x ∈ Fs+1

2 . Thus, by taking x =
gn−2 + y, the algorithm will execute the reordering function
Fgn−2+y(gn−2, gn−1) (Step 5). By Lemma 13, we obtain two
new column vectors g′n−2 and g′n−1 such that

g′n−2 =gn−2 + gn−2 + y = y,
g′n−1 =gn−1 + gn−2 + y = wn/2−1 + 1n/2−1e,

without changing the summation of all other pairs on this path.
Again, by removing the last row from G, we obtain G′ such
that

g′2t + g′2t+1 = vt, t ∈ [n/2− 1]

and g′n−1 = vn/2−1. Thus, all the recovery sets Rt, t ∈ [n/2−
1] are of the form Rt = {2t, 2t + 1}, and the last recovery set
will be Rn/2−1 = {n− 1}, which concludes this case. In both
cases, G′ is a double-HG-matrix with two all-zero columns that
will be removed to provide an FB-(2s+1 − 2, s, 2s) code.

For the rest of the paper, we only state that it is possible to
obtain the last recovery set from the redundancy columns gn−2
and gn−1, as it was shown in the proof of Lemma 25. From
the result of Lemma 25 we deduce the main theorem of this
section.

Theorem 26. An FB-(2s+1 − 2, s, 2s) code exists.

VI. A CONSTRUCTION OF FB-(2s − 1, s, b 5
6 · 2s−1c − s)

CODES

In this section we show how to improve our main result, i.e.,
we show a construction of FB-(2s− 1, s, b 5

6 · 2s−1c− s) codes.
Let M be a request denoted by

M = [v0, v1, . . . , vb 5
6 ·2s−1c−s].

Remember that e = (0, 0, . . . , 0, 1) ∈ Fs
2, and n = 2s. The

initial state of the matrix

G = [g0, g1, . . . , gn−1]

will satisfy

g2t + g2t+1 = e, t ∈ [n/2].

Remember that for all x ∈ Fs
2, the graph Gx(G) has a parti-

tion of ` > 1 disjoint simple cycles, that will be denoted by
Cx(G) = {Ci}`−1

i=0 (Definition 10). Fix τ ∈ [n/2]. The first in-
gredient in the solution of FB-(2s − 1, s, b 5

6 · 2s−1c − s) codes
will be presented in algorithm FBSolution2(τ , M), which is pre-
sented as Algorithm 5.

In the internal routine starting on Step 3, on its t-th itera-
tion, the algorithm will try to find two column vectors g(t)p and

g(t)h , such that h, p > 2t, and a request vm, where m > t, such

that the sum of g(t)p and g(t)h could be updated to vm, with-

out corrupting the sums g(t+1)
2t′ + g(t+1)

2t′+1 such that t′ < t. Our
first task is to prove that if τ 6 n/4 then the algorithm will
always find such g(t)p , g(t)h and a request vm. In this case, the
algorithm will provide 2s−2 (when τ = n/4) requests and will
never reach Step 14. Our second task is to prove that for the
case n/4 < τ 6 bn/3c, the algorithm may reach Step 14,
however by using the BadCaseCorrection(G(t), am, M) func-
tion, which reorders the columns of G(t), the algorithm will
succeed to construct b 2

3 · 2s−1c recovery sets of size 2 (when
τ = bn/3c). Therefore, we are left to show how to construct
additional b 1

6 · 2s−1c − s + 1 recovery sets that will be of size
4 (remember that bx + yc 6 bxc+ byc+ 1). This part will be
handled by the FBSolution3(G, τ , M) algorithm. We notice that
the FBSolution3(G, τ , M) algorithm will be invoked only if⌊2

3
· 2s−1

⌋
6
⌊5

6
· 2s−1

⌋
− s, (7)

which holds for s > 7.
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Algorithm 5 FBSolution2(τ , M)

1: G(0) ← G
2: for t = 0, . . . , τ − 1 do
3: for all 2t 6 p, h 6 n− 1 and t 6 m 6 τ − 1 do
4: Swap g(t)p and g(t)2t

5: Swap g(t)h and g(t)2t+1

6: if g(t)2t + g(t)2t+1 = vm then
7: Swap between vt and vm in M
8: Go to Step 2
9: am ← vm + g(t)2t + g(t)2t+1

10: Let Ci ∈ Cam(G) be a cycle s.t. {g(t)2t , g(t)2t+1}p ∈ Ci

11: if {g(t)2` , g(t)2`+1}p ∈ Ci s.t. ` > t then
12: Swap between vt and vm in M
13: Go to Step 16
14: G(t), M← BadCaseCorrection(G(t), am, M)
15: Go to Step 3
16: j← FindShortPath(G(t), am, t, `)
17: G(t+1) ← Fat(g(t)2t+1, g(t)j )

18: Return G(τ)

A. The τ 6 n/4 Case

Before proving the correctness of the FBSolution2(τ , M) al-
gorithm, we start with an important definition.

