
ar
X

iv
:2

10
2.

06
61

6v
2

 [
cs

.I
T

]
 2

5
Fe

b
20

21

Multi-access Coded Caching Scheme with Linear

Sub-packetization using PDAs

Shanuja Sasi and B. Sundar Rajan

Indian Institute of Science, Bengaluru

E-mail: shanuja@iisc.ac.in, bsrajan@iisc.ac.in

Abstract—We consider multi-access coded caching problem
introduced by Hachem et.al., where each user has access to L

neighboring caches in a cyclic wrap-around fashion. We focus on
the deterministic schemes for a specific class of multi-access coded
caching problem based on the concept of PDA. We construct new

PDAs which specify the delivery scheme for the specific class
of multi-access coded caching problem discussed in this paper.
For the proposed scheme, the coding gain is larger than that of
the state-of-the-art while the sub-packetization level varies only
linearly with the number of users. Hence, we achieve a lower
transmission rate with the least sub-packetization level compared
to the existing schemes.

I. INTRODUCTION

The drastic increase in the demand for video streaming

services is one of the key factors for introducing the coded

caching scheme by Maddah-Ali and Niesen [1]. The main

objective behind the coded caching scheme is to relieve the

traffic burden during peak hours by utilizing the ample cache

memories available at the user ends. The set-up consists of

a central server having access to a set of N files of equal

size, which is connected through an error-free link to a set

of K users where each user has a cache size of M files.

The proposed (K,M,N) coded caching scheme operates in

two phases. The first is the placement phase where each file

is divided into F equal packets and the cache memories are

filled with some of these packets during the off-peak hours.

The second phase is the delivery phase when the demands are

revealed by the users. Once the demands are known, the server

transmits coded symbols of length R files over an error-free

link to all the users such that all the users are able to meet

their demands from the local cache content and the transmitted

symbols. The quantityR is referred to as the transmission rate.

Coded caching has been extensively studied over the past

few years [2]–[9]. The value of F , which is known as the sub-

packetization level, is directly proportional to the complexity

of a coded caching scheme. It is well known that there is

a tradeoff between the sub-packetization level F and the

transmission rate R. In the scheme introduced by Maddah-

Ali and Niesen [1], which we refer as MN scheme, the sub-

packetization level grows exponentially with respect to the

number of users K , which makes it infeasible for practical

implementation. Reducing the sub-packetization level of the

coded caching schemes has been a major problem studied

during the past few years.

Yan et al. [10], represented a coded caching scheme by an

array called Placement Delivery Array (PDA) with an aim

to reduce the sub-packetization level. It is shown that the

MN scheme can be represented by a PDA and is optimal

among regular PDAs, which is a specific class of PDAs.

Although the scheme proposed by Yan et. al. has a lower

sub-packetization level compared to the MN scheme at the

expense of a slight increase in the transmission rate, the sub-

packetization level still increases sub-exponentially with K .

The concept of PDA has been identified as an effective tool

to reduce the sub-packetization level and since then various

coded caching schemes based on the concept of PDA have

been reported [11]–[17].

A. Multi-access Coded Caching

Unlike the caching models where it is assumed that each

user has their own dedicated cache, in this paper, we consider

a new model referred to as multi-access coded caching model

which was introduced in [18]. In this model, as illustrated

in Fig. 1, there is a central server having access to a col-

lection of N files, W = {W0,W1,W2, . . . ,WN−1}, each

of size 1 unit, connected through an error-free link to a

set of K users, U = {U0, U1, . . . , UK−1}. There are K

caches, C = {C0, C1, . . . , CK−1}, each having a storage

capacity M = Nγ files, where γ is defined as the nor-

malized cache size. Each user can access L caches in a

cyclic wrap-around fashion. The content stored in each cache

Cα, α ∈ {0, 1, . . .K − 1}, is denoted by Mα. The cache

content accessible to the user Uα, α ∈ {0, 1, . . .K − 1}, is

denoted by Zα. The index of the file requested by the user

Uα, α ∈ {0, 1, . . .K − 1}, is denoted by dα. The demand

vector is denoted by d = (d0, d1, . . . , dK−1).
Like in the centralized coded caching scheme, multi-access

coded caching scheme also operates in two phases: a place-

ment phase and a delivery phase. In the placement phase

the caches are filled with parts of the files from the servers’

database. In the delivery phase, each user Uα reveals their

demands, which is assumed to be a file from the database.

Based on the demand vector and the cache content accessible

to each user, the server transmits coded symbols so that each

user Uα can decode the desired file Wdα
using the transmis-

sions as well as the cache content. The overall objective of

the multi-access coded caching problem is to obtain placement

and delivery schemes so as to minimize the transmission rate,

which is defined as the amount of data transmitted by the

server in the units of files. The number of users for which

each transmission is beneficial is termed as the coding gain.

http://arxiv.org/abs/2102.06616v2

Notations: [n] represents the set {1, 2, . . . , n}, [a, b] rep-

resents the set {a, a + 1, . . . , b} while [a, b) represents the

set {a, a + 1, . . . , b − 1}. The bit wise exclusive OR (XOR)

operation is denoted by ⊕. ⌊x⌋ denotes the largest integer

smaller than or equal to x and ⌈x⌉ denotes the smallest integer

greater than or equal to x. a|b implies a divides b and a6 | b
implies a does not divide b, for some integers a and b. The

transpose of any matrix A is represented by AT . For any m×n
matrix A = (ai,j), i ∈ [0,m − 1], n ∈ [0, n − 1], the matrix

A + b, is defined as A + b = (ai,j + b).

B. Previous Results

The multi-access coded caching scheme was introduced in

[18] where the authors have provided a coloring based scheme

for the proposed problem. In [19], a new scheme, which we

refer as RK scheme, was proposed by mapping of the coded

caching problem to the index coding problem achieving a

transmission rate RRK which is less than that achieved in

[18].

RRK(γ) =

{

(K−KγL)2

K
, ∀γ ∈

{

k
K

: k ∈ [0,
⌊

K
L

⌋

]
}

0, for γ =
⌈

K
L

⌉

1
K

(1)

The sub-packetization level required for RK scheme is FRK =
1
γ

(

K−Kγ(L−1)−1
Kγ−1

)

.

A lower bound Rlb on the optimal transmission rate-

memory trade-off was also derived in [19] for any multi-access

coded caching problem when L ≥ K
2 . For some special cases,

namely for L ≥ K
2 , and when L = K − 1, L = K − 2, L =

K−3 when K is even, and L = K− K
g
+1 for some positive

integer g, an achievable scheme was proposed separately in

[19], which is optimal.

Rlb(γ) =

K −
[

K − (K−L)(K−L+1)
2K

]

Kγ, if 0 ≤ γ ≤ 1
K

(K−L)(K−L+1)
2K (2−Kγ) , if 1

K
≤ γ ≤ 2

K

0, if γ ≥ 2
K

In [20], the authors have studied two special cases, the first

case is when Kγ = 2, and the second case is when L = K−1
Kγ

for any Kγ. For Kγ = 2, the authors have proposed a novel

coded caching scheme, which we call as SPE scheme, that

achieves a coding gain that exceeds 2 with a sub-packetization

level of FSPE = K(K−2L+2)
4 . The transmission rate achieved

using the SPE scheme is

RSPE =
X1 +X2

S
, (2)

where X1, X2 and S are defined in Eq. (2) in [20]. The coding

gain always exceeds 3 and approaches 4 for some values of

K and L. For the second case considered in [20], i.e., when

L = K−1
Kγ

for any Kγ, the authors have provided an achievable

scheme which is optimal.

