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Abstract—Large MIMO transceivers are integral components
of next-generation wireless networks. However, for such systems
to be practical, their channel estimation process needs to be fast
and reliable. Although several solutions for fast estimation of
sparse channels do exist, there is still a gap in understanding
the fundamental limits governing this problem. Specifically, we
need to better understand the lower bound on the number of
measurements under which accurate channel estimates can be
obtained. This work bridges that knowledge gap by deriving a
tight asymptotic lower bound on the number of measurements.
This not only helps develop a better understanding for the
sparse MIMO channel estimation problem, but it also provides
a benchmark for evaluating current and future solutions.

I. INTRODUCTION

Through the use of a large number of antennas, wireless

transceivers can focus their signal transmission and/or recep-

tion through very narrow angular directions [1]. This helps

increase the channel capacity in two main ways. First, it

improves the spatial multiplexing capability of transceivers,

which allows simultaneously serving multiple users while

keeping cross interference low. Second, it allows more signal

power to be propagated from a transmitter (TX) to a receiver

(RX). For the latter reason, large MIMO transceivers have

emerged as the prominent solution to solve the severe path

loss problem in millimeter-wave (mmWave) systems [2], [3].

The main challenge of large MIMO, however, is that the

channel estimation process can be complex [4]. This is a

byproduct of having channel matrices with large dimensions.

Moreover, both initial and running costs (i.e., cost of hardware

and power consumption, respectively) of such devices are

high. To minimize these costs, the architectural design of large

MIMO transceivers have deviated from the traditional fully-

digital design towards analog or hybrid transceivers. While

these alternative architectures solve the cost problem, they ex-

acerbate the channel estimation overhead. This is because such

alternative transceiver designs are less-flexible than the fully-

digital ones. For example, an analog transceiver can obtain

only one independent measurement at a time, unlike a digital

transceiver that obtains as many independent measurements as

the number of antennas at RX.

Reducing the number of channel measurements is thus one

of the main challenges facing large MIMO implementations.

This problem has largely been tackled as an application of

Compressed Sensing (CS) [5], [6], which relies on channel

sparsity as a key enabler for reducing the number of mea-

surements1. The closest effort to understanding how changing

the number of measurements affects the quality of channel

estimates, to the best of our knowledge, is [7], where com-

1Sparsity here means that the number of signal propagation paths is small
compared to the number of TX and RX antennas (e.g., mmWave channels).

puter simulations were conducted to measure the quality of

channel estimates as the number of measurements increases.

Nonetheless, there is still a gap in the current literature in

understanding the lower bound on the number of necessary

measurements needed for accurate channel recovery. To the

best of our knowledge, the tightest known bound scales as

Ω
(
k log ntnr

k

)
[8], [9], where k is the channel sparsity level

and nt and nr are the numbers of antennas at TX and RX,

respectively. This bound, however, is a naive application of the

CS bound for recovery of sparse vectors of length n = ntnr

and k non-zero values. In fact, the nature of the channel es-

timation problem poses limitations on how measurements are

obtained, as opposed to the standard CS problem. Thus, more

attention needs to be paid when deriving measurement lower

bounds. In this paper, we show that the aforementioned bound

is too loose, and we provide a tighter lower bound which has

order of Ω
(
k2 log

(
nt

k

)
log
(
nr

k

))
. We argue the tightness of

this bound by showing that, under a mild constraint on the

channel sparsity level, there exists a solution with a number

of measurements upper bounded as O(k2 log
(
nt

k

)
log
(
nr

k

)
).

Notations: Let x be a scalar quantity, x be a vector and X

be a matrix. The conjugate of X is X∗, its transpose is XT

and its hermition (i.e., conjugate transpose) is XH . Let ‖x‖p
denote the pth norm of x. If the subscript p is dropped, then

‖x‖ denotes the Euclidean norm, ‖x‖2. Define the operator

vec (X) to be the stacking of all the columns of X to form

one vector as follows: If X has columns xi for i = 1, . . . , n,

then vec (X) =
(
x1

T x2
T . . . xn

T
)T

. We denote by

⊗ the Kronecker product. Finally, we use: (i) Ω (·) to denote

the Big Omega notation, i.e., the asymptotic lower bound2,

(ii) O (·) to denote the Big O notation, i.e., the asymptotic

upper bound3, and (iii) we say that f(n) ∈ Θ(g(n)) if both

f(n) ∈ Ω(g(n)) and f(n) ∈ O(g(n)).

II. SYSTEM MODEL

Consider a single-tap, block-fading, sparse MIMO channel

between a TX and RX equipped with nt and nr antennas,

respectively. Antennas at TX and RX form Uniform Linear Ar-

rays (ULA), with normalized antenna spacing of ∆t and ∆r,

respectively. The normalization is with respect to the carrier

wavelength, denoted by λc. We consider analog transceiver

architectures at both TX and RX. That is, only one RF chain

exists per transceiver, and all antennas are connected to this

RF chain through phase-shifters and variable-gain amplifiers.

