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Abstract—The problem of guessing subject to distortion is con-
sidered, and the performance of randomized guessing strategies
is investigated. A one-shot achievability bound on the guessing
moment (i.e., moment of the number of required queries) is given.
Applying this result to i.i.d. sources, it is shown that randomized
strategies can asymptotically attain the optimal guessing moment.
Further, a randomized guessing scheme which is feasible even
when the block size is extremely large is proposed, and a single-
letter characterization of the guessing moment achievable by the
proposed scheme is obtained.

I. INTRODUCTION

Consider the problem of guessing the realized value x of a

random variable X using a sequence of queries of the form “Is

X = x?”. We are interested in how many queries are required

until an affirmative answer is obtained; the number is called the

guesswork. This guessing problem was introduced by Massey

[1], where the expectation of guesswork was investigated.

Subsequently Arikan [2] investigated the ρ-th moment Gρ

of guesswork, which is called the guessing moment. Further,

Arikan and Merhav [3] extended Arikan’s result [2] to the

lossy case, where the value x of X is not necessarily identified

but it is required to find a value x̂ satisfying d(x, x̂) ≤ ∆ for

given distortion measure d and distortion level ∆.

Recently asynchronous guessing problem was introduced

by Salamatian et al. [4] as an information-theoretic model

for brute-force botnet attacks. In the asynchronous setting,

the guesser is restricted so that it does not know which

queries were already asked. In [4], a modified variation

Vρ of the guessing moment Gρ attainable by asynchronous

guessing strategies is investigated. Their result implies that

the optimal asynchronous guessing is given by randomized

guessing, where the guesser choses a query according to a

certain probability distribution, and that the penalty of lack of

synchronization is asymptotically negligible.

The primary motivation of this work is to extend the study of

[4] to the lossy case. Specifically, randomized guessing subject

to distortion is studied. Our model provides a simplified

mathematical model for brute-force attacks against bio-metrics

authentication, where attacker’s task is to find a query which is

sufficiently similar to the bio-metric data stored in the system.

A. Contributions

Our first contribution is to give an achievability bound on

Vρ in terms of a variation of the Rényi entropy (Theorem

1). In particular, when the order ρ of the moment is an

integer, we directly evaluate the guessing moment Gρ and

give an achievability bound (Theorem 2 and its corollaries).

Our achievability result reveals that there exists a deterministic

quantizer π which does not depend on the parameter ρ and

the optimal guessing strategy is given by the tilted distribution

of the quantized X̂ = π(X).
Next we apply our achievability bound to independent and

identically distributed (i.i.d.) sources, and then, show that

synchronization is not necessary to achieve the asymptotically

optimal guessing moment. Furthermore, for asymptotic case,

we propose i.i.d. asynchronous guessing strategies, which

are simple and feasible even when the block size n is ex-

tremely large. We investigate the asymptotic performance of

i.i.d. asynchronous guessing strategies and give a single-letter

characterization of the optimal guessing moment achievable

by i.i.d. strategies (Theorem 3 and its corollary).

B. Related Work

The study of guessing was pioneered by Massey [1]. Arikan

[2] demonstrated that the Rényi entropy [5] characterizes the

guessing moment (up to some factor). Recently, tighter bounds

on the guessing moment were given by Sason and Verdú [6].

The guessing problem has been studied in various contexts

such as guessing allowing errors [7], guessing subject to

distortion [3], [8], investigation of large deviation perspective

of guessing [9], [10], guesswork in multi-user systems [11],

and guesswork with distributed encoders [12] and so on.

Applications of guessing are around the information secu-

rity, e.g., cracking passwords; See the introduction of [4] and

Section II of [13] for review on guessing and security. To un-

derstand the impact of synchronization in botnet attacks, Sala-

matian et al. [4] proposed a simplified model for distributed

brute-force attacks and introduced randomized guessing. Mer-

hav and Cohen [13] studied randomized guessing under source

uncertainty and proposed the universal randomized guessing

strategy based on the LZ78 data compression algorithm [14].