In [21], the authors have proposed an improved scheme for

any γ ∈
{

k
K

: gcd(k,K) = 1, k ∈ [1,K]
}

, achieving a rate

which is less than or equal to RRK(γ).
In [22], the authors have used a novel transformation

approach to extend the MN scheme to multi-access caching

Cache 0 Cache 1 Cache L-1 Cache L Cache K-1

Server

U0 U1 UK−1K Users

K Caches

N Files

Fig. 1: Multi-access Coded Caching Network [18] consisting

of a central server, K users, and K caches where each user

is connected to L neighboring caches.

schemes, such that the resulting scheme has the maximum

local caching gain and the same coding gain as the re-

lated MN scheme. We refer to the scheme proposed in

[22] as NT scheme. The coding gain achieved using the

NT scheme is Kγ + 1 with a sub-packetization level of

FNT = K
(

K−Kγ(L−1)
Kγ

)

. The transmission rate achieved using

the NT scheme is given by

RNT =
K −KγL

Kγ + 1
. (3)

In [23], the multi-access coded caching problem is divided

into a number of special class of index coding problems

termed as Structured Index Coding problem and using the

solutions obtained for the structured index coding problem,

a new scheme, which we refer as NK scheme, was proposed

for the multi-access coded caching problem which achieves

the following rate:

RNK =

∑

b∈B
min{2(K −KγL) +Kγ − 1− b̃,K}

FNK(Kγ + 1)
, (4)

where B is the collection of all the weak Kγ+1 compositions

of K − KγL − 1, b̃ denotes the maximum component in

the vector b ∈ B and FNK = 1
γ

(

K−Kγ(L−1)−1
Kγ−1

)

denotes the

sub-packetization level. In [24], the authors have proposed a

scheme for γ = 1
K

when L ≥ K
2 , which achieves linear sub-

packetization level with a slightly higher load than the above

schemes. Multi-access coded caching scheme with the number

of users not equal to the number of caches was studied in [25]

where the authors have identified a special class of resolvable

designs called cross resolvable designs.

In [21], we have studied the cases when

γ ∈
{

k
K

: gcd(k,K) = 1, k ∈ [1,K]
}

. In this

work we have taken up a particular case, when

γ ∈
{

k
K

: k|K, (K − kL+ k)|K, k ∈ [1,K]
}

, which is

not covered in [21]. Also, for the cases studied in [21], the

worst case sub-packetization level required is K2 while in

this work, the sub-packetization level required is K .

C. Our Contributions

Our contributions in this paper are summarized as follows.

• We construct a new class of PDA which we call as t-

cyclic g-regular PDA, which is used for providing the

delivery algorithm in our scheme.

• We prove that the advantage of the proposed scheme

is two-fold, in terms of the coding gain as well as the

sub-packetization level compared to NT, RK and SPE

schemes. The sub-packetization level K required for our

scheme is Fnew = K , which varies linearly with the

number of users while the sub-packetization level varies

sub-exponentially with respect to the number of users in

NT, RK and SPE schemes.

II. MAIN RESULT

We discuss our main result in this section. We characterize

our result in Theorem 1.

Theorem 1. Consider a multi-access coded caching sce-

nario with N files, and K users, each having access to

L neighboring caches in a cyclic wrap-around way, with

each cache having a normalized capacity of γ, where

γ ∈
{

k
K

: k|K, (K − kL+ k)|K, k ∈ [1,K]
}

. The following

transmission rate Rnew(γ) is achievable.

Rnew(γ) =
(K − kL)(K − kL+ k)

2K
(5)

Comparison of our scheme with the state-of-the-art is done

in Table I. The transmission rate vs L plot vs γ is obtained

for K = 24 in Fig. 2 and the sub-packetization level vs L

vs γ plot is obtained for the same value of K in Fig. 3.

It can be observed that the transmission rate achieved using

our scheme for the points considered in Theorem 1 is less

compared to that achieved using the RK, and SPE schemes. It

can also be observed that the transmission rate achieved using

our scheme for all the points considered in Theorem 1, except

when L = 3, k = 6 and L = 4, k = 4, is less compared

to that achieved using the NT scheme.The sub-packetization

level required is less for our scheme compared to the NT, RK,

and SPE schemes. The placement scheme and the delivery

algorithm achieving the rate claimed in Theorem 1 is given in

Section III.

A. Comparison with the NT Scheme

The coding gain achieved in our scheme is 2K
K−kL+k

while

that is k + 1 in the NT scheme. We prove in Lemma 1 that

the coding gain achieved in our scheme is more than that

achieved using the NT scheme, if L >
K(k−1)
k(k+1) + 1. The sub-

packetization level required for our scheme is Fnew = K

while it is FNT = K
(

K−kL+k
k

)

for the NT scheme. Hence

the sub-packetization level grows linearly with the number of

users in our scheme while it grows sub-exponentially with

respect to the number of users in the NT scheme. So, the

transmission rate achieved in our scheme is less than that

achieved using the NT scheme, if L >
K(k−1)
k(k+1) +1. Moreover,

the coding gain increases as L increases in our scheme while

the coding gain is independent of L in the NT scheme. Hence,

as L increases the gap between the transmission rate between

our scheme and the NT scheme increases. Our scheme is better

in terms of both coding gain as well as sub-packetization level

compared to the NT scheme.

Lemma 1. For the cases considered in Theorem 1, the

coding gain achieved in our scheme, 2K
K−kL+k

, is more than

the coding gain, k + 1, achieved using the NT scheme, if

L >
K(k−1)
k(k+1) + 1.

Proof. Assume that the coding gain achieved in our scheme

is less than or equal to that achieved using the NT scheme if

L >
K(k−1)
k(k+1) + 1, i.e.,

k + 1 ≥
2K

K − kL+ k

⇒ (k + 1)(K − kL+ k) ≥ 2K

⇒ Kk +K − k(k + 1)(L− 1) ≥ 2K

⇒ k(k + 1)(L− 1) ≤ K(k − 1)

⇒ L ≤
K(k − 1)

k(k + 1)
+ 1

This contradicts our assumption that L >
K(k−1)
k(k+1) + 1.

Therefore the coding gain achieved in our scheme is more than

that achieved using the NT scheme, if L >
K(k−1)
k(k+1) + 1.

B. Comparison with the RK Scheme

For the considered cases, the coding gain achieved in our

scheme is 2K
K−kL+k

while that is K
K−kL

in the RK scheme.

We prove in Lemma 2 that our scheme is better in terms

of coding gain as compared to the RK scheme. The sub-

packetization level required for our scheme is Fnew = K

while it is FRK = 1
γ

(

K−Kγ(L−1)−1
Kγ−1

)

for the RK scheme.

Even though the sub-packetization level required for the RK

scheme is less compared to the NT scheme, it still grows sub-

exponentially with respect to the number of users while the

sub-packetization level grows only linearly with the number

of users in our scheme. Hence, compared to the RK scheme,

our scheme is better in terms of both coding gain and sub-

packetization level.