Let the maximum number of resolvable signal propagation

2We say that f(n) ∈ Ω (g(n)) (or loosely, f(n)=Ω (g(n))) if there exists
a constant c > 0, and n0 ∈ N such that f(n) ≥ cg(n), for all n≥n0.

3We say that f(n) ∈ O (g(n)) (or loosely f(n)=O (g(n))) if there exists
a constant c > 0 and n0 ∈ N such that f(n) ≤ cg(n), for all n≥n0.
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paths in the channel be denoted by k. Recall that we consider

sparse channels. By the sparsity assumption [4], [5], [10]–[13],

only a few signal propagation paths exist, where k ≪ nt, nr.

Note that a wireless transceiver may not be able to resolve

multiple channel paths if they are spatially close. However, as

the number of antennas increases, the transceiver’s ability to

resolve more paths also increases due to its ability to form

narrower antenna beams. This means that k increases with n.

However, the ratio k
n

decreases as n increases. We assume

that nt, nr ≥ k1+ǫ, for some ǫ>0, which reflects the ability

of transceivers to resolve more channel paths as their number

of antennas increases. For each propagation path p, let αp be

its path-gain, θp be its Angle of Departure (AoD) at TX, φp be

its Angle of Arrival (AoA) at RX, and ρp be its path length.

The baseband path gain, αb
p, is given by

αb
p = αp

√
ntnr exp

−j
2πρp
λc . (1)

Let Q ∈ Cnr×nt denote the channel matrix, where qi,j ,

the element at row i and column j in Q, is the channel gain

between the j th TX antenna and the ith RX antenna. Let us

denote the path-loss by µ. Then, we can write Q as

Q =
k∑

p=1

αb
p

µ
er(Ωr,p)e

H
t (Ωt,p), (2)

where et(Ω) and er(Ω) are the transmit and receive signal

spatial signatures, at angular cosine Ω [1, Chapter 7]. We

define ei(Ω) as:

ei(Ω) =
1√
ni










1
exp−j2π∆iΩ

exp−j2π2∆iΩ

...

exp−j2π(ni−1)∆iΩ










, i ∈ {t, r}. (3)

The channel Q, in this form, is not sparse. However, it can be

represented in a sparse form using a simple change of basis:

Qa = UH
r QUt, (4)

where Qa is known as the “angular channel” and is sparse.

The matrices Ut and Ur are Discrete Fourier Transform

matrices whose columns represent an orthonormal basis for

the transmit and receive signal spaces, and are defined as:

Ui =
(

ei (0) ei

(
1
Li

)

ei

(
2
Li

)

. . . ei

(
ni−1
Li

))

, i ∈ {t, r}.

When transmitting a symbol ζ, the TX uses a precoder

vector f ∈ Cnt while RX uses a combiner vector w ∈ Cnr .

The received symbol at RX is thus given by:

yi,j = wH
i Qf jζ +wH

i ni,j , (5)

where yi,j denotes the received symbol (i.e., measurement

result), wi denotes the ith receive combiner and f j , the j th

transmit precoder. Assume, for simplicity, that ζ = 1. Let the

number of rx-combiners be mr and the number of tx-precoders

be mt. Then, the total number of measurements we can obtain

using all combinations of f j and wi is m = mt×mr. We can

also write the measurement equations for all precoders and

combiners more compactly as:

Y = WHQF +N , (6)

where yi,j is the element at row i and column j of Y . W
and F are defined as:

W ,
(
w1 w2 . . . wmr

)
, (7)

F ,
(
f1 f2 . . . fmt

)
(8)

The channel estimation problem, i.e., figuring out what the

matrix Q is, can be broken down into determining the best

set of precoders f j and combiners wi using which we can

accurately recover Q. To speed up the estimation process, the

smallest sets of those f j’s and wi’s should be used. In this

paper, we do not provide a specific design for such precoders

and combiners, but we seek to find a “tight” lower bound on

the number of measurements using which Q can be recovered.

Special Cases: Suppose the number of TX antennas nt=1.

In such case, the channel is Single-Input-Multiple-Output

(SIMO), and the channel matrix Q becomes a vector q. The

precoders at TX also fall back to just a scalar quantity; f = 1.

Thus, we can rewrite the measurement equation (Eq. (6)) as:

y = WHq + n (9)

Similarly, if we have a MISO channel, i.e., nr=1, we have

the following measurement equation:

y = FHq + n (10)

III. PROBLEM FORMULATION

In this section, we will provide a brief overview of compressed

sensing (CS). Then, we will formulate the problem of channel

estimation as a CS problem. To that end, we will reshape

the measurement equation given in Eq. (6) to be in the

form yv=Gvq
a
v+nv, which conforms with the traditional

compressed sensing problem, as will be shown in Eq. (13)

below. Here, qa
v is sparse and has dimensions nrnt×1.