The problem of randomized guessing under the individual-

sequence approach was also investigated by Merhav [15].

C. Organization

The rest of this paper is organized as follows. In Section II,

we introduce a variation of the Rényi entropy and its property.

Section III describes our main results; one-shot results are

given in Section III-A and asymptotic results for i.i.d. sources

are given in Section III-B. All theorems are proved in Section

IV. Section V concludes the paper.

II. PRELIMINARY

Let X and X̂ be finite alphabets. Let d : X × X̂ → [0,∞)
be a distortion measure and fix the distortion level ∆ ≥ 0.
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For each x ∈ X , let A∆(x) , {x̂ ∈ X̂ : d(x, x̂) ≤ ∆}. We

assume that A∆(x) 6= ∅ for any x ∈ X .

In the discussion of one-shot guessing, we will use the

quantity H∆
α (X), which was introduced in [8]. Let W∆ be the

set of conditional distributions P
X̂|X such that Pr{d(X, X̂) ≤

∆} = 1 (or equivalently P
X̂|X(x̂|x) = 0 if d(x, x̂) > ∆).

Then H∆
α (X) is defined as follows.

Definition 1: For α ∈ (0, 1) ∪ (1,∞),

H∆
α (X) , inf

PX̂|X∈W∆

Hα(X̂) (1)

where Hα(X̂) is the Rényi entropy of X̂ ∼ P
X̂

:1

Hα(X̂) ,
1

1− α
log
∑

x̂∈X̂

[

P
X̂
(x̂)
]α

.

As shown in Appendix A, the infimum in (1) can be

achieved by a deterministic quantizer.

Proposition 1: There exists a deterministic function π : X →
X̂ such that π(x) ∈ A∆(x) for all x ∈ X and that X̂ = π(X)
satisfies, for all α ∈ (0, 1),

Hα(X̂) = H∆
α (X). (2)

III. MAIN RESULTS

A. One-Shot Bounds

Let us consider a random variable X ∼ PX on X . We

investigate the problem of guessing the realization value x of

X subject to the distortion measure d.

An asynchronous guessing strategy is determined by a

distribution P
X̂

on X̂ , which is independent of the realization

x of X but may depend on PX . The guesser continues to

emit i.i.d. sequence of random variables X̂1, X̂2, . . . according

to P
X̂

as long as d(x, X̂i) > D. The number of guesses

G(x|P
X̂
) is given by the first index k such that d(x, X̂k) ≤ ∆

or equivalently X̂k ∈ A∆(x). It should be emphasized that,

even when X = x is fixed, the number G(x|P
X̂
) of guesses

is a random variable. It is easily seen that the distribution

of G(x|P
X̂
) is the geometric distribution with the parameter

P
X̂
(A∆(x)), i.e.,

Pr{G(x|P
X̂
) = k} =

[

1− P
X̂
(A∆(x))

]k−1
P
X̂
(A∆(x)).

Thus, for a given parameter ρ > 0, the ρ-th moment of the

number of guesses can be written as

E
[

Gρ(X |P
X̂
)
]

=
∑

x∈X

PX(x)Gρ(x|PX̂
)

where2

Gρ(x|PX̂
) ,

∞
∑

k=1

kρ
[

1− P
X̂
(A∆(x))

]k−1
P
X̂
(A∆(x)).

1Throughout the paper, log denotes the natural logarithm.
2Note that Gρ(x|PX̂

) is not a random variable although G(x|P
X̂
) is.

While our main interest is E
[

Gρ(X |P
X̂
)
]

, we first investi-

gate the quantity3

Vρ(x|PX̂
) , E

[(

G(x|P
X̂
) + ρ− 1

ρ

)]

,

where the expectation E is taken with respect to the random

variable G(x|P
X̂
) and

(

a
b

)

is the generalized binomial coeffi-

cient defined in terms of the gamma function Γ, i.e.,
(

a

b

)

=
Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
.

The virtue of Vρ is that its value can be explicitly given as

follows.