Lemma 2. For the cases considered in Theorem 1, the coding

gain achieved in our scheme, 2K
K−kL+k

, is greater than or

equal to the coding gain, K
K−kL

, achieved using the RK

scheme.

Proof. The coding gain achieved in our scheme is less than

that achieved using the RK scheme, only if

K

K − kL
>

2K

K − kL+ k

⇒ K − kL+ k > 2K − 2kL

⇒ kL+ k > K

⇒ L >
K

k
− 1

If L ≥ K
k

, then all the users can access all the sub-files of

each file and the transmission rate is zero. Therefore the coding

gain achieved in our scheme is greater than or equal to that

achieved using the RK scheme, for the cases considered in

Theorem 1.

Fig. 2: Transmission rate vs L vs γ plot when K = 24.

Fig. 3: Sub-packetization level vs L vs γ plot when K = 24.

C. Comparison with the SPE Scheme

For the case when k = 2, the SPE scheme achieves a coding

gain that always exceeds 3 and approaches 4 for some values

of K and L. For our scheme, since 2K
K−kL+k

is an integer

(we have assumed that K − kL + k divides K), the coding

gain achieved when k = 2 is always greater than or equal to

k+2 = 4 (as proved in Lemma 1). Also, the sub-packetization

level required for SPE scheme is FSPE = K(K−2L+2)
4 which

is
(K−2L+2)

4 times more than the sub-packetization level

required for our scheme. Hence, compared to the SPE scheme

Sub-packetization Level Coding Gain Transmission Rate

NT scheme [22] K
(

K−kL+k
k

)

k + 1 K−kL
k+1

RK scheme [19]
(

K−kL+k−1
k−1

)

K
k

K
K−kL

(K−kL)2

K

SPE scheme (for k = 2) [20] (K(K−2L+2)
4) 3 to 4 RSPE as in (2)

NK scheme [23]
(

K−kL+k−1
k−1

)

K
k

RNK

K−kL
RNK as in (4)

Our scheme K 2K
K−kL+k

(K−kL)(K−kL+k)
2K

TABLE I: Comparison of our scheme with the state-of-the-art when γ ∈
{

k
K

: k|K, (K − kL+ k)|K, k ∈ [1,K]
}

.

also, our scheme is better in terms of both coding gain and

sub-packetization level for the cases considered in Theorem 1.

D. Comparison with the NK Scheme

For NK scheme, the rate expression RNK is given by (4).

Due to the complexity in the expression, we are not able to

compare this with our rate analytically. From Example 2, we

observe that the transmission rate when K = 12, k = 2, L = 4
in the NK scheme is slightly less compared to our scheme.

However, we gain in terms of the sub-packetization level

required at the expense of a slight increase in the rate. The

sub-packetization level required for our scheme is Fnew = K

while it is FNK = 1
γ

(

K−Kγ(L−1)−1
Kγ−1

)

for the NK scheme.

III. PLACEMENT AND DELIVERY SCHEME

In this section, initially we present our placement scheme.

After that we define a new class of PDA which is used

for providing our delivery algorithm. Finally we present our

delivery scheme to prove Theorem 1.

A. Placement Scheme

In the placement phase, we split each file Wn, n = [0, N),
into K disjoint sub-files, Wn = {Wn,α : α ∈ [0,K)}. Each

cache Cα, α ∈ [0,K), is filled as follows:

Mα = {Wn,(kα+j) mod K : j ∈ [0, k), n ∈ [0, N)}.

Each cache stores k sub-files from all the files, where each

sub-file is of size 1
K

. Hence, M = kN
K

= Nγ, thus meeting

our memory constraint.

The placement is done in such a way that we first create a

list of size 1×kK by repeating the sequence {0, 1, . . . ,K−1},
k times, i.e., {0, 1, . . . ,K−1, 0, 1, . . . ,K−1, 0, 1, 2, . . . ,K−
1, . . .}. We fill the caches by taking k items sequentially from

the list. Hence, the first cache is filled with the first k items,

the second cache with the next k items and so on.

Each user can access L neighboring caches and each cache

stores k consecutive sub-files of each file. If L ≥
⌈

K
k

⌉

,

then the user has access to all the sub-files of each of the

files. For the case under consideration, each user has access

to kL consecutive sub-files of each file since the content in

any consecutive L caches are disjoint from one another if

L <
⌈

K
k

⌉

. That is, for each user Uα, α ∈ [0,K), the accessible

cache content is {Wn,(kα+i) mod K : i ∈ [0, kL), n ∈ [0, N)}.
Each user’s demand of one file among the N files from the

central server is revealed after the placement phase, i.e, the

demand vector d is revealed. Our delivery scheme is based on

the concept of PDA. So, before presenting the delivery scheme

we provide a review on PDAs and after that we define a new

class of PDAs which is required for our delivery scheme.

B. Review on Placement Delivery Arrays

Definition 1. ([10]) For positive integers K,F, Z and S, an

F × K array P = (pi,j), i ∈ [0, F), j ∈ [0,K), composed

of a specific symbol “⋆” called star and S positive integers

0, 1, . . . , S − 1, is called a (K,F, Z, S) placement delivery

array (PDA) if it satisfies the following three conditions.

C1: the symbol ⋆ occurs exactly Z times in each column

C2: each integer occurs at least once in the array

C3: for any two distinct entries pi1,j1 and pi2,j2 , such that

pi1,j1 = pi2,j2 = s is an integer only if

a) i1 6= i2, j1 6= j2, i.e., they lie in distinct rows and

distinct columns and

b) pi1,j2 = pi2,j1 = ⋆, i.e., the corresponding

2 × 2 sub-array formed by the rows i1, i2 and

the columns j1, j2 must be of the following form
(

s ⋆

⋆ s

)

or

(

⋆ s

s ⋆

)

Definition 2. ([10]) An array P is said to be a g-regular

(K,F, Z, S) PDA, if it satisfies the conditions C1, C3, and

the following condition

C2′: Each integer appears g times in P where g is a constant.

Theorem 2. ([10]) For a given (K,F, Z, S) PDA, P =
(pi,j), i ∈ [0, F), j ∈ [0,K), we can obtain a (K,M,N)

coded caching scheme having sub-packetization level F with
M
N

= Z
F

using Algorithm 1. For any demand vector d, the

demands of all the users are met at the transmission rate of

R = S
F

.

In a (K,F, Z, S) PDA P, rows correspond to the packets of

each file and columns correspond to the users. In any column

j ∈ [0,K), if pi,j = ⋆, then user Uj has access to the ith

packet of all the files. If pi,j = s is an integer, then it implies

the ith packet of none of the files is accessible to the user

Uj . The condition C1 implies some Z packets of all the files

are accessible to each user. The condition C2 implies that the

number of symbols transmitted by the server is exactly S since

XOR of the requested packets indicated by s is broadcast by

the server during the slot for s. Hence the transmission rate

is S
F

. The condition C3 makes sure that each user can get

the demanded packet, since all the other packets in the coded

symbol are available at its cache. The three conditions in the

Defintion 1 of the PDA guarantees all the users retrieve the

requested files.