A. Compressed Sensing Background

Compressed sensing is a signal processing technique [6] that

allows the reconstruction of a signal x = (xi)
n

i=1 from a

small number of samples given that x is either: (i) sparse,

or (ii) can be represented in a sparse form, using a linear

transformation U such that x = Us where s is sparse. Let

the number of measurements be denoted by m where m < n

and m,n ∈ N. Each measurement of x is a linear combination

of its components xi. Such measurements are dictated by the

sensing matrix G and are given by

y = Gx, (11)

where y denotes the m×1 measurement vector. Eq. (11)

represents an under-determined system of linear equations

(since m < n). In other words, we have fewer equations

than the number of unknowns we want to solve for. While,

in general, an infinite number of solutions exist, the sparsity

of x allows for perfect signal reconstruction from y given that

certain conditions are satisfied, among which, is a lower bound

on the “spark” of the sensing matrix.

Definition III.1. The spark of a given matrix G is the smallest

number of its linearly dependent columns.

Theorem 1 (Corollary 1 of [14]). For any vector y ∈ Rm,

there exits at most one vector qa ∈ Rn with ‖qa‖0 = k such

that y = Gqa if and only if spark(G) > 2k.



Theorem 1 provides a mathematical guarantee on the exact

recovery of k−sparse vectors using m linear measurements.

An immediate bound on the number of measurements, m, we

get from Theorem 1 is

m ≥ 2k. (12)

The spark lower bound on the matrix G works well under

noise-free measurements. In practice, however, measurements

are corrupted with an error vector n, i.e.,

y = Gx+ n. (13)

It is necessary to guarantee that the measurement process is

not adversely affected by such errors in a significant way.

This calls for alternative, stricter requirements on sensing

matrices to guarantee “good” sparse recovery. Mathematically,

we need to design the sensing matrix such that the energy

in the measured signal is preserved. This is quantified using

the Restricted Isometry Property (RIP). The RIP property

guarantees that the distance between any pair of k−sparse

vectors is not significantly changed under the measurement

process. This RIP property is defined as follows:

Definition III.2. A matrix G satisfies the restricted isometry

property (RIP) of order k if there exists a constant δk ∈ (0, 1)
such that for all vectors qa, with ‖qa‖0 ≤ k, we have

(1− δk) ‖qa‖22 ≤ ‖Gqa‖22 ≤ (1 + δk) ‖qa‖22 . (14)

The smallest δk which satisfies Eq. (14) is called the

“k−restricted isometry constant”. Note that in general, a ma-

trix G̃ does not necessarily result in ||G̃qa||2 that is symmetric

about 1. However, a simple scaling of G̃ results in G such that

the tightest bounds of ‖Gqa‖2 in Eq. (14) are symmetric [15].

From now on, we will only consider matrices whose bounds

are symmetric as shown in Eq. (14).

The following theorem provides a necessary condition for

m×n matrices that satisfy the RIP property with δk∈ (0, 1).

Theorem 2 (Theorem 3.5 of [16]). Let G be an m×n matrix

that satisfies RIP of order k with constant δk∈ (0, 1). Then,

m ≥ cδk log
(n

k

)

(15)

where cδ =
0.18

log
(
√

1+δ
1−δ

+1
) , is a function of δ only.

Theorem 2 demonstrates the popular asymptotic measure-

ment bound:

m = Ω
(

k log
n

k

)

. (16)

Next, we will formulate the MIMO channel estimation as a

compressed sensing problem.

B. The Problem

Recall from Eq. (6) that channel measurements take the form

Y = WHQF +N .

This is not the standard form of a noisy CS problem (see

Eq. (13)). Thus, it cannot readily be solved using compressed

sensing. To put this equation in a CS problem form, let us

“vectorize” its left and right hand sides as follows:

• Let yv = vec (Y )

• Let nv = vec (N)
• And by the properties of vectorization [17], we have

vec
(

WHQF
)

=
(

F T
⊗WH

)

vec (Q) (17)

=
(

F T
⊗WH

)

vec
(

UrQ
aUH

t

)

(18)

=
(

F T
⊗WH

)

(U∗
t ⊗Ur) vec (Q

a) (19)

=
(

F T ⊗WH
)

(U∗
t ⊗Ur) q

a
v (20)

=
((

F TU∗
t

)

⊗

(

WHUr

))

qa
v (21)

=
((

FHUt

)∗
⊗

(

WHUr

))

qa
v (22)

Thus, we can rewrite the measurement equation in (6) as

yv = Gvq
a
v + nv, (23)

where Gv =
(

F
H
Ut

)∗

⊗
(

W
H
Ur

)

(24)

is the sensing matrix, with dimensions mtmr×ntnr, while

yv has dimensions mtmr×1 and qa
v has dimensions ntnr×1.