Definition 27. On the t-th iteration, a path Px between g(t)p , p >

2t and g(t)h , h > 2t will be called a short-path in Gx(G(t)), if

all the other pair-type edges {g(t)2t′ , g(t)2t′+1}p on Px satisfy t′ < t.
The short-path P

g(t)p +g(t)h
is called a trivial short-path.

Our first goal is to show that every g(t)p , p > 2t has n dif-

ferent short-paths ending on n columns g(t)h , h > 2t.

Claim 7. Fix some g(t)p such that p > 2t. Then, for each

Gx(G(t)), there exists g(t)h , h > 2t, such that there is a

short-path between g(t)p and g(t)h .

Proof: Given g(t)p such that p > 2t, its pair g(t)p′ also
satisfies p′ > 2t. In Claim 3 we proved that for all x ∈ Fs

2
every pair {g2m, g2m+1}p has a good-path Px(g2m, g2m+1)
in Gx(G). Therefore, by Claim 3, for all x ∈ Fs

2, there is
a good-path Px(g(t)p , g(t)p′ ) in Gx(G(t)). If for all the edges

{g(t)2m, g(t)2m+1}p on Px(g(t)p , g(t)p′ ) it holds that m < t, then

Px(g(t)p , g(t)p′ ) is a short-path. Otherwise, there exists an edge

{g(t)2m, g(t)2m+1}p on Px(g(t)p , g(t)p′ ), such that m > t, and with-
out loss of generality, we assume that this edge is the closest
one to g(t)p on Px(g(t)p , g(t)p′ ). Let h ∈ {2m, 2m + 1} such that

the column g(t)h is the closest node between g(t)2m and g(t)2m+1 to

g(t)p on Px(g(t)p , g(t)p′ ). Therefore h > 2t and this sub-path is a
short-path by definition.

Next, we proceed to prove the correctness of the FBSolu-
tion2(τ , M) algorithm. On Step 9, the algorithm will execute

am = vm + g(t)p + g(t)h . If g(t)p and g(t)h have a non-trivial short-
path between them in Gam(G

(t)), then our technique cannot
update the sum of g(t)p and g(t)h to be equal to vm without

changing the sum of a pair {g(t)2t′ , g(t)2t′+1}p for some t′ < t. So

our goal is to find columns g(t)p and g(t)h such that there are no
(non-trivial) short-paths between them. We state in the follow-
ing claim that reordering the columns g(t)p for p > 2t of G(t)

does not affect their short-paths.

Claim 8. The columns g(t)p and g(t)h (before Steps 4–5) have no
(non-trivial) short-paths between them, if and only if the columns
g(t)2t and g(t)2t+1 (after Steps 4–5) have no (non-trivial) short-paths
between them.

Proof: We will prove only the first direction, while the
second is proved similarly. In Claim 7 we proved that for all
x ∈ Fs

2, there exists g(t)p′ , p′ > 2t such that there is a short-path

between g(t)p and g(t)p′ . In this claim we assume that every such
p′ satisfies p′ 6= h. By definition of the short-path, the edge
{g(t)2t , g(t)2t+1}p is not on any of these short-paths. Therefore, for
all x ∈ Fs

2, the execution of Step 4 will not affect these short-
paths. Similarly, for all x ∈ Fs

2 the short-paths between g(t)h
and g(t)h′ will not be affected by the execution of Step 5 (h′ is

defined similarly to h). Thus, the columns g(t)2t and g(t)2t+1 (after
Steps 4–5) will not have any (non-trivial) short-path between
them.

Using Claim 8, we can make columns g(t)p and g(t)h to be
a pair. This is done by Steps 4 and 5, i.e., this pair is now
{g(t)2t , g(t)2t+1}p. In the next lemma we will use the properties of
short-paths to prove the correctness of the algorithm.