Algorithm 1 Coded caching scheme based on PDA in [10]

1: procedure PLACEMENT(P,W)

2: Split each file Wn ∈ W into F packets, i.e., Wn =
{Wn,i : i ∈ [0, F)}

3: for j ∈ [0,K) do

4: Zj ← {Wn,i : pi,j = ⋆, ∀n ∈ [0, N)}
5: end for

6: end procedure

7: procedure DELIVERY(P,W , d)

8: for s = 0, 1, . . . , S − 1 do

9: Server sends Ys =
⊕

pi,j=s,i∈[0,F),j∈[0,K)Wdj ,i

10: end for

11: end procedure

C. A New Class of PDAs

In this sub-section we introduce a new class of PDA, termed

as t-cyclic g-regular (K,F, Z, S) PDA which is defined in

Definition 3.

Definition 3. (t-cyclic g-regular (K,F, Z, S) PDA) In a g-

regular (K,F, Z, S) PDA P, if all the Z stars in each column

occur in consecutive rows and if the position of stars in each

column in P is obtained by cyclically shifting the previous

column downwards by t units, then it is called as t-cyclic

g-regular (K,F, Z, S) PDA.

Example 1. Consider the following 12× 6 array P12×6.

P12×6 =

⋆ 0 1 ⋆ ⋆ ⋆

⋆ 3 4 ⋆ ⋆ ⋆

⋆ ⋆ 2 0 ⋆ ⋆

⋆ ⋆ 5 3 ⋆ ⋆

⋆ ⋆ ⋆ 1 2 ⋆

⋆ ⋆ ⋆ 4 5 ⋆

⋆ ⋆ ⋆ ⋆ 0 1
⋆ ⋆ ⋆ ⋆ 3 4
0 ⋆ ⋆ ⋆ ⋆ 2
3 ⋆ ⋆ ⋆ ⋆ 5
1 2 ⋆ ⋆ ⋆ ⋆

4 5 ⋆ ⋆ ⋆ ⋆

(6)

There are Z = 8 stars in each column and there are 6
integers in the array P12×6 where each integer s ∈ [0, 5]
appears 4 times. For each integer s ∈ [0, 5], it can be verified

that the condition C3 in Definition 1 is also satisfied by the

array P12×6. Hence the array P12×6 represents a 4-regular

(6, 12, 8, 6) PDA. It can be observed that all the 8 stars in

each column occur in consecutive rows and the position of

stars in each column can be obtained by cyclically shifting the

previous column by 2 units down. Therefore, it is a 2-cyclic

4-regular (6, 12, 8, 6) PDA.

Our delivery algorithm is based on using t-cyclic g-regular

PDAs. Before providing the general delivery algorithm, we

illustrate the idea of using t-cyclic g-regular PDAs for solving

multi-access coded caching problems with the help of an

example.

Example 2. Consider the case N = K = 12, k = 2, L = 4.

The server has access to 12 files: W = {Wn : n ∈ [0, 12)},
and each file Wn, n ∈ [0, 12), is divided into 12 sub-files:

Wn = {Wn,j : j ∈ [0, 12)}. Each cache Cα, α ∈ [0, 12), is

filled as Mα = {Wn,(2α+j) mod 12 : j ∈ {0, 1}, n ∈ [0, 12)}.

Each user Uα, α ∈ [0, 12), has access to all the caches

in the set {Cα, C(α+1) mod 12, C(α+2) mod 12, C(α+3) mod 12}.
Hence, for each user Uα, the accessible cache content is

Zα = {Wn,(2α+i) mod 12 : i ∈ [0, 8), n ∈ [0, 12)}.

Consider the 2-cyclic 4-regular (6, 12, 8, 6) PDA, P12×6,

obtained in Example 1. For the array P12×6 with alphabets

[0, 6) ∪ ⋆, define an array P12×6 + 6 = (pi,j + 6), where

⋆ + 6 = ⋆. The number of occurrences of each integer in

P12×6 +6 is exactly equal to that of P12×6. Also, the number

of stars in each column in P12×6 + 6 is exactly same as in

P12×6. Now, we construct a new array

P12×12 = (P12×6 P12×6 + 6)

=

⋆ 0 1 ⋆ ⋆ ⋆ ⋆ 6 7 ⋆ ⋆ ⋆

⋆ 3 4 ⋆ ⋆ ⋆ ⋆ 9 10 ⋆ ⋆ ⋆

⋆ ⋆ 2 0 ⋆ ⋆ ⋆ ⋆ 8 6 ⋆ ⋆

⋆ ⋆ 5 3 ⋆ ⋆ ⋆ ⋆ 11 9 ⋆ ⋆

⋆ ⋆ ⋆ 1 2 ⋆ ⋆ ⋆ ⋆ 7 8 ⋆

⋆ ⋆ ⋆ 4 5 ⋆ ⋆ ⋆ ⋆ 10 11 ⋆

⋆ ⋆ ⋆ ⋆ 0 1 ⋆ ⋆ ⋆ ⋆ 6 7
⋆ ⋆ ⋆ ⋆ 3 4 ⋆ ⋆ ⋆ ⋆ 9 10
0 ⋆ ⋆ ⋆ ⋆ 2 6 ⋆ ⋆ ⋆ ⋆ 8
3 ⋆ ⋆ ⋆ ⋆ 5 9 ⋆ ⋆ ⋆ ⋆ 11
1 2 ⋆ ⋆ ⋆ ⋆ 7 8 ⋆ ⋆ ⋆ ⋆

4 5 ⋆ ⋆ ⋆ ⋆ 10 11 ⋆ ⋆ ⋆ ⋆

(7)

There are 12 rows, 0, 1, 2, . . . , 11, and 12 columns,

0, 1, 2, . . . , 11, in the PDA P12×12. The rows correspond to

the sub-files of each file and columns correspond to the

users. That is, the ith row, i ∈ [0, 12), represents the sub-

files Wn,i, ∀n ∈ [0, 12), while the jth column, j ∈ [0, 12),
represents the user Uj . There are a total of 12 integers

in P12×12, and each integer occurs 4 times in P12×12. All

the conditions C1,C2′ and C3 are satisfied by the array

P12×12. Additionally, all the 8 stars in each column occur

in consecutive rows and the position of stars in each column

can be obtained by cyclically shifting the previous column by 2
units down. Therefore, the array P12×12 represents a 2-cyclic

4-regular (12, 12, 8, 12) PDA.