This form of the problem allows us to employ CS sparse

recovery techniques to estimate qa
v from yv.

IV. LOWER MEASUREMENT BOUND

We are interested in sensing matrices that preserve the distance

between two different channels qa
v1 and qa

v2. This distance is

the norm of qa
v1−qa

v2, which has a sparsity level of 2k (recall

that the maximum number of channel paths is k). Thus, to be

able to accurately estimate qa
v , we need the sensing matrix Gv

to satisfy the RIP property of order 2k with some RIP constant

δ2k ∈ (0, 1). At sparsity level of 2k, Theorem 2 shows that the

recovery of a sparse vector with dimensions n=ntnr requires

a number of measurements, m, lower bounded as

m ≥ cδ(2k) log

(
ntnr

(2k)

)

(25)

= 2cδk

(

log

(
nt√
2k

)

+ log

(
nr√
2k

))

. (26)

This demonstrates the popular m = Ω
(
k log

(
nr×nt

k

))
lower

bound for sparse channel estimation. Although this bound is

valid, it is in fact too loose since it assumes that arbitrary

constructions of Gv are possible. This, however, is not the

case for sparse MIMO channel estimation since Gv takes a

special, Kronecker product form, as derived in Eq. (24).

Next, we will derive a tighter bound on the number of

measurements. A bound that considers the special struc-

ture of the sensing matrix. This will result in m =
Ω
(
k2 log

(
nt

k

)
log
(
nr

k

))
. To appreciate how much tighter our

derived bound is, we plot the functions k log
(
nt×nr

k

)
and

k2 log
(
nt

k

)
log
(
nr

k

)
without constant scaling in Fig. 1.

A. Main Results: A “Tight” Measurement Bound

In this section, we will derive the relationship between k−RIP

constants of Kronecker product matrices and those of the

blocks that form it. Then, using Theorem 2, we will derive

an asymptotic lower bound on the number of rows of Gv

and deduce its asymptotic behavior. We will finally show the

tightness of our derived asymptotic bound using the solution

framework in [19].

Optimum Measurement Length: Among all possible ma-

trices which satisfy the RIP property, we are interested in the

ones that have the least number of rows (since the number of



(a) At fixed sparsity level k = 5. (b) At fixed number of antennas n = nt = nr = 100.

Fig. 1: Unscaled asymptotic measurement lower bounds.

rows equals the number of measurements). This leads to the

notion of “Optimum Measurement Length (OML)”. We define

OML as the smallest number of measurements such that the

RIP property is satisfied. OML is dependent on the length of

unknown vectors n, the maximum sparsity level k and the

k−RIP constant δ. Hence, we can define a function µ,

µ : N ×K × (0, 1) → N+
0 (27)

which maps the space of all possible values for n, k, and δ,

given by4 N ⊆ N+
0 , K ⊆ N+

0 and (0, 1), respectively, to the

corresponding OML quantity.

Now, let us focus on the special case of matrices which can

be arbitrarily constructed. In such case, let µ be denoted by

µa (‘a’ stands for Arbitrary matrix construction). We define

µa to be the solution of the following optimization problem:

P1 : minimize
Ma∈C

ma×n
ma (28a)

subject to Ma ∈ Fδ (28b)

where Fδ is the feasible set, and it is defined as

Fδ , {Ma ∈ Cma×n :(1−δ) ‖x‖22 ≤ ‖Max‖22 ≤ (1+δ) ‖x‖22 ,
∀x ∈ Cn : ‖x‖0 ≤ k}

Lemma 3. Let n and k be fixed. Then, δ1 ≥ δ2 implies

µa(n, k, δ1) ≤ µa(n, k, δ2).

Proof. The proof directly follows by observing that δ1 ≥ δ2
implies that Fδ2 ⊆ Fδ1 . Since the problem is a minimization

problem, then µa(n, k, δ1) ≤ µa(n, k, δ2).

Kronecker Product Matrices: The standard compressed

sensing problem assumes that all elements of the sensing

matrix are independently chosen. On the contrary, in sparse

channel estimation, we are restricted to a specific sensing ma-

trix structure, as shown in Eq. (24). The only free parameters

in this sensing matrix are the tx-precoders fj and the rx-

combiners wi. This limitation suggests that more measure-

ments may be needed to achieve the same RIP constant, com-

pared to matrices whose elements are independently selected.

At the heart of our results lies the relationship between the

k−RIP constant of Kronecker product matrices and the k−RIP

constants of the matrices that form them. We formally state

this relationship in the following lemma.

4We define N+
0 to be the set of non-negative integers.

Lemma 4 (RIP of Kronecker Products). Let δa and δb be the

k−RIP constants of the matrices A and B, respectively. Then,

the k−RIP constant of A⊗B, denoted by δ, is bounded as

δ ≥ max{δa, δb} (29)

A similar result to Lemma 4 was derived in [18], but under

the stronger assumption of matrices with normalized columns.