Lemma 28. On the t-th iteration, if there are no (non-trivial)
short-paths between g(t)2t and g(t)2t+1, then by the end of this
iteration it holds that

g(t+1)
2t + g(t+1)

2t+1 = vm,

and all the pair sums g(t+1)
2t′ + g(t+1)

2t′+1 such that t′ < t will be
unchanged.

Proof: If g(t)2t + g(t)2t+1 = vm, then due to Step 6 this lemma
is correct. Otherwise, we know that there are no (non-trivial)
short-paths between g(t)2t and g(t)2t+1. Therefore, Step 11 will suc-

ceed to find {g(t)2` , g(t)2`+1}p ∈ Ci such that ` > t. Thus, there

is a good-path between g(t)2t+1 and one of the nodes g(t)2` , g(t)2`+1

(the closest one between them to g(t)2t+1), and the index of this
node is denoted by j (Step 16). By executing Fam(g2t+1, g j),
the matrix G(t) is updated to a matrix G(t+1) such that only
the two following pair summations are correctly changed to

g(t+1)
2t + g(t+1)

2t+1 = g(t)2t + g(t)2t+1 + am = vm

g(t+1)
2` + g(t+1)

2`+1 = g(t)2` + g(t)2`+1 + am.
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Next, we will show that if t < n/4 then the algorithm will
find g(t)p and g(t)h with no (non-trivial) short-paths between
them.

Lemma 29. If t < n/4, then on the t-th iteration the algorithm
will find g(t)p and g(t)h with no (non-trivial) short-paths between
them.

Proof: Fix some g(t)p . By Claim 7, for each Gx(G), there

exists g(t)h such that there is a short-path between g(t)p and g(t)h .

Therefore g(t)p has n different short-paths. Since t < n/4 or

2t < n/2, there are at least n/2 + 1 options for choosing g(t)h ,

and each of them has a trivial short-path with g(t)p . Therefore,
we are left with n/2− 1 short-paths, and at least n/2 + 1 col-
umn vectors g(t)h . Thus, there is at least one of them that has

no (non-trivial) short-path with g(t)p .
We are now ready to conclude with the following theorem.

Theorem 30. For τ = n/4 the algorithm FBSolution2(τ , M)
will construct recovery sums for the first 2s−2 requests of M.

Proof: Since τ = n/4, by Lemma 29, on the t-th iteration
the algorithm FBSolution2(τ , M) will find g(t)p and g(t)h with no
(non-trivial) short-paths between them. Therefore, by Claim 8,
after executing Steps 4 and 5, the columns g(t)2t and g(t)2t+1 have
no (non-trivial) short-paths between them. By Lemma 28, since
there are no (non-trivial) short-paths between g(t)2t and g(t)2t+1,
by the end of this iteration it holds that

g(t+1)
2t + g(t+1)

2t+1 = vm,

and all the pair sums g(t+1)
2t′ + g(t+1)

2t′+1 such that t′ < t will be
unchanged.
We proceed to the second case, i.e., τ 6 bn/3c.

B. The τ 6 bn/3c Case

If n/4 < t 6 bn/3c, then the algorithm may not be able
to find g(t)p and g(t)h with no (non-trivial) short-paths between
them. However, at least one of these pairs will have at most one
(non-trivial) short-path between them. Therefore, we may not
be able to make some requests on the t-th iteration and reach
Step 14. However, if we are left to handle more than one kind
of request in M, we will succeed in this iteration. For that, we
present the BadCaseCorrection(G(t), at, M) function.

BadCaseCorrection(G(t), at, M)

1: Let Ci ∈ Cat(G) be a cycle s.t. {g(t)2t , g(t)2t+1}p ∈ Ci

2: Find {g(t)2t′ , g(t)2t′+1}p ∈ Ci s.t. g(t)2t′ + g(t)2t′+1 6= vt

3: j← FindShortPath(G(t), at, t, t′)
4: G(t) ← Fat(g(t)2t+1, g(t)j )

5: Swap g(t)2t′ and g(t)2t

6: Swap g(t)2t′+1 and g(t)2t+1
7: Swap vt and vt′ in M
8: Return G(t), M

Lemma 31. On the t-th iteration such that t < bn/3c, there exist
p, h > 2t such that there is at most one (non-trivial) short-path
between g(t)p and g(t)h , and by the end of this iteration it holds that

g(t+1)
2t + g(t+1)

2t+1 = vm,

and t recovery sums are satisfied.