Let the demand vector be d =
(d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11). We obtain

a delivery scheme for the multi-access coded caching scheme

with K = N = 12, k = 2, L = 4 and sub-packetization

level F = 12, using the caching scheme given by Algorithm

1 based on the PDA P12×12. The following are the coded

symbols obtained using Algorithm 1:

Y0 = Wd0,8 ⊕Wd1,0 ⊕Wd3,2 ⊕Wd4,6

Y1 = Wd0,10 ⊕Wd2,0 ⊕Wd3,4 ⊕Wd5,6

Y2 = Wd1,10 ⊕Wd2,2 ⊕Wd4,4 ⊕Wd5,8

Y3 = Wd0,9 ⊕Wd1,1 ⊕Wd3,3 ⊕Wd4,7

Y4 = Wd0,11 ⊕Wd2,1 ⊕Wd3,5 ⊕Wd5,7

Y5 = Wd1,11 ⊕Wd2,3 ⊕Wd4,5 ⊕Wd5,9

Y6 = Wd6,8 ⊕Wd7,0 ⊕Wd9,2 ⊕Wd10,6

Y7 = Wd6,10 ⊕Wd8,0 ⊕Wd9,4 ⊕Wd11,6

Y8 = Wd7,10 ⊕Wd8,2 ⊕Wd10,4 ⊕Wd11,8

Y9 = Wd6,9 ⊕Wd7,1 ⊕Wd9,3 ⊕Wd10,7

Y10 = Wd6,11 ⊕Wd8,1 ⊕Wd9,5 ⊕Wd11,7

Y11 = Wd7,11 ⊕Wd8,3 ⊕Wd10,5 ⊕Wd11,9.

Hence, the PDA P12×12 characterizes the delivery scheme for

this example. For the caching scheme generated by a 2-cyclic

4-regular (12, 12, 8, 12) PDA using Algorithm 1, the coding

gain equals to 4, since each transmission benefits 4 users.

The coding gain achieved using the NT and RK schemes for

this example is 3 while it is 4 for SPE scheme. The sub-

packetization level required for NT, RK and SPE schemes are

180, 30 and 18 respectively. The transmission rate achieved

using our scheme is 1 while the transmission rate achieved

using the NK scheme is 0.755. However the sub-packetization

level required for the NK scheme is 30 while for our scheme

the sub-packetization level required is 12 which is less than

half of that value.

D. Delivery Scheme

In this section we provide the delivery scheme to prove

Theorem 1. The parts of the file Wdα
available with the

user Uα, α ∈ [0,K), are kL consecutive sub-files, i.e.,

{Wdα,(kα+i) mod K : i ∈ [0, kL)}. Hence, the user Uα should

be able to decode all the remaining K − kL sub-files, i.e.,

{Wdα,(kα+kL+i) mod K : i ∈ [0,K − kL)}. To retrieve the

remaining sub-files, the transmitted symbols are obtained using

the PDA constructed in Algorithm 2 for the case discussed in

Theorem 1.

Theorem 3. The K×K matrix P obtained using Algorithm 2

is a k-cyclic 2K
K−kL+k

-regular (K,K, kL,
(K−kL)(K−kL+k)

2)
PDA.

The proof of Theorem 3 is provided in Section IV.

Theorem 4. For a given k-cyclic 2K
K−kL+k

-regular

(K,K, kL,
(K−kL)(K−kL+k)

2) PDA, P = (pi,j), i ∈
[0,K), j ∈ [0,K) constructed using Algorithm 2, we

can obtain a delivery algorithm using Algorithm 1 for the

considered case of multi-access coded problem in Theorem 1,

with sub-packetization level F = K . For any demand vector

d, the demands of all the users are met at the transmission

rate of Rnew = (K−kL)(K−kL+k)
2K .

Proof. The proof of this theorem is straightforward from

Theorem 2. In a t-cyclic g-regular (K,F, Z, S) PDA P, rows

correspond to the sub-files of each file and columns correspond

to the users. In any column j ∈ [0,K), if pi,j = ⋆, then user

Uj has access to the ith sub-file of all the files. If pi,j = s is

an integer, then it implies the ith sub-file of none of the files

is accessible to the user Uj . The condition C1 implies some

Z sub-files of all the files are accessible to each user. The

condition C2 implies that the number of symbols transmitted

by the server is exactly S since XOR of the requested packets

indicated by s is broadcast by the server during the slot for

s. Hence the transmission rate is S
F

. The condition C3 makes

sure that each user can get the demanded sub-file, since all the

other sub-files in the coded symbol are available at its cache.

The three conditions in the Defintion 1 of the PDA guarantees

all the users retrieve the requested files.

Example 3. Consider Example 2 with K = N = 12, k =
2, L = 4. We illustrate each procedure involved in obtaining

the matrix P12×12 using Algorithm 2 for Example 2. The A

matrix obtained by procedure 1 in Algorithm 2 corresponding

to this example is

A =

⋆ 0 1
⋆ ⋆ 2
⋆ ⋆ ⋆

 .

The P1 matrix obtained by procedure 2 in Algorithm 2

corresponding to this example is

P1 =

(

A A
T

A
T

A

)

=

⋆ 0 1 ⋆ ⋆ ⋆

⋆ ⋆ 2 0 ⋆ ⋆

⋆ ⋆ ⋆ 1 2 ⋆

⋆ ⋆ ⋆ ⋆ 0 1
0 ⋆ ⋆ ⋆ ⋆ 2
1 2 ⋆ ⋆ ⋆ ⋆

.

Using procedure 3 in Algorithm 2, we obtain the matrix P̃1

as in (6).

Now, using procedure 4, the matrix P̃2 obtained is as

follows:

P̃2 = P̃1 + 6 =

⋆ 6 7 ⋆ ⋆ ⋆

⋆ 9 10 ⋆ ⋆ ⋆

⋆ ⋆ 8 6 ⋆ ⋆

⋆ ⋆ 11 9 ⋆ ⋆

⋆ ⋆ ⋆ 7 8 ⋆

⋆ ⋆ ⋆ 10 11 ⋆

⋆ ⋆ ⋆ ⋆ 6 7
⋆ ⋆ ⋆ ⋆ 9 10
6 ⋆ ⋆ ⋆ ⋆ 8
9 ⋆ ⋆ ⋆ ⋆ 11
7 8 ⋆ ⋆ ⋆ ⋆

10 11 ⋆ ⋆ ⋆ ⋆

Finally, the matrix P obtained by concatenating P̃1 and P̃2

Algorithm 2 k-cyclic 2K
K−kL+k

-regular

(K,K, kL,
(K−kL)(K−kL+k)

2) PDA P Construction, where

γ ∈
{

k
K

: k|K, (K − kL+ k)|K, k ∈ [1,K]
}

1: procedure 1: CONSTRUCT A SQUARE MATRIX A =
(ai,j), i, j ∈

[

0, K−kL
k

]

.

2: for i ∈
[

0, K−kL
k

]

do

3: for j ∈
[

0, K−kL
k

]

do

4: if j ≤ i then

5: ai,j = ⋆

6: else if i = 0 and j > i then

7: ai,j = j − 1
8: else

9: ai,j = ai−1,j +
(

K−kL
k
− i
)

10: end if

11: end for

12: end for

13: end procedure 1
14: procedure 2: OBTAIN A SQUARE MATRIX P1 =

(pi,j), i, j ∈ [0, K
k
).

P1 =

A A
T

X X . . . X X

X A A
T

X . . . X X

X X A A
T

. . . X X

...
...

...
...

... . . .

...

X X X X . . . A A
T

A
T

X X X . . . X A

where X represents a K−kL+k
k

× K−kL+k
k

matrix with

all the entries being ⋆. The matrix P1 is a block matrix

having K
K−kL+k

row and column blocks with blocks of

size K−kL+k
k

× K−kL+k
k

as entries.

15: end procedure 2

16: procedure 3: FROM THE MATRIX P1 , GENERATE A K ×
K
k

MATRIX P̃1 = (p̃i,j), i ∈ [0,K), j ∈ [0, K
k
).