Proposition 2: For any guessing strategy P
X̂

and ρ > 0,

Vρ(x|PX̂
) =

(

1

P
X̂
(A∆(x))

)ρ

, ∀x ∈ X .

Corollary 1: For any P
X̂

and ρ > 0,

E[Vρ(X |P
X̂
)] =

∑

x∈X

PX(x)

(

1

P
X̂
(A∆(x))

)ρ

.

The proposition is proved in Appendix B.

Our one-shot achievability bound on E[Vρ(X |P
X̂
)] is stated

as follows.

Theorem 1: There exists a deterministic function π : X → X̂
such that, for all ρ > 0, the tilted distribution

P
X̂∗

ρ
(x̂) ,

P
X̂
(x̂)

1
1+ρ

∑

x̂′ PX̂
(x̂′)

1
1+ρ

(3)

of the distribution P
X̂

of X̂ = π(X) satisfies

logE[Vρ(X |P
X̂∗

ρ
)] ≤ ρH∆

1
1+ρ

(X).

The theorem is proved in Section IV-A.

Now we investigate our main interest, i.e., the ρ-th moment

E[Gρ(X |P
X̂
)] of the number of guesses. In particular, we con-

sider the case where ρ = 1, 2, . . . is a positive integer.4 In this

case, we can directly evaluate Gρ(x|PX̂
) by using the moment

generating function M(t) = pxe
t/(1 − (1 − px)e

t) of the

geometric distribution with the parameter px , P
X̂
(A∆(x));

e.g., the first four moments are

G1(x|PX̂
) = 1/px,

G2(x|PX̂
) = (2− px)/p

2
x,

G3(x|PX̂
) = (p2x − 6px + 6)/p3x,

G4(x|PX̂
) = (−p3x + 14p2x − 36px + 24)/p4x.

Further, we have upper and lower bounds on Gρ(x|PX̂
) as

follows.

3The idea of considering the modification Vρ of the moment Gρ was
introduced by Salamatian et al. [4].

4For non-integer ρ > 0, we may numerically evaluate the ρ-th moment by
using the technique recently developed in [16].



Theorem 2: For any guessing strategy P
X̂

, any x ∈ X , and

any positive integer ρ,

Vρ(x|PX̂
) ≤ Gρ(x|PX̂

) ≤ (ρ!)Vρ(x|PX̂
),

or equivalently
(

1

P
X̂
(A∆(x))

)ρ

≤ Gρ(x|PX̂
) ≤ (ρ!)

(

1

P
X̂
(A∆(x))

)ρ

.

Corollary 2: For any P
X̂

and positive integer ρ,

E[Vρ(X |P
X̂
)] ≤ E[Gρ(X |P

X̂
)] ≤ (ρ!)E[Vρ(X |P

X̂
)]

and

∑

x∈X

PX(x)

(

1

P
X̂
(A∆(x))

)ρ

≤ E[Gρ(X |P
X̂
)]

≤ (ρ!)
∑

x∈X

PX(x)

(

1

P
X̂
(A∆(x))

)ρ

.

The theorem is proved in Section IV-B.

From Theorems 1 and 2, we can obtain a one-shot achiev-

ability result in terms of E[G(X |P
X̂
)ρ] as follows.

Corollary 3: There exists a deterministic function π : X →
X̂ such that, for any positive integer ρ, the tilted distribution

P
X̂∗

ρ
defined as (3) satisfies

logE[Gρ(X |P
X̂∗

ρ
)] ≤ ρH∆

1
1+ρ

(X) + log(ρ!).

Let us compare our result with that of synchronous case.

A synchronous guessing strategy is determined by a bijection

G : X̂ → {1, 2, . . . , |X̂ |}, and the number of guesses when

X = x is given by

Gsync(x|G) , min
x̂∈A∆(x)

G(x̂).

According to [8], the optimal ρ-th moment achievable by

synchronous strategies satisfies

ρH∆
1

1+ρ

(X)− ρ log log(1 + min{|X |, |X̂ |})

≤ logmin
G

E[Gsync(X |G)ρ]

≤ ρH∆
1

1+ρ

(X). (4)

Comparing (4) with Corollary 3, we can see that the penalty

of lack of synchronization is upper bounded by

log(ρ!) + ρ log log(1 + min{|X |, |X̂ |}).