Proof: Fix some g(t)p . We already proved that g(t)p has n
different short-paths. Since t < bn/3c or 2t < b2n/3c, there
are at least dn/3e+ 1 options for choosing g(t)h , and each one of

them has a trivial short-path with g(t)p . Therefore, we left with

b2n/3c − 1 short-paths and dn/3e + 1 column vectors g(t)h .

Therefore, in the worst case, there is a column vector g(t)h such

that there is exactly one (non-trivial) short-path Px between g(t)h
and g(t)p . If x 6= g(t)p + g(t)h + vt, Step 11 will succeed, and we
can construct a recovery set of size 2 for vt on the t-th iteration
of the FBSolution2(τ , M) algorithm, as proved in Lemma 28. If
x = g(t)p + g(t)h + vt, we cannot obtain vt on the t-th iteration.

So from now we assume that x = g(t)p + g(t)h + vt.
Assume that we have at least two different requests v j in

M, and let vm 6= vt, for m > t. We prove that there does not
exist a short-path Py such that y = g(t)p + g(t)h + vm. There-

fore, Step 11 will succeed to find {g(t)2` , g(t)2`+1}p ∈ Ci such
that ` > t. As proved in Lemma 28 the algorithm FBSolu-
tion2(τ , M) will construct a recovery set of size 2 for vm on
the t-th iteration.

We are left with considering the case where all the requests
vm in M for m > t are identical. Also assume that g(t)2t +

g(t)2t+1 6= vt which means that Step 6 has failed (otherwise this
iteration will succeed). In this case the algorithm will use its
BadCaseCorrection(G(t), am, M) function. Let Ci ∈ Cam(G)

be a cycle such that {g(t)2t , g(t)2t+1}p ∈ Ci (Step 1). First as-

sume that for every pair-type edge {g(t)2t′ , g(t)2t′+1}p ∈ Ci such
that t′ < t it holds that

g(t)2t′ + g(t)2t′+1 = vt.

In this case, it is easy to verify that it must be a cycle of length
4, i.e.,

g(t)2t + g(t)2t+1 = g(t)2t′ + g(t)2t′+1 = vt,

which is a contradiction to our assumption. Otherwise, we can
assume that there is an edge {g(t)2t′ , g(t)2t′+1}p ∈ Ci , t′ < t such
that

g(t)2t′ + g(t)2t′+1 = vt′ 6= vt.

By executing Step 4, g(t)2t + g(t)2t+1 will be updated to vt, which

corrupts the sum of the pair {g(t)2t′ , g(t)2t′+1}p such that

g(t)2t′ + g(t)2t′+1 = vt′ + at 6= vt′ .

After executing Steps 5–6, we obtain two kinds of requests in
M that are left to deal with, while still having t− 1 valid re-
covery sets. In this case, the algorithm will return to Step 3.
Since now we have two kinds of requests, as already proved,
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the algorithm will be able to construct a recovery set for either
vt or vt′ on the t-th iteration.

The next theorem follows directly from Lemma 31.

Theorem 32. If τ 6 bn/3c, then the algorithm FBSolution2(τ , M)
will construct recovery sums for the first b 2

3 · 2s−1c requests of
M.

Due to Theorem 32, we proved that the algorithm FB-
Solution2(τ , M) provides an alternative construction for
FB-(2s − 1, s, b 2

3 · 2s−1c) codes. However, the algorithm FB-
Solution2(τ , M) is better than the algorithm FBSolution(τ , M)
since by using the algorithm FBSolution2(τ , M), all the re-
covery sets are of length 2 (and not 4). Therefore, we are left
with dn/3e unused column vectors. If (7) holds, we will put
dn/3e − 2 of these columns, except the redundant columns
gn−2, gn−3, as the first columns of the HG-matrix G, and
similarly, the left requests of M that have no recovery sets yet
are placed first. In the next section, we show how to obtain
b 1

6 · 2s−1c − s + 1 more recovery sets of size (at most) 4 from
these dn/3e unused columns of G.

C. Constructing Recovery Sets of Size 4
According to the previous results as stated in Theorem 3(c),

and due to (7), we can assume that s > 7. The FBSolution(τ , M)
algorithm uses the initialized HG-matrix G(0) that satisfies (2).
In fact, we can construct a similar algorithm that is initialized
by any arbitrary HG-matrix G. Let τ = b 1

6 · 2s−1c − s. The
value of τ represents the number of requests that will be han-
dled. Note that

4τ = 4
⌊1

6
· 2s−1

⌋
− 4s

= 4
⌊ 1

12
· 2s
⌋
− 4s 6

⌈1
3
· 2s
⌉
− 2,

for s > 7, which is the number of unused columns in G. Our
goal is to use either 2 or 4 columns of G for every recovery set.
In other words, every vt will be equal to either g(t)4t + g(t)4t+1 or

g(t)4t + g(t)4t+1 + g(t)4t+2 + g(t)4t+4. To show this property we will
prove that in every step of the algorithm, we have to have at
least 2(s + 1) unused (or redundant) columns of G.