Our more general result implies that even if the normalized

columns assumption is loosened, we still cannot obtain a

matrix, through a Kronecker Product, which satisfies the RIP

property with a constant smaller than the maximum of the

k−RIP constants of the matrices that form it. The proof of

Lemma 4 is provided in Appendix A.

A Generalized Bound: Recall Eq. (24). We will rewrite

Gv, for brevity, in terms of Mt and Mr, where

Mt ,

(

FHUt

)∗

∈ Cmt×nt (30)

Mr , WHUr ∈ Cmr×nr (31)

Thus, we have Gv=Mt⊗Mr, and m=mtmr is the number of

rows of Gv. Now, suppose that Gv satisfies k−RIP with con-

stant δ∈(0, 1). Then, both Mt and Mr must satisfy the k−RIP

with constants δt∈(0, 1) and δr∈(0, 1), respectively. To show

that this is true, assume, without loss of generality (w.l.o.g.),

that there does not exist δt ∈ (0, 1) such that Mt satisfies

k−RIP. Then, there exists a vector v with ‖v‖0 ≤k such that

Mtv = 0, which implies the existence of at least k dependent

columns of Mt, call them at1,at2, . . . ,atk. In turn, there ex-

ists at least k dependent columns in Gv (Let ar1 be a column

in Mr, then the columns at1⊗ar1,at2⊗ar1, . . . ,atk⊗ar1

are dependent). Hence, ∄δ ∈ (0, 1) such that Gv satisfies

k−RIP with a constant δ. Thus, we arrive at a contradiction.

Further, by Lemma 4, we have that δ ≥ max{δt, δr}.

Since Mt and Mr can be arbitrarily constructed, then we

can lower bound mt and mr by their OML values as follows

mt ≥ µa(nt, k, δt)
(i)

≥ µa(nt, k, δ) (32)

mt ≥ µa(nr, k, δr)
(ii)

≥ µa(nr, k, δ) (33)

where inequalities (i) and (ii) follow from Lemma 3. Thus,

it follows that the number of rows of Gv, m, is bounded as

m ≥ µa(nt, k, δ)× µa(nr, k, δ). (34)

Recall that µa(·) is the value that solves problem P1.



Remark. The implication of Inequality (34) is that the num-

ber of measurements needed for estimating a sparse MIMO

channel, Q, is at least equal to (but possibly higher) than the

product of the number of measurements needed to solve the

following two sub-problems:

• The first is a Single-Input Multiple-Output (SIMO), 1×nr

channel, with Mt
∗ as sensing matrix.

• The second is a Multiple-Input Single-Output (MISO),

nt × 1 channel, with Mr as sensing matrix,

where the sparsity level of both channels is ≤ k. These two

sub-problems are special cases of the original problem, whose

measurement equations are shown in Eq. (9) and Eq. (10),

respectively. The only difference is the conjugation of Mt.

The bound we derive in Eq. (34) highlights the dependence

on the channel dimensions nt and nr, the maximum sparsity

level k and a measure, δ, of how much information the mea-

surements preserve about the channel. This bound, however,

is not explicit, but we can use Theorem 2 to derive a more

concrete lower bound for µa(·). This leads to our main result:

Theorem 5 (Main Theorem). Fix δ ∈ (0, 1). If Gv in Eq. (24)

satisfies RIP with order 2k and constant δ, then the number

of measurements m is asymptotically bounded as:

m = Ω
(

k2 log
(nt

k

)

log
(nr

k

))

(35)

Proof. Since µa(nt, 2k, δ) and µa(nr, 2k, δ) are obtained by

solving the problem P1 (with their respective nt, nr and δ

values), then there exists matrices Xt and Xr, with dimen-

sions µa(nt, 2k, δ)× nt and µa(nr, 2k, δ)× nr which satisfy

2k−RIP with constant δ. Thus, it follows by Theorem 2 that:

µa(nt, 2k, δ) ≥ cδ2k log
(nt

2k

)

(36)

µa(nr, 2k, δ) ≥ cδ2k log
(nr

2k

)

(37)

Therefore, by Eq. (34), the following follows

m = mtmr ≥ 4c2δk
2 log

(nt

2k

)

log
(nr

2k

)

(38)

Finally, let c = 0.5 and recall that the ratio nt

k
increases (by

assumption). Then, there exists nt0 ∈ N such that log(nt

2k ) ≥
c log(nt

k
) for all nt ≥ nt0. Similarly, there exists nr0 ∈ N such

that log(nr

2k ) ≥ c log(nr

k
) for all nr ≥ nr0. Then, it follows

that m ≥ 4c2c2δk
2 log

(
nt

k

)
log
(
nr

k

)
where 4c2c2δ = c2δ is a

constant, from which Eq. (35) follows.