B. Asymptotics for Stationary Memoryless Sources

In this subsection, we apply our one-shot results to

i.i.d. sources and investigate the asymptotic behavior of the

ρ-th moment of the number of guesses.5

Let Xn (resp. X̂n) is the n-fold Cartesian product of X
(resp. X̂ ). The distortion between x ∈ Xn and x̂ ∈ X̂n per

5To simplify the argument, we assume that ρ is a positive integer. However,
it is not hard to show that our argument is valid for non-integer ρ > 0; See
Appendix C.

symbol is defined by dn(x, x̂) = (1/n)
∑n

i=1 d(xi, x̂i). We

investigate the problem of guessing the realization value x of

Xn = (X1, X2, . . . , Xn) subject to the distortion measure dn,

where X1, . . . , Xn are independently generated according to

an identical distribution PX on X .

As in the one-shot case, an asynchronous guessing strategy

is determined by a distribution P
X̂n on X̂n. As a direct con-

sequence of Corollary 3, there exists a deterministic function

πn : Xn → X̂n such that the strategy P
X̂∗n

ρ
induced by πn

satisfies

1

n
logE[Gρ(X

n|P
X̂∗n

ρ
)] ≤

1

n
ρH∆

1
1+ρ

(Xn) + ζn

where ζn , (ρ!)/n → 0 as n → ∞. This fact indicates that

synchronization is not necessary to achieve the asymptotically

optimal guessing moment.

However, the strategy P
X̂∗n

ρ
may be not feasible when n is

large. In particular, it may not be easy to find and implement

the function πn. Hence, we restrict the class of guessing

strategies.

Definition 2: An asynchronous guessing strategy P
X̂n is

said to be an i.i.d. asynchronous guessing strategy if there

exists a distribution Q
X̂

on X̂ satisfying

P
X̂n(x̂) = Qn

X̂
(x) ,

n
∏

i=1

Q
X̂
(x̂i), ∀x̂ ∈ X̂n.

In the following, we investigate the optimal guessing mo-

ment asymptotically achievable by i.i.d. asynchronous guess-

ing strategies. To state our result, we introduce some notation.

We use the following standard information-theoretic quantities

[17]. For a distribution P and a conditional distribution V , let

H(P ) be the entropy of P , H(V |P ) =
∑

x P (x)H(V (·|x))
be the conditional entropy, and I(P, V ) = H(PV )−H(V |P )
be the mutual information, where PV is the distribution such

that PV (x̂) =
∑

x P (x)V (x̂|x). For two distributions P and

Q, let D(P‖Q) be the divergence between P and Q. Let

W∆(QX) be the set of conditional distributions satisfying
∑

x,x̂QX(x)V (x̂|x)d(x, x̂) ≤ ∆.

Definition 3: For distributions QX on X and Q
X̂

on X̂ ,

R(QX , Q
X̂
|∆) , min

V ∈W∆(QX)
[I(QX , V ) +D(QXV ‖Q

X̂
)]

where QXV is the distribution such that QXV (x̂) =
∑

x QX(x)V (x̂|x).

The next theorem, which is proved in Section IV-C, is our

main result of this subsection.

Theorem 3: For any i.i.d. asynchronous guessing strategy

Q
X̂

and positive integer ρ,

lim
n→∞

1

n
logE[Gρ(X

n|Qn

X̂
)]

= max
QX

[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]

where the maximum is taken over all distributions QX on X .



As a consequence of the theorem, we obtain the following

result on the optimal ρ-th moment achievable by i.i.d. asyn-

chronous guessing strategies.

Corollary 4: The exponent of the optimal ρ-th moment

achievable by i.i.d. asynchronous guessing strategies is

E i.i.d
ρ (PX |∆) , min

QX̂

max
QX

[

ρR(QX , Q
X̂
)−D(QX‖PX)

]

where min (resp. max) is taken over all distributions Q
X̂

on

X̂ (resp. QX on X ).