We start with the next definition, which is based on the fact
that every s + 1 vectors in Fs

2 have a subset of h 6 s + 1 lin-
early dependent vectors.

Definition 33. Given an HG-matrix G(t), denote the set S (t)h ⊆
[s + 1] of size h 6 s + 1, such that

∑
i∈S (t)h

(
g(t)4t+2i + g(t)4t+2i+1

)
= 0s. (8)

Denote the Reorder(G(t)) procedure that swaps arbitrarily be-
tween the columns of G(t) presented in (8) and the columns
indexed by {4t 6 m 6 4t + 2h − 1} in G(t) and returns the
reordered matrix and and h as an output.

By using the Reorder(G(t)) procedure which is defined in
Definition 33, we can assume that

∑
i∈[h]

(
g(t)4t+2i + g(t)4t+2i+1

)
= 0s. (9)

We are now ready to show the FBSolution3(G, τ , M) algorithm,
which is presented as Algorithm 6.

Algorithm 6 FBSolution3(G, τ , M)

1: G(0) ← G
2: B(0) = ∅
3: for t = 0, 1, . . . , τ − 1 do
4: G(t), h←Reorder(G(t))
5: G(t) ← FindEquivSums(G(t), t, h)
6: G(t+1),B(t+1) ← FindGoodOrBadRequest(G(t), 2t, vt)
7: Return G(τ) and B(τ)

Note that since⌈1
3
· 2s
⌉
− 2− 4τ =

⌈1
3
· 2s
⌉
− 4
⌊ 1

12
· 2s
⌋
+ 4s− 2

> 4s− 2 > 2(s + 1),

for s > 7, the 2h 6 2(s + 1) column vectors of G(t) presented
in (9) are unused on the t-th iteration. By using these 2h unused
columns, the function FindEquivSums(G, t, h) will be able to
reorder the columns of G(t) such that

g(t)4t + g(t)4t+1 = g(t)4t+2 + g(t)4t+3, (10)

without changing the previous valid recovery sums. Then, the
function FindGoodOrBadRequest(G(t), 2t, vt) will update the
sum g(t)4t + g(t)4t+1 to either vt or g(t)4t + g(t)4t+1 + vt, again, with-
out changing all the previous valid recovery sums. In the latter
case, we are able to construct a recovery set Rt = {4t, 4t +
1, 4t + 2, 4t + 3} of size 4 due to (10).

The FindEquivSums(G, t, h) algorithm is presented next.

FindEquivSums(G, t, h).
1: for i = 1, . . . , h− 1 do
2: xi ← g4t+2i + g4t+2i+1
3: if g4t + g4t+1 6= xi then
4: G← FindGoodOrBadRequest(G, 2t, xi)
5: xi ← g4t+2i + g4t+2i+1
6: if g4t + g4t+1 = xi then
7: Swap g4t+2 and g4t+2i
8: Swap g4t+3 and g4t+2i+1
9: Return G

The proof of the correctness of the function FindEquiv-
Sums(G, t, h) is shown in the following theorem.

Theorem 34. If there are at least 2(s + 1) unused columns in G,
then there is a function FindEquivSums(G, t, h) that can reorder
the columns of G such that

g4t + g4t+1 = g4t+2 + g4t+3,

without corrupting the previous valid recovery sums.

Proof: As explained before, the 2h 6 2(s + 1) column
vectors of G presented in (9) are unused. Therefore, the al-
gorithm FindEquivSums(G, t, h) will not corrupt the previous
valid recovery sums. Our goal is to prove that the algorithm will
succeed on Step 6. On the i-th iteration, by executing Step 4,
the sum of g4t + g4t+1 will be either g4t + g4t+1 + xi or xi,
without changing other sums except of the redundancy sum
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gn−2 + gn−1. If g4t + g4t+1 = xi, Step 6 will succeed. Oth-
erwise, we can assume that on the i-th iteration, the algorithm
obtains g4t + g4t+1 + xi on Step 4. Denote by x0 the sum of
g4t + g4t+1 at the beginning of the algorithm. Therefore, at the
end of the i-th iteration, we obtain

g4t + g4t+1 =
i

∑
j=0

x j.