17: Let S1 =
(

(K−kL)(K−kL+k)
2k2

)

.

18: for i ∈ [0,K) do

19: for j ∈
[

0, K
k

)

do

20: if k|i then

21: p̃i,j = p(i
k
),j .

22: else

23: p̃i,j = p̃i−1,j + S1, where S1 + ⋆ = ⋆.

24: end if

25: end for

26: end for

27: end procedure 3

28: procedure 4: NOW, OBTAIN A K ×K MATRIX P

P =
(

P̃1 P̃2 P̃3 . . . P̃k

)

where each matrix P̃t = P̃1 + (t − 1)S̃1, t ∈ [2, k], S̃1 =
(K−kL)(K−kL+k)

2k , is a K×K
t

matrix, with ⋆+(t−1)S̃1 =
⋆.

29: end procedure 4

is as in (7).

Example 4. Consider another example with N = K =
36, k = 3, L = 9. The server has access to 36 files:

W = {Wn : n ∈ [0, 36)}, and each file Wn, n ∈ [0, 36),
is divided into 36 sub-files: Wn = {Wn,j : j ∈ [0, 36)}. Each

cache Cα, α ∈ [0, 36), is filled as Mα = {Wn,(3α+j) mod 36 :
j ∈ {0, 1, 2}, n ∈ [0, 36)}.

Each user Uα, α ∈ [0, 36), has access to all the caches in

the set {C(α+i) mod 36 : i ∈ [0, 9)}. Hence, for each user Uα,

the accessible cache content is Zα = {Wn,(3α+i) mod 36 : i ∈
[0, 27), n ∈ [0, 36)}.

The A matrix obtained by procedure 1 in Algorithm 2

corresponding to this example is

A =

⋆ 0 1 2
⋆ ⋆ 3 4
⋆ ⋆ ⋆ 5
⋆ ⋆ ⋆ ⋆

.

The P1 matrix obtained by procedure 2 in Algorithm 2

corresponding to this example is

P1 =

A A
T X

X A A
T

A
T X A

 (8)

=

⋆ 0 1 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 3 4 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 5 1 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 2 4 5 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 0 1 2 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 3 4 0 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 5 1 3 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 2 4 5 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 1 2
0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 3 4
1 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 5
2 4 5 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

. (9)

Using procedure 3 in Algorithm 2, we obtain the matrix P̃1

as given below. P̃1 =

⋆ 0 1 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ 6 7 8 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ 12 13 14 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 3 4 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 9 10 6 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 15 16 12 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 5 1 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 11 7 9 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 17 13 15 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 2 4 5 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 8 10 11 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 14 16 17 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 0 1 2 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 6 7 8 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 12 13 14 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 3 4 0 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 9 10 6 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 15 16 12 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 5 1 3 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 11 7 9 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 17 13 15 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 2 4 5 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 8 10 11 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 14 16 17 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 1 2

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 6 7 8

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 12 13 14

0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 3 4

6 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 9 10

12 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 15 16

1 3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 5

7 9 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 11

13 15 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 17

2 4 5 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

8 10 11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

14 16 17 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

.

(10)

Now, using procedure 4, the matrix P̃2 obtained is as

follows: P̃2 = P̃1 + 18 =

⋆ 18 19 20 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ 24 25 26 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ 30 31 32 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 21 22 18 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 27 28 24 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 33 34 30 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 23 19 21 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 29 25 27 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 35 31 33 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 20 22 23 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 26 28 29 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 32 34 35 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 18 19 20 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 24 25 26 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 30 31 32 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 21 22 18 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 27 28 24 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 33 34 30 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 23 19 21 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 29 25 27 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 35 31 33 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 20 22 23 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 26 28 29 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 32 34 35 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 18 19 20

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 24 25 26

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 30 31 32

18 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 21 22

24 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 27 28

30 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 33 34

19 21 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 23

25 27 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 29

31 33 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 35

20 22 23 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

26 28 29 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

32 34 35 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

.

(11)

Similarly the matrix P̃3 obtained is as follows: P̃3 = P̃1 +

36 =

⋆ 36 37 38 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ 42 43 44 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ 48 49 50 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 39 40 36 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 45 46 42 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ 51 52 48 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 41 37 39 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 47 43 45 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ 53 49 51 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 38 40 41 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 44 46 47 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ 50 52 53 ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 36 37 38 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 42 43 44 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ 48 49 50 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 39 40 36 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 45 46 42 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 51 52 48 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 41 37 39 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 47 43 45 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 53 49 51 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 38 40 41 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 44 46 47 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 50 52 53 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 36 37 38

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 42 43 44

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 48 49 50

36 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 39 40

42 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 45 46

48 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 51 52

37 39 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 41

43 45 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 47

49 51 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 53

38 40 41 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

44 46 47 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

50 52 53 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

.

(12)

Finally, the matrix P =
(

P̃1 P̃2 P̃3

)

is obtained by

concatenating P̃1, P̃2 and P̃3.

There are 36 rows and columns in the matrix P, indexed by

0, 1, 2, . . . , 35. The rows correspond to the sub-files of each

file and columns correspond to the users. There are a total

of 54 integers in P, and each integer occurs 6 times in P.

All the conditions C1,C2′ and C3 are satisfied by the matrix

P. Additionally, all the 27 stars in each column occur in

consecutive rows and the position of stars in each column

can be obtained by cyclically shifting the previous column by

3 units down. Therefore, the matrix P represents a 3-cyclic

6-regular (36, 36, 27, 54) PDA.

Using the caching scheme given by Algorithm 1 based on

the PDA P constructed in this example, we obtain 54 coded

symbols. The coding gain achieved using this scheme is 6,

since each transmission benefits 6 users. The coding gain

achieved using the NT and RK schemes for this example is 4.

The sub-packetization level required for NT, and RK schemes

are 7920 and 660 respectively.

IV. PROOF OF THEOREM 3

In this section, we prove that the matrix P con-

structed using Algorithm 2 is a k-cyclic 2K
K−kL+k

-regular

(K,K, kL,
(K−kL)(K−kL+k)

2) PDA.

Using procedure 1 of Algorithm 2, we construct a square

matrix A. It can be observed from step 5 that all the diagonal

entries as well as all the entries below the diagonal are stars.

For i = 0, we consider the 0th row. The entry corresponding to

the 0th column is a star. From step 6, the entries corresponding

to 1st column to (K−kL
k

)th column are integers from 0 to
K−kL

k
− 1 respectively. Now, for i = 1, we consider the 1st

row and the entry corresponding to the 0th and 1st columns are

stars. The entries corresponding to 2nd column to (K−kL
k

)th

column are integers from K−kL
k

to
2(K−kL)

k
− 2 respectively.

Similarly for any row i ∈ [0, K−kL
k

], the entries corresponding

to the 0th column to the ith column are stars. The positions

corresponding to the rest of the columns ((i + 1)th column

to (K−kL
k

)th column) are filled with K−kL
k
− i different

integers which are also different from the integers used for

filling the previous rows. There are S1 = (K−kL)(K−kL+k)
2k2

integers present in the matrix A, since there are S1 positions

available above the diagonal and all those positions are filled

with different integers. The number of stars in the ith column,

i ∈ [0, K−kL
k

] of the matrix A, is K−kL+k
k

− i.