Remark 1: The corollary guarantees that we can find the

optimal i.i.d. strategy by solving the minimization in the

definition of E i.i.d
ρ (PX |∆), which does not depend on n. So,

our strategy is feasible even when n is extremely large.

Remark 2: It should be emphasized that Theorem 3 holds

for any strategy Q
X̂

. In other words, Q
X̂

is not necessarily

depend on PX . Hence, it can be easily applied to guessing

under source uncertainty. Assume that the guesser does not

know the source distribution PX but it knows the fact that

PX ∈ P for a subset P of distributions. Theorem 3 shows that,

under this setting, the exponent of the optimal ρ-th guessing

moment asymptotically achievable by i.i.d. strategies is

min
QX̂

max
PX∈P

max
QX

[

ρR(QX , Q
X̂
)−D(QX‖PX)

]

.

Lastly, we investigate the penalty of restricting strategies to

be i.i.d.

Let us define

Eρ(PX |∆) , max
QX

{ρR(QX |∆)−D(QX‖PX)}

where the maximum is taken over all distributions QX on X
and R(QX |∆) is the rate-distortion function; i.e.,

R(QX |∆) , min
V ∈W∆(QX )

I(QX , V ).

It is known that Eρ(PX |∆) is the exponent of the optimal ρ-

th guessing moment asymptotically achievable by synchronous

strategies [3]; i.e.,

Eρ(PX |∆) = lim
n→∞

1

n
log min

Gn on X̂n

E[Gsync(Xn|Gn)
ρ].

Further, results of [8] implies that

Eρ(PX |∆) = lim
n→∞

ρ

n
H∆

1
1+ρ

(Xn).

On the other hand, since

min
QX̂

R(QX , Q
X̂
|∆) = R(QX |∆),

we have

E i.i.d
ρ (PX |∆) = min

QX̂

max
QX

[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]

≥ max
QX

min
QX̂

[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]

= Eρ(PX |∆).

From this, we can see the suboptimality of i.i.d. strategies and

evaluate the penalty as

min
QX̂

max
QX

[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]

−max
QX

min
QX̂

[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]

.

IV. PROOFS

A. Proof of Theorem 1

Let π be the function given in Proposition 1 and let

X̂ = π(X). Since π(x) ∈ A∆(x), we have P
X̂∗

ρ
(A∆(x)) ≥

P
X̂∗

ρ
(π(x)). Hence, letting π−1(x̂) , {x ∈ X : π(x) = x̂},

we have

E[Vρ(X |P
X̂∗

ρ
)] =

∑

x∈X

PX(x)

(

1

P
X̂∗

ρ
(A∆(x))

)ρ

≤
∑

x∈X

PX(x)

(

1

P
X̂∗

ρ
(π(x))

)ρ

=
∑

x̂∈X̂

∑

x∈π−1(x̂)

PX(x)

(

1

P
X̂∗

ρ
(x̂)

)ρ

=
∑

x̂∈X̂

P
X̂
(x̂)

(

1

P
X̂∗

ρ
(x̂)

)ρ

= exp
[

ρH 1
1+ρ

(X̂)
]

= exp
[

ρH∆
1

1+ρ

(X)
]

where the last equality follows from (2).

B. Proof of Theorem 2

Since ρ > 1, using Jensen’s inequality, we have

Gρ(x|PX̂
) =

∞
∑

k=1

Pr{G(x|P
X̂
) = k}kρ

≥

{

∞
∑

k=1

Pr{G(x|P
X̂
) = k}k

}ρ

= {1/P
X̂
(A∆(x))}

ρ (5)

where the last equality follows from the fact that the dis-

tribution of G(x|P
X̂
) is the geometric distribution with the

parameter P
X̂
(A∆(x)).