By (9),

h−2

∑
j=0

x j = xh−1.

Therefore, on the last iteration, i.e., when i = h− 1,

g4t + g4t+1 =
h−2

∑
j=0

x j = xh−1.

Thus, Step 3 will fail and Step 6 will succeed, concluding the
proof.

We are ready to show the main result of this section.

Lemma 35. The FBSolution3(G, τ , M) algorithm constructs τ
valid recovery sets Rt for vt, without corrupting previous recov-
ery sums.

Proof: By Lemma 35 the FindEquivSums(G(t), t, M) algo-
rithm will output G(t) such that g(t)4t + g(t)4t+1 = g(t)4t+2 + g(t)4t+2,
and all previous sums of requests are valid. Before the exe-
cution of the FindGoodOrBadRequest(G(t), 2t, vt) function we
denote the sums g4t + g4t+1 and g4t+2 + g4t+2 by yt. The al-
gorithm FindGoodOrBadRequest(G(t), 2t, vt) will update only
the sum g(t)4t + g(t)4t+1 to either vt or vt + yt and the sum of the
last pair gn−2 + gn−3 which is redundant, due to Lemma 14.

The case g(t)4t + g(t)4t+1 = vt is called a good case and we as-
sume that all such t’s are inserted in a set G. These pairs will
be recovered by the recovery sets Rt = {4t, 4t + 1}. The case
g(t)4t + g(t)4t+1 = vt + yt is called a bad case and all such t’s
are assumed to be inserted in a set B. By (10) for every t such
that g(t)4t + g(t)4t+1 = vt + yt we have that g(t)4t+2 + g(t)4t+3 = yt.
Thus, in these cases, the requests will have the recovery sets
Rt = {4t, 4t + 1, 4t + 2, 4t + 3}.

In Section V, we showed a technique to obtain another re-
covery set from the redundancy pair gn−2 and gn−1. Using this
technique, we are able to construct b 1

6 · 2s−1c − s + 1 valid re-
covery sets. By combining the three cases above, the following
theorem is deduced immediately.

Theorem 36. An FB-(2s − 1, s, b 5
6 · 2s−1c − s) code exists.

VII. A CONSTRUCTION OF B-(2s − 1, s, 2s−1) CODES

Wang et al. [14] showed a construction for B-(2s− 1, s, 2s−1)
codes, which is optimal, using a recursive decoding algorithm.
In this section, we show how to achieve this result with the
simpler, non-recursive decoding algorithm. Our solution solves
even a more general case in which the requests v j’s satisfy some
constraint that will be described later in this section. The idea of

this algorithm is similar to the one of the FBSolution(τ , M) al-
gorithm. First, we slightly change the definition of a Hadamard
solution as presented in Definition 6 to be the following one.

Definition 37. Let M = [v0, v1, . . . , vn/2−1] be a request of or-
der s × n/2, where n = 2s. The matrix M has a Hadamard
solution if there exists an HG-matrix G = [g0, g1, . . . , gn−1] of
order s× n such that for all i ∈ [n/2− 1],

vi = g2i + g2i+1,

and for i = n/2− 1 either vi = gn−2 + gn−1, or vi = gn−2,
or vi = gn−1. In this case, we say that G is a Hadamard solution
for M.

Let G be an HG-matrix. Let G be the set of all matrices G′

generated by elementary row operations on G. The following
claim proves that elementary row operations on HG-matrices
only reorder their column vectors.

Claim 9. Every G ∈ G is an HG-matrix.

Proof: We will only prove that adding a row in G to any
other row, generates an HG-matrix. By proving that, it can be
inductively proved that doing several such operations will again
yield an HG-matrix.

Without loss of generality, we assume that we add the i-th
row, for some 0 < i 6 s− 1, to the 0-th row of G and gen-
erate a new matrix G′. Assume to the contrary that G′ is not
an HG-matrix. Thus, there are two distinct indices `, m ∈ [n]
such that g′` = g′m. Therefore, by definition of elementary row
operations, G satisfies g` = gm, which is a contradiction.

Let M be a request denoted by

M = [v0, v1, . . . , v2s−1−1].

Let M be the set of all matrices M′ generated by elementary row
operations on request matrix M. We now present Lemma 38.
Its proof follows directly from Claim 9.