Using procedure 2 of Algorithm 2, we obtain a block ma-

trix P1 with K
K−kL+k

row as well as column blocks, indexed

by [0, K
K−kL+k

). Each block is of size K−kL+k
k

× K−kL+k
k

.

The 0th column block is given by

A

X

...

X

A
T

(13)

Each column block, i ∈ [1, K
K−kL+k

) is obtained by cyclically

shifting the blocks in the 0th column block down by i units.

Each block in P1 is of size K−kL+k
k

× K−kL+k
k

and there are
K

K−kL+k
rows and column blocks present in P1. Hence the

matrix P1 is of size K
k
× K

k
.

Using procedure 3 of Algorithm 2, a tall matrix P̃1 is

generated from the square matrix P1. The K × K
k

matrix

P̃1 is generated from the K
k
× K

k
matrix P1 by adding new

k − 1 rows after each row in P1. For each i ∈ [0, K
k
), the

(ik)th row of the matrix P̃1 is same as the ith row of the

matrix P1 (as in step 21). It is evident from step 23 that the

positions of stars in the next k − 1 rows, i.e., (ik + 1)th row

to ((i + 1)k − 1)th row, are same as that of the (ik)th row

of the matrix P̃1. For the (ik + j)th row, j ∈ [1, k) of the

matrix P̃1 the entries corresponding to columns which do not

have stars are filled with integer obtained by adding S1 to

the corresponding elements in the previous row of the matrix

P̃1. This is to make sure that the integers used for filling the

(ik + j)th row is different from the integers used for filling

the (ik)th row to (ik + j − 1)th row.

Using the procedure 4 of Algorithm 2, we define new

matrices P̃t, t ∈ [2, k], where P̃t = (p̃i,j + (t − 1)S̃1), S̃1

denotes the number of integers present in the matrix P̃1, and

⋆ + (t − 1)S̃1 = ⋆. Each integer entries in P̃t is obtained by

adding (t−1)S̃1 to the corresponding entry in P̃1. The matrix

P is obtained by concatenating the k matrices P̃t, t ∈ [1, k],
each of size K × K

k
. Hence the matrix P is of size K ×K.

Lemma 3. The K
k
× K

k
matrix P1 obtained from pro-

cedure 2 of Algorithm 2 is a 1-cyclic 2K
K−kL+k

-regular

(K
k
, K

k
, L,

(K−kL)(K−kL+k)
2k2) PDA.

Proof. The number of stars present in the ith column, i ∈
[0, K−kL

k
] of the matrix A, is K−kL+k

k
−i while the number of

stars present in the ith column of the matrix A
T (the transpose

of the matrix A) is i + 1. Hence the number of stars present

in the ith column, i ∈ [0, K−kL
k

] of the matrix P1, is Z1 =
(K−kL+k

k
− i) + (K

K−kL+k
− 2)(K−kL+k

k
) + (i + 1) = L.

The number of stars in each column of the matrix P1 is also

L, since each column block, i ∈ [1, K
K−kL+k

) is obtained by

cyclically shifting the blocks in the 0th column block down

by i units, Hence the condition C1 in Definition 1 is satisfied

by the matrix P1.

The number of integers present in the matrix A is S1 =
(K−kL)(K−kL+k)

2k2 . Each integer in the set [0, S1) occurs once

in the matrix A as well as in A
T . The block A as well as

the block A
T occur K

K−kL+k
times in the matrix P1 (once in

each column block). The block X contains only stars. Hence,

the number of integers present in the matrix P1 is S1 and each

integer in the set [0, S1) occurs 2K
K−kL+k

times in the matrix

P1. So, the condition C2′ of Definition 2 is satisfied by the

matrix P1 with g = 2K
K−kL+k

.

Now, we need to prove that the condition C3 of Definition

1 is satisfied by the matrix P1. Consider the sub-matrix Ã =
(ãi,j), i ∈ [0, K−kL

k
], j ∈ [0, 2(K−kL)

k
+ 1], present in the

matrix P1, where

Ã =
(

A AT
)

(14)

All the diagonal entries as well as the entries below the

diagonal are stars in the matrix A. So, for the transpose matrix

A
T , all the diagonal entries and the entries above the diagonal

are stars. Hence, for any integer s ∈ [0, S1), suppose that the

integer s is present in the position corresponding to ith row and

jth column of the matrix A. Then, for i, j ∈ [0, K−kL
k

], j > i,
(

ãi,j ãi,i+K−kL+k
k

ãj,j ãj,i+K−kL+k
k

)

=

(

s ⋆

⋆ s

)

. (15)

Hence for any integer s present in the matrix A, the sub-matrix

given by (14) satisfies the condition C3 in Definition 1.

For the same reason stated for the sub-matrix (14), the sub-

matrix

(

A
T

A

)

also satisfies the condition C3 in Definition

1.

Suppose we take any two non-adjacent row blocks in P1,

say ith and jth row blocks, i, j ∈ [0, K
K−kL+k

), (the 0th and

the (K
K−kL+k

− 1)th row blocks are considered as adjacent

row blocks). It can be observed that the sub-matrix containing

only the blocks A and A
T in the corresponding column blocks

is of the form
(

A A
T

X X

X X A A
T

)

or

(

X X A A
T

A A
T

X X

)

(16)

Since the matrix X contains only stars, it is evident that

the sub-matrices given by (16) satisfies the condition C3 in

Definition 1.

Suppose we take any two adjacent row blocks in P1, say

ith and (i+1)th row blocks, i ∈ [0, K
K−kL+k

) (the 0th and the

(K
K−kL+k

− 1)th rows are considered as adjacent row blocks

and if i = K
K−kL+k

− 1, then i+1 is considered as 0). It can

be observed that the sub-matrix containing only the blocks A

and A
T in the corresponding columns blocks is of the form

A
′ = (a′i,j) =

(

A A
T

X

X A A
T

)

(17)

For any integer s ∈ [0, S1), suppose that the integer s is

present in the position corresponding to the ith row and the

jth column of the matrix A, i, j ∈ [0, K−kL
k

], j > i, then

a′i,j a′i,i+l a′i,j+l a′i,i+2l

a′j,j a′j,i+l a′j,j+l a′j,i+2l

a′i+l,j a′i+l,i+l a′i+l,j+l a′i+l,i+2l

a′j+l,j a′j+l,i+l a′j+l,j+l a′j+l,i+2l

=

s ⋆ ⋆ ⋆

⋆ s ⋆ ⋆

⋆ ⋆ s ⋆

⋆ ⋆ ⋆ s

where l = K−kL+k
k

. Hence, for any integer s present in the

matrix A, the sub-matrix given by (17) satisfies the condition

C3 in Definition 1.

In short, if we take any integer s in the matrix P1, the

matrix P1 satisfies the condition C3 in Definition 1. All the

three conditions C1,C2′ and C3 are satisfied by the matrix P1.

Hence it is a 2K
K−kL+k

-regular (K
k
, K
k
, L,

(K−kL)(K−kL+k)
2k2)

PDA.

Now, we need to prove that the matrix P1 is k-cyclic.

Consider the 0th column block in the block matrix P1:

C0 =

A

X

...