B. Tightness of the Measurement Bound

To argue that the measurement lower bound in Theorem 5

is tight, we will show that there exists a solution, based on

[19], which yields sensing matrices that satisfy 2k−RIP with

constants ∈ (0, 1) and with m ∈ Θ
(
k2 log

(
nt

k

)
log
(
nr

k

))
. We

briefly discuss the measurement framework of [19] next.

In [19], a source-coding-based framework for the sparse

MIMO channel estimation problem is developed. This solution

proposes a method for obtaining a small number of measure-

ments that are sufficient to estimate the channel. Such mea-

surements are designed based on two carefully chosen binary

linear source codes, Ct and Cr. These codes dictate the design

of tx-precoders (using Ct) and rx-combiners (using Cr) and

produce real-valued measurement (sensing) matrices, namely,

Ht (of size mt×nt) and Hr (of size mr×nr), respectively.

The matrix Ht can estimate k−sparse MISO channel vectors

(i.e., produces unique measurements), while Hr can estimate

k−sparse SIMO channels. Hence, the spark of both matrices

is greater than 2k (by Theorem 1). Measurements are then

obtained using all combinations of mt tx-precoders and mr

rx-combiners, and can be arranged as yv = Hvq
a
v + nv

where Hv = Ht ⊗Hr. By Lemma 9 (in Appendix D), we

have that spark(Hv) > 2k. Hence, either Hv or a scaled

version of it satisfies 2k−RIP with a constant δh ∈ (0, 1).
This measurement framework is shown to produce a number

of measurements, m, that is lower bounded as:

m ≥ m ,

⌈

log2

(
k∑

i=0

(nr

i

)
)⌉

︸ ︷︷ ︸

≤mt

⌈

log2

(
k∑

i=0

(nt

i

)
)⌉

︸ ︷︷ ︸

≤mr

. (39)

This lower bound is achievable with equality for specific

examples as shown in [19]. However, it is not immediately

clear how this bound compares to our bound in Eq. (35). The

following lemma sheds more light on this issue:

Lemma 6. The asymptotic behavior of m, defined in Eq. (39)

follows: m = Θ
(
k2 log

(
nt

k

)
log
(
nr

k

))
.

This is the same asymptotic behavior as the lower bound

in Theorem 5. The proof is provided in Appendix B. Next,

we will examine a specific solution based on the family of

BCH codes, which results in a number of measurements upper

bounded as m = O
(
k2 log

(
nt

k

)
log
(
nr

k

))
.

Example 1 (BCH codes). Although BCH codes are natively

error-correcting codes, they can be used as syndrome-source-

codes, as well5. By the properties of BCH codes, we have

that for any positive integers t ≥ 3 and k < 2t−1, there exists

a binary BCH code with: i) block length n = 2t − 1, ii)

minimum distance dmin ≥ 2k + 1 (hence, it can correct up to

k errors), and iii) a number of parity check bits m ≤ tk =
k log2 (n+ 1). Using BCH codes to design Ct and Cr, we

obtain a solution whose number of measurements is upper

bounded according to the following lemma:

Lemma 7. The number of measurements achievable using

BCH codes in the framework of [19] is asymptotically

bounded as m = O
(
k2 log

(
nt

k

)
log
(
nr

k

))
.

The proof depends on constructing syndrome source codes

with arbitrary block lengths, and is provided in Appendix C.

Among all solutions in [19], we are interested in the ones

whose number of measurements, m, is closest to m. These

solutions are “Optimum” in the sense of reducing the number

of measurements. Recall that m is the lower bound of all

solutions based on [19] (see Eq. (39)). The following theorem

shows that these optimum solutions scale similarly to m, which

in turn shows that the lower bound of Theorem 5 is tight.

5A linear block error-correcting code (LBC) can be utilized as a syndrome
source code which can uniquely compress sequences that contain a number
of 1’s less than or equal to the number of correctable errors of the used code
[21]. The parity check matrix of the LBC code is used as the generator matrix
for the source code. Hence, the number of parity bits of the LBC code is the
length of the compressed sequences for the corresponding source code.



Theorem 8. The number of measurements of “Optimum So-

lutions” of [19] scales as m = Θ
(
k2 log

(
nt

k

)
log
(
nr

k

))

Proof. By Lemma 6, we have that all solutions, including

the optimal, have m = Ω
(
k2 log

(
nt

k

)
log
(
nr

k

))
. Moreover,

Lemma 7 shows that solutions based on BCH codes result

in m = O
(
k2 log

(
nt

k

)
log
(
nr

k

))
. Since optimal solutions

have a number of measurements smaller than or equal to

those obtained by BCH codes, then they also have the same

asymptotic upper bound. Therefore, optimal solutions have

m = Θ
(
k2 log

(
nt

k

)
log
(
nr

k

))
follows.