Lemma 38. If there is an M ∈ M such that there is a Hadamard
solution for M, then there is a Hadamard solution for all M′ ∈
M.

Proof: Let M ∈ M and let G be a Hadamard solution for
M. Let P be a set of elementary row operations, generating M′

from M. By Claim 9, executing elementary row operations P
on G generates an HG-matrix, G′. Since we applied the same
elementary row operations P on both M and G, it is deduced
that G′ is a Hadamard solution for M′.

The constraint mentioned above is as follows. Given M, we
demand that there is a request M′ ∈ M having the 0-th row
to be a vector of ones. Using Lemma 38, our algorithm will
handle any request M′ such that M′ ∈ M and M holds this
constraint. Note that if each request vector v j ∈ Fs

2 is a unit
vector, then by summing up all of its rows to the 0-th one, it
holds that there exists such a matrix in M holds the constraint.
Moreover, if every request vector is of odd Hamming weight,
our algorithm will still find a solution. Therefore, from now on,
we assume that the 0-th row of the request matrix M is a vector
of ones.
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Remember that e = (0, 0, . . . , 0, 1) ∈ Fs
2. The initial state

of the matrix
G = [g0, g1, . . . , gn−1]

will satisfy

g2t + g2t+1 = e, t ∈ [n/2].

Given g ∈ Fs
2, let f (g) be the bit value in the 0-th position

in g. Remember that for all x ∈ Fs
2, the graph Gx(G) has a

partition to ` > 1 disjoint simple cycles, that will be denoted
by Cx(G) = {Ci}`−1

i=0 (Definition 10). Let τ = 2s−1. We are
now ready to show the following algorithm.

Algorithm 7 BSolution(τ , M)

1: G(0) ← G
2: for t = 0, . . . , τ − 2 do
3: if f (g(t)2t + g(t)2t+1) = 1 then
4: Find g(t)p , g(t)h s.t. p, h > 2t and f (g(t)p + g(t)h ) = 0
5: Swap g(t)p and g(t)2t

6: Swap g(t)h and g(t)2t+1

7: at ← vt + g(t)2t + g(t)2t+1

8: Let Ci ∈ Cat(G
(t)) be a cycle s.t. {g(t)2t , g(t)2t+1}p ∈ Ci

9: Find {g(t)2m, g(t)2m+1}p ∈ Ci s.t. m > t
10: j← FindShortPath(G(t), at, t, m)
11: G(t+1) ← Fat(g(t)2t , g(t)j )

12: if g(τ−1)
n−2 + g(τ−1)

n−1 6= vn/2−1 and g(τ−1)
n−2 6= vn/2−1 then

13: G(τ) ← F
g(τ−1)

n−2 +vn/2−1
(g(τ−1)

n−2 , g(τ−1)
n−1 )

14: Return G(τ)

Our first goal is to prove that on the t-th iteration when the
BSolution(τ , M) algorithm reaches Step 7, it holds that f (g(t)2t +

g(t)2t+1) = 0.

Lemma 39. On the t-th iteration when the BSolution(τ , M) al-
gorithm reaches Step 7, it holds that f (g(t)2t + g(t)2t+1) = 0.

Proof: If on the t-th iteration in Step 3, f (g(t)2t + g(t)2t+1) =
1 then the BSolution(τ , M) algorithm will try to find p, h > 2t
such that f (g(t)p + g(t)h ) = 0. Note that since t 6 τ − 2, we have

g(t)2t , g(t)2t+1 and at least two more column vectors g(t)2m, g(t)2m+1
such that m > t. By the pigeonhole principle, there exist two
indices p, h ∈ {2t, 2t + 1, 2m, 2m + 1} such that f (g(t)p ) =

f (g(t)h ). After executing Step 5 and Step 6 we obtain f (g(t)2t +

g(t)2t+1) = 0.
Our next goal is to show that in Step 9 on the t-th iteration,

the BSolution(τ , M) algorithm will find {g(t)2m, g(t)2m+1}p ∈ Ci
such that m > t. We start with the following claim.

Claim 10. Given a graph Gx(G) and its partition to cycles
Cx(G) = {Ci}

p−1
i=0 , for all Ci ∈ Cx(G) it holds that

∑
{g2m ,g2m+1}p∈Ci

(
g2m + g2m+1

)
=

1
2
|Ci|x,

where the operations are over the binary field.