On the other hand, since G(x|P
X̂
) is an integer-valued

random variable and ρ is an integer,

G(x|P
X̂
)ρ

ρ!
≤

1

ρ!
G(x|P

X̂
)× [G(x|P

X̂
) + 1]

× [G(x|P
X̂
) + 2]× · · · × [G(x|P

X̂
) + ρ− 1]

=

(

G(x|P
X̂
) + ρ− 1

ρ

)

.

Taking the expectation with respect to G(x|P
X̂
) and multiply

both sides by ρ!, we have

Gρ(x|PX̂
) ≤ (ρ!)Vρ(x|PX̂

). (6)

Combining (5) and (6) with Proposition 2, we have the

theorem.



C. Proof of Theorem 3

Before giving the proof, we introduce some notation.

For two positive sequences an and bn, we will write

an
.
= bn if limn→∞(1/n) log(an/bn) = 0. Similarly, when an

and bn depend on a sequence x, the notation an(x)
.
= bn(x)

means that

lim
n→∞

max
x∈Xn

∣

∣

∣

∣

1

n
log

an(x)

bn(x)

∣

∣

∣

∣

= 0.

In our proof, we use the method of types [17]. For x ∈ Xn,

the type Px is the empirical distribution of x = (x1, . . . , xn);
i.e., Px(a) = (1/n)|{1 ≤ i ≤ n : xi = a}| for all a ∈ X .

Let Pn be the possible types of length n sequences. For

Q ∈ Pn, TQ is the set of sequences x such that Px = Q.

For a conditional distribution V : X → X̂ and x ∈ Xn,

TV (x) denotes the set of sequences x̂ = (x̂1, . . . , x̂n) ∈ X̂n

satisfying V (b|a) = |{j : (xj , x̂j) = (a, b)}|/|{i : xi = a}|
for all (a, b) ∈ X × X̂ .

Proof of Theorem 3: From Corollary 2, we have

E[Gρ(X
n|Qn

X̂
)]

.
=
∑

x∈Xn

PXn(x)[Qn

X̂
(A∆(x))]

−ρ (7)

where A∆(x) , {x̂ ∈ X̂n : dn(x, x̂) ≤ ∆}. So, we evaluate

the exponent of the right-hand side of (7).

For any x̂ and V , we have

Qn

X̂
(x̂) = exp

{

−n[H(Px̂) +D(Px̂‖QX̂
)]
}

,

|TV (x)|
.
= exp{nH(V |Px)}

and thus,

Qn

X̂
(TV (x))

.
= exp

{

−n[I(Px, V ) +D(PxV ‖Q
X̂
)]
}

where PxV is the distribution on X̂ such that PxV (x̂) =
∑

x Px(x)V (x̂|x).
Further, A∆(x) can be written as

A∆(x) =
⋃

V :∑
x,x̂ Px(x)V (x̂|x)d(x,x̂)≤∆

TV (x).

Hence, we have

Qn

X̂
(A∆(x))

.
= exp

{

−nmin
V

[I(Px, V ) +D(PxV ‖Q
X̂
)]
}

= exp
{

−nR(Px, QX̂
|∆)
}

. (8)

On the other hand, we have

PX(TQX
)
.
= exp{−nD(QX‖PX)}

for all QX ∈ Pn. Combining this with (8), we have
∑

x∈Xn

PXn(x)[Qn

X̂
(A∆(x))]

−ρ

=
∑

QX∈Pn

∑

x∈TQX

PXn(x)[Qn

X̂
(A∆(x))]−ρ

.
=

∑

QX∈Pn

exp
{

n
[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]}

.
= exp

{

nmax
QX

[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]

}

.

V. CONCLUDING REMARKS

In this paper, randomized strategies for guessing subject

to distortion was studied. A one-shot achievability bound on

the guessing moment was given. Further, feasible i.i.d. asyn-

chronous guessing scheme was proposed, and its asymptotic

performance was investigated.

Lastly, we give some comments regarding generalizations

of our results.

• It is not hard to extend the result to the case where side-

information is available at the guesser.