Remark. Even though we have shown that the bound of

Theorem 5 is tight, we have demonstrated this tightness in

the asymptotic regime of n and k. The dependence on the

RIP constant, δ, however, remains an open question.

V. CONCLUSION

In this paper, we study the fundamental lower bound gov-

erning the number of measurements, required for estimating

sparse, large MIMO channels. We consider a simple analog

transceiver, where each channel measurements is obtained

using a specific combination of beamforming vectors at the

transmitter and receiver. The currently known lower bound

on number of measurements is Ω
(
k log

(
nrnt

k

))
. We derive a

tight lower measurement bound, which scales asymptotically

as Ω
(
k2 log

(
nt

k

)
log
(
nr

k

))
. The tightness of our derived

bound is demonstrated by showing that there exists a solution

with m = O
(
k2 log

(
nt

k

)
log
(
nr

k

))
.

APPENDIX A

PROOF OF LEMMA 4

Proof. Let A ∈ Rma×na and B ∈ Rmb×nb . Denote by ai the

ith column of A and let ai,j be its j th element. And define

C , A⊗B. Denote by δc the k−RIP constant of C.

We will first show that δc ≥ δb. To that end, let us define

the sets Xc and Xb as:

Xc , {xc ∈ Rnanb : ‖xc‖0 ≤ k} (40)

Xb , {xb ∈ Rnb : ‖xb‖0 ≤ k} (41)

Since δc is the k−RIP constant of C , then ∀xc ∈ Xc we have

(1− δc) ‖xc‖2 ≤ ‖Cxc‖2 ≤ (1 + δc) ‖xc‖2 (42)

Now, we will focus our attention on a smaller class of vectors

x
(b)
c , which constitute a strict subset of Xc, defined as follows

x(b)
c ,








b

0

...

0








, (43)

where b ∈ Xb and x
(b)
c ∈ Rnanb . Then, by construction,

x
(b)
c ∈ Xc, and

∥
∥
∥x

(b)
c

∥
∥
∥ = ‖b‖. Now, observe that

∥
∥
∥Cx

(b)
c

∥
∥
∥

2

is

∥
∥
∥Cx

(b)
c

∥
∥
∥

2

=
∥
∥
∥(A⊗B)x(b)

c

∥
∥
∥

2

=

na∑

i=1

|ai,1|2 ‖Bb‖2 (44)

= ‖a1‖2 ‖Bb‖2 (45)

Since δb is the k−RIP constant of B, then ∀b ∈ Xb we have

‖a1‖2 (1− δb) ‖b‖2 ≤ ‖a1‖2 ‖Bb‖2
︸ ︷︷ ︸

=
∥

∥

∥Cx
(b)
c

∥

∥

∥

2

≤ ‖a1‖2 (1+ δb) ‖b‖2 (46)

Since (i) the space of all possible constructions of x
(b)
c is a

strict subset of Xc, and since (ii) δb is the smallest constant

such that Eq. (46) holds, then the following two equations

must always hold true

(1 − δc) ‖b‖2 ≤‖a1‖2 (1− δb) ‖b‖2 (B1)

‖a1‖2 (1 + δb) ‖b‖2 ≤ (1 + δc) ‖b‖2 (B2)

If ‖a1‖2 ≤ 1, then from Eq. (B1) we have δc ≥ δb. Otherwise,

if ‖a1‖2 ≥ 1, then from Eq. (B2) we have δc ≥ δb. Therefore,

δb ≤ δc is always true. Now, define C′ , B ⊗ A. By the

properties of the Kronecker product, we know that there exist

two “Permutation” matrices, call them Pρ and Pc, such that:

C′ = PρCPc = Pρ (A⊗B)Pc, (47)

where Pρ permutes the rows of C , and Pc permutes the

columns of PρC . Then, we have that

‖C′xc‖ = ‖PρCPcxc‖
(i)
= ‖CPcxc‖ . (48)

Also, observe that if xc ∈ Xc, then Pcxc has the same sparsity

level as xc and hence it lies in Xc, as well. Therefore, it

follows that

(1− δc) ‖xc‖2 ≤ ‖C′xc‖2
︸ ︷︷ ︸

=‖CPcxc‖
2

≤ (1 + δc) ‖xc‖2 , (49)

which shows that both C and C′ have the same k−RIP

constant δc. Then, it follows that δc ≥ δa. Therefore, δc ≥
max{δa, δb}, which concludes our proof.