Proof: Assume that Ci is of length 2`, and its cycle rep-
resentation is given as follows

Ci = gs0
− gs1

− · · · − gs2`−1
− gs2`

− gs0
,

where both of the edges {gs0
, gs1
}p, {gs2`−1

, gs2`
}p are pair

type edges. By Claim 2(c), for all odd t ∈ [2`] it holds that
gst

= gst+1
+ x. Thus, by summing only the sums of the nodes

of the pair-type edges in Ci we obtain

∑
{g2m ,g2m+1}p∈Ci

(
g2m + g2m+1

)
= ∑

t∈[2`]
gsi

= ∑
t∈[2`],t is odd

(
gst

+ gst
+ x
)

= `x.

Now we are ready to prove the following lemma.

Lemma 40. On the t-th iteration when the BSolution(τ , M) al-
gorithm reaches Step 9, it will find {g(t)2m, g(t)2m+1}p ∈ Ci such
that m > t.

Proof: Remember that we assumed that the bit value in
the 0-th position for all the requests v j is 1. Therefore, on the

t-th iteration, for all m < t it holds that f (g(t)2m + g(t)2m+1) = 1,

and by Lemma 39, f (g(t)2t + g(t)2t+1) = 0. Now, assume to the

contrary that there are no m > t such that {g(t)2m, g(t)2m+1}p ∈
Ci. Note that

f (at) = f (vt + g(t)2t + g(t)2t+1)

= f (vt) + f (g(t)2t + g(t)2t+1) = 1 + 0 = 1(mod 2).

By Claim 10, if |Ci| = 2` then,

∑
{g(t)2m ,g(t)2m+1}p∈Ci

(
g(t)2m + g(t)2m+1

)
= `at,

and therefore,

∑
{g(t)2m ,g(t)2m+1}p∈Ci

f (g(t)2m + g(t)2m+1) = ` f (at) = `.

However, since only the edge {g(t)2t , g(t)2t+1}p ∈ Ci satisfies that

f (g(t)2t + g(t)2t+1) = 0, it is deduced that

∑
{g2m ,g2m+1}p∈Ci

f (g(t)2m + g(t)2m+1) = `− 1 6≡ `(mod 2),

which violates Claim 10.
We are ready to show the main theorem of this section.

Theorem 41. Given a request matrix M having the 0-th row
to be a vector of ones, the BSolution(τ , M) algorithm finds a
Hadamard solution for M.

Proof: First, we will prove that the BSolution(τ , M) algo-
rithm generates 2s−1 − 1 recovery sets for the first 2s−1 − 1
requests vt. This is done by Steps 1–11. Note that the sums
g(t)2m + g(t)2m+1 for all m < t, might be changed only after Step 9.
We will show that these sums will not be changed and the sum
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g(t)2t + g(t)2t+1 will be equal to vt at the end of the t-th iteration.
By Lemma 40, when the BSolution(τ , M) algorithm reaches
Step 9, it will find {g(t)2m, g(t)2m+1}p ∈ Ci such that m > t.
Thus, there is a good-path between g2t+1 and one of the nodes
g2m, g2m+1 (the closest one between them to g2t+1), and the
index of this node is denoted by j (Step 10). Due to Lemma 13,
by executing Fat(g2t+1, g j), the matrix G(t) is updated to a ma-
trix G(t+1) such that only the two following pair summations
are correctly changed to

g(t+1)
2t + g(t+1)

2t+1 = g(t)2t + g(t)2t+1 + at = vt

g(t+1)
2m + g(t+1)

2m+1 = g(t)2m + g(t)2m+1 + at.

Lastly, Steps 12–13 handle the last recovery set in a similar way
as was done in the proof of Theorem 22.

VIII. CONCLUSION

In this paper, functional k-batch codes and the value
FB(s, k) were studied. It was shown that for all s > 6,
FB(s, b 5

6 2s−1c − s) 6 2s − 1. In fact, we believe that by
using a similar technique, this result can be improved to
b 7

8 2s−1c − s requests, but this proof has many cases and
thus it is left for future work. We also showed a family of
FB-(2s + d(3α − 2) · 2s−2e − 1, s, bα · 2s−1c) codes for all
2/3 6 α 6 1. Yet another result in the paper provides an
optimal solution for k = 2s which is FB(s, 2s) = 2s+1 − 2.
While the first and main result of the paper significantly
improves upon the best-known construction in the litera-
ture, there is still a gap to the conjecture which claims that
FB(s, 2s−1) = 2s − 1. We believe that the conjecture indeed
holds true and it can be achieved using Hadamard codes.
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