• Our result shows that the behavior of

−
1

n
logQn

X̂
(A∆(x)) ≃ R(Px, QX̂

|∆)

determines the guessing moment (See (8) and (7)

in the proof of Theorem 3). Since the behavior of

(−1/n) logQn

X̂
(A∆(x)) for sources with memory is

well studied in the context of the rate-distortion theory

(see [18] and references there in), we can apply those

results. For example, our argument can also be applied

to stationary ergodic sources by using Theorem 3 of [19].

APPENDIX A

PROOF OF PROPOSITION 1

First we introduce the concept of majorization and Schur

concavity, which play important role in the proof.

Let R
m
+ be the set of vectors with m nonnegative com-

ponents. Given p = (p1, p2, . . . , pm) ∈ R
m
+ , denote by

p[1] ≥ p[2] ≥ · · · ≥ p[m] the permutation of the components

of p in the nonincreasing order.

Definition 4: We say that q ∈ R
m
+ majorizes p ∈ R

m
+ (and

write p ≺ q) if

j
∑

i=1

p[i] ≤

j
∑

i=1

q[i], ∀j = 1, 2, . . . ,m− 1

and
m
∑

i=1

p[i] ≤
m
∑

i=1

q[i]. (9)

Definition 5: A real valued function h on R
m
+ is said to be

Schur concave if h(p) ≥ h(q) for any p,q ∈ R
m
+ satisfying

p ≺ q.

It is well known that φ(p) =
∑m

i=1(hi)
α for α ∈ (0, 1) is

Schur concave; See, e.g. [20]. Thus, we can easily see that

the Rényi entropy of order α ∈ (0, 1) is also Schur concave.

Hence, to prove Proposition 1, it is sufficient to prove the

following lemma. Although the same argument is given in the

last page of [21], we give a proof for the completeness.

Lemma 1: There exists a deterministic function π : X → X̂
such that (i) d(x, π(x)) ≤ ∆(x) for all x ∈ X and (ii) the

distribution P
X̂

of X̂ = π(X) majorizes any PX̃ induced by

PX̃|X ∈ W∆.

Proof: Let m , |X | in this proof. For each x̂ ∈ X , let

B∆(x̂) , {x ∈ X : d(x, x̂) ≤ ∆}.



We define the order x̂1, x̂2, . . . , x̂m of symbols in X̂ as

follows. Let x̂1 be a symbol satisfying

Pr{X ∈ B∆(x̂1)} = max
x̂∈X̂

Pr{X ∈ B∆(x̂)}.

Then, for i = 2, 3, . . . ,m, let x̂i ∈ X̂ \ {x̂1, . . . , x̂i−1} be a

symbol such that

Pr







X ∈ B∆(x̂i) \
i−1
⋃

j=1

B∆(x̂j)







= max
x̂∈X̂

Pr







X ∈ B∆(x̂) \
i−1
⋃

j=1

B∆(x̂j)







.

Let Xi , B∆(x̂i) \
⋃i−1

j=1 B∆(x̂j) (i = 1, . . . ,m). Then

X1, . . . ,Xm give a partition of X , and thus, we can define

π : X → X̂ so that π(x) = x̂i if x ∈ Xi. It is apparent that

d(x, π(x)) ≤ ∆ for all x ∈ X . Further, from the construction,

the distribution P
X̂

of X̂ = π(X) satisfies

P
X̂
(x̂1) ≥ P

X̂
(x̂2) ≥ · · · ≥ P

X̂
(x̂m).

We will prove that π satisfies (ii) by contradiction. Assume

that there exists PX̃|X ∈ W∆ such that PX̃ induced by

PX̃|X is not majorized by P
X̂

. Let us define another order

x̃1, x̃2, . . . , x̃m in X̂ so that

PX̃(x̃1) ≥ PX̃(x̃2) ≥ · · · ≥ PX̃(x̃m).

Since PX̃ 6≺ P
X̂

, there exists k such that

k
∑

i=1

PX̃(x̃i) >

k
∑

i=1

P
X̂
(x̂i).