APPENDIX B

PROOF OF LEMMA 6

Proof. First, observe that
(
n
i

)
<
(
n
k

)
for all 0 ≤ i < k such

that k < n+1
2 . Thus, for k < n+1

2 , we have that

k∑

i=0

(n

i

)

≤ (k + 1)
(n

k

)

(50)

By taking the logarithm of the previous equation, we get

⇒ log

(
k∑

i=0

(

n

i

))

≤ log (k + 1) + log

(

n

k

)

(51)

≤ log (k + 1) + k log
(
n

k

)

+ k log e, (52)

where (52) follows from the following popular bounds on
(
n
k

)

[20]
(n

k

)k
≤

(n

k

)

≤

(ne

k

)k
. (53)

From (53) we also have that
(
n
k

)k ≤
(
n
k

)
≤ ∑k

i=0

(
n
i

)
. This

gives us the following upper and lower bounds on Υ where

Υ ,

⌈

log2

(
k∑

i=0

(n

i

)
)⌉

(54)

k log
(
n

k

)

≤ Υ ≤ log(k + 1) + k log
(
n

k

)

+ k log e+ 1 (55)



Therefore, we have that Υ is in both Ω
(
k log n

k

)
and

O
(
k log n

k

)
. Hence, Υ ∈ Θ

(
k log n

k

)
. Finally, we can con-

clude that m = Υ|n=nt
Υ|n=nr

is asymptotically bounded as

m = Θ
(

k2 log
(nt

k

)

log
(nr

k

))

APPENDIX C

PROOF OF LEMMA 7

Proof. First, we will show that mt ≤ ck log nt

k
for some c >

0. Let nt be an arbitrary integer such that nt >= 7. Then, there
exists a positive integer t ≥ 3 such that 2t−1 ≤ nt < 2t+1−1.
If nt = 2t−1, then there exists a BCH code with a number of
parity check bits mt such that mt ≤ k log(nt+1). Hence, there
exists a positive constant c0 ∈ R such that mt ≤ c0k log(nt).
On the other hand, if 2t − 1 < nt < 2t+1 − 1, then we can
construct a linear block code of length nt by shortening a
BCH code with block length n′

t = 2t+1 − 1 and number of
parity check bits mt ≤ k log(n′

t +1). This shortening process
leaves the number of parity bits intact, hence, we have that
mt ≤ k log (n′

t + 1), but it removes n′
t − nt information bits

from the codewords. Thus, we have

mt ≤ k log
(
2t+1) ≤ 4

3
k log

(
2t
)
<

4

3
k log (nt + 1) . (56)

Now, recall that nt ≥ k1+ǫ, where ǫ > 0 (by assumption).
Then, we have that 1

ǫ
log nt

k
≥ log k. Therefore,

log(nt) = log
(
nt

k
× k
)

=
(

log
(
nt

k

)

+ log (k)
)

(57)

≤
(

log
(
nt

k

)

+
1

ǫ
log

nt

k

)

=

(

1 +
1

ǫ

)

log
(
nt

k

)

(58)

Thus, if follows that mt = O(k log
(
nt

k

)
) for arbitrary nt ∈ N.

Similarly, we have mr = O
(
k log

(
nr

k

))
. Thus, it follows that

m = O(k2 log
(
nt

k

)
log
(
nr

k

)
).

APPENDIX D

SPARK OF THE KRONECKER PRODUCT

Lemma 9. Let A ∈ Cma×na and B ∈ Cmb×nb be such that

min{spark(A), spark(B)} > k. Then, spark(A⊗B) > k.

Proof. Let (ai)
na

i=1 and (bj)
nb

j=1 be the columns of A and

B, respectively. Since spark(A) > k, then any k columns

of A are linearly independent. Similarly, any k columns of

B are also independent. Observe that any column of A⊗B

is of the form ai ⊗ bj . Pick any k columns of A ⊗B, i.e.,

ap1 ⊗ bt1 , ap2 ⊗ bt2 , . . . , apk
⊗ btk . We will show that

∑k

i=1 αiapi
⊗ bti = 0 if and only if αi = 0 ∀i.

Assume, without loss of generality, that

ap1 = · · · = apd1
, and

d1∑

i=1

αibti = rd1

apd1+1
= · · · = apd2

, and

d2∑

i=d1+1

αibti = rd2

...
...

apd
l−1+1

= · · · = apdl
, and

dl=k∑

i=dl−1+1

αibti = rdl

Then, we can rewrite
∑k

i=1 αiapi
⊗ bti as:

apd1
⊗
(

d1∑

i=1

αibti

)

︸ ︷︷ ︸
rd1

+apd2
⊗
(

d2∑

i=d1+1

αibti

)

︸ ︷︷ ︸
rd2

+ · · ·+ apdl
⊗





dl∑

i=dl−1+1

αibti





︸ ︷︷ ︸
rdl

Suppose there exists at least one value i0 such that αi0 6= 0,

then ∃rdi
6= 0 since all bti are independent. Finally, since all

apdi
are independent, then

∑k

i=1 αiapi
⊗bti 6= 0. Therefore,

the k columns (api
⊗ bti)

k

i=1, of A ⊗ B, are independent.

Hence, spark(A⊗B) > k.
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