Hence, we have

Pr{d(X, X̃) > ∆}

≥
∑

x∈X

k
∑

i=1

PX(x)PX̃ |X(x̃i|x)1[d(x, x̃i) > ∆]

=

k
∑

i=1

PX̃(x̃i)

−
∑

x∈X

PX(x)

k
∑

i=1

PX̃|X(x̃i|x)1[x ∈ B∆(x̃i)]

(a)

≥
k
∑

i=1

PX̃(x̃i)− Pr

{

X ∈
k
⋃

i=1

B∆(x̃i)

}

(b)

≥
k
∑

i=1

PX̃(x̃i)− Pr

{

X ∈
k
⋃

i=1

B∆(x̂i)

}

=

k
∑

i=1

PX̃(x̃i)−
k
∑

i=1

Pr {X ∈ Xi}

=

k
∑

i=1

PX̃(x̃i)−
k
∑

i=1

P
X̂
(x̂i)

> 0,

where 1 denotes the indicator function, (a) follows from
∑k

i=1 PX̃|X(x̃i|x)1[x ∈ B∆(x̃i)] ≤ 1[x ∈
⋃k

i=1 B∆(x̃i)] for

all x ∈ X , and (b) follows from the definition of the order

x̂1, x̂2, . . . , x̂m. This contradicts the fact PX̃|X ∈ W∆.

APPENDIX B

PROOF OF PROPOSITION 2

The proposition can be proved in the same manner as [4,

Lemma 2]. We give a proof for the completeness.

Proof of Proposition 2: Letting px , P
X̂
(A∆(x)), we

have

Vρ(x|PX̂
) =

∞
∑

m=1

(

m+ ρ− 1

ρ

)

Pr{G(x|P
X̂
) = m}

= px

∞
∑

m=1

(

m+ ρ− 1

ρ

)

(1 − px)
m−1

(a)
= px

∞
∑

m=1

(

−ρ− 1

m− 1

)

[−(1− px)]
m−1

= px

∞
∑

k=0

(

−ρ− 1

k

)

[−(1− px)]
k

(b)
= px[1 − (1− px)]

−ρ−1

= (px)
−ρ

where (a) follows from the relationship
(

m+ ρ− 1

ρ

)

= (−1)m−1

(

−ρ− 1

m− 1

)

,

which is proved in the proof of Lemma 2 in [4], and (b) follows

from the binominal formula.

APPENDIX C

ASYMPTOTICS FOR NON-INTEGER ρ

We show that Theorem 3 also holds for non-integer ρ > 0.

From (8), for all x ∈ Xn and Q
X̂

,

qx , Qn

X̂
(A∆(x))

.
= exp

{

−nR(Px, QX̂
|∆)
}

.

Assume that R(Px, QX̂
|∆) > 0. Then, since qx < 1/2 for

large n, (20) of [15] gives

Gρ(x|Q
n

X̂
) =

∞
∑

k=1

kρ(1− qx)
k−1qx

≥

(

1− qx
qx

)ρ

exp

{

−
1

1− qx

}

≥
2−ρ

e2
q−ρ
x

.

Thus, we have

lim inf
n→∞

1

n
log

∣

∣

∣

∣

∣

Gρ(x|Q
n

X̂
)

exp{ρnR(Px, QX̂
|∆)}

∣

∣

∣

∣

∣

≥ 0. (10)

On the other hand, by using Lemma 1 of [13] with a =
R(Px, QX̂

|∆), we can show that

lim sup
n→∞

1

n
log

∣

∣

∣

∣

∣

Gρ(x|Q
n

X̂
)

exp{ρnR(Px, QX̂
|∆)}

∣

∣

∣

∣

∣

≤ 0. (11)



Combining (10) and (11), we have

Gρ(x|Q
n

X̂
)
.
= exp

{

ρnR(Px, QX̂
|∆)
}

and thus,
∑

x∈Xn

PXn(x)Gρ(x|Q
n

X̂
)

.
=

∑

QX∈Pn

exp
{

n
[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]}

.
= exp

{

nmax
QX

[

ρR(QX , Q
X̂
|∆)−D(QX‖PX)

]

}

.
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