X

A
T

. (18)

There are K−kL+k
k

columns and K
k

rows in the matrix C0,

indexed by [0, K−kL
k

] and [0, K
k
) respectively. Recall that all

the diagonal entries and the entries below the diagonal are

stars in the matrix A. For the transpose matrix A
T , all the

diagonal entries and the entries above the diagonal are stars.

Hence the structure of stars in the matrix C0 is as follows:

⋆

⋆ ⋆

⋆ ⋆
. . .

⋆ ⋆ . . . ⋆

⋆ ⋆ . . . ⋆

⋆ ⋆ . . . ⋆
...

... . . .
...

⋆ ⋆ . . . ⋆

⋆ ⋆ . . . ⋆

. . . ⋆ ⋆

⋆ ⋆

⋆

. (19)

We know that the number of the stars in each column in the

matrix P1 is L. From (19), it is clear that all the L stars in

each column occurs in consecutive rows. The L stars in the

0th column are present in the positions corresponding to the

first L rows. The structure of stars in rest of the columns

is obtained by cyclically shifting the stars in the previous

column towards down by 1 unit. We also know that in the

block matrix P1, each column block is obtained by cyclically

shifting the blocks in the previous column block towards down.

Hence the matrix P1 represents a 1-cyclic 2K
K−kL+k

-regular

(K
k
, K

k
, L,

(K−kL)(K−kL+k)
2k2) PDA.

Lemma 4. The K × K
k

matrix P̃1 obtained using pro-

cedure 3 of Algorithm 2 is a k-cyclic 2K
K−kL+k

-regular

(K
k
,K, kL,

(K−kL)(K−kL+k)
2k) PDA.

Proof. The number of integers present in the matrix P̃1 is

S̃1 = kS1 and the number of stars present in each column of

the matrix P̃1, is Z̃1 = kZ1 = kL. This is because, for each

i ∈ [0, K
k
), the (ik)th row of the matrix P̃1 is same as the ith

row of the matrix P1 (as in step 21) and for the (ik + j)th

row, j ∈ [2, k) of the matrix P̃1, each entry is obtained by

adding S1 to the corresponding elements in the previous row

of the matrix P̃1, where ⋆+S1 = ⋆. This is to make sure that

the integers used for filling the (ik+j)th row is different from

the integers used for filling the (ik)th row to (ik + j − 1)th

row. Hence, the condition C1 in the Definition 1 is satisfied

by the matrix P̃1.

Consider S1 integers in the set [0, S1). The sub-matrix of

the matrix P̃1, obtained by taking only the rows in which

the integers in [0, S1) are present, is P1. Now, consider S1

integers in the set [S1, 2S1). The sub-matrix of the matrix

P̃1, obtained by taking only the rows in which the integers in

[S1, 2S1) are present, is P1+S1, where P1+S1 = (pi,j+S1),
with ⋆ + S1 = ⋆. The positions of stars in P1 + S1 is same

as that of P1 and each integer entries in P1 + S1 is obtained

by adding S1 to the corresponding entry in P1. Hence, each

integer in [S1, 2S1) occurs 2K
K−kL+k

times in the sub-matrix

P1+S1 and the condition C3 in Definition 1 is satisfied by the

matrix P1+S1. Similarly for any i ∈ [1, k−1] if we consider

S1 integers in the set [iS1, (i + 1)S1), The sub-matrix of the

matrix P̃1, obtained by taking only the rows in which the

integers in [iS1, (i + 1)S1) are present, is P1 + iS1, where

P1 + iS1 = (pi,j + iS1), with ⋆ + iS1 = ⋆. The position

of stars in P1 + iS1 is same as that of P1 and each integer

entries in P1 + iS1 entries are obtained by adding iS1 to

the corresponding entry in P1. Hence, if we take any s ∈
[iS1, (i + 1)S1), the condition C3 in Definition 1 is satisfied

by the matrix P1 + iS1. Also, each integer in [iS1, (i+1)S1)
occurs 2K

K−kL+k
times in the sub-matrix P1 + iS1 and hence

the condition C2′ in Definition 2 is satisfied by the matrix

P1 + iS1.

Summing up all the observations, for any s ∈ [0, kS1),
the condition C3 in Definition 1 is satisfied by the matrix

P̃1. Also, the condition C2′ in Definition 2 is satisfied by the

matrix P̃1 with g = 2K
K−kL+k

.

We know that there are L stars in each column in the

matrix P1 which occurs in consecutive rows and position of

stars in each column is obtained by the shifting the position

of stars in the previous column downwards by 1 unit. We

also know that for each i ∈ [0, K
k
), the (ik)th row of the

matrix P̃1 is same as the ith row of the matrix P1 and the

position of stars in the (ik + 1)th row to ((i + 1)k − 1)th

row in the matrix P̃1, is same as that of the (ik)th row of

the matrix P̃1. Therefore, in the matrix P̃1, there are kL

stars in each column which occur in consecutive row and the

position of stars in each column is obtained by the shifting

the position of stars in the previous column downwards by

k units. Hence the matrix P̃1 represents a k-cyclic 2K
K−kL+k

-

regular (K
k
,K, kL,

(K−kL)(K−kL+k)
2k) PDA.

Proof of Theorem 3: Each matrix P̃t, t ∈ [2, k] represents a

k-cyclic 2K
K−kL+k

-regular (K
k
,K, kL,

(K−kL)(K−kL+k)
2k) PDA

with the
(K−kL)(K−kL+k)

2k integers present in the PDA P̃t

being [(t − 1)S̃1, tS̃1). This is because, each entry in P̃t is

obtained by adding (t − 1)S̃1 to the corresponding entry in

P̃1, where ⋆+ (t− 1)S̃1 = ⋆.

The number of stars present in each column of the matrix

P̃t is same as that in P̃1. Hence, the matrix P obtained by

concatenating all the matrices in {P̃t : t ∈ [1, k]} obeys

condition C1 in Definition 1 with Z = Z̃1 = kL. The matrix P

is obtained by concatenating k number of k-cyclic 2K
K−kL+k

-

regular (K
k
,K, kL,

(K−kL)(K−kL+k)
2k) PDAs with the integers

present in each of the PDAs P̃t, t ∈ [1, k], are different

from one another. Hence, the total number of integers present

in the matrix P obtained by concatenating all the matrices

in {P̃t : t ∈ [1, k]} is S = kS̃1 = (K−kL)(K−kL+k)
2

and the matrix P obeys condition C2′ in Definition 2 with

g = 2K
K−kL+k

. The matrix P also satisfies condition C3 in

Definition 1. Hence the matrix P represents a 2K
K−kL+k

-regular

(K,K, kL,
(K−kL)(K−kL+k)

2) PDA.

Now, we need to prove that the PDA P is k-cyclic. Since,

each matrix P̃t, t ∈ [1, k] represents a k-cyclic 2K
K−kL+k

-

regular (K
k
,K, kL,

(K−kL)(K−kL+k)
2k) PDA, the kL stars in

each column in P occur in consecutive rows. The matrix P is

k-cyclic if the position of stars in each column is obtained by

shifting the stars in the previous column towards down by k

units. The first K
k

columns in P is k-cyclic since the matrix

P̃1 is k-cyclic. We have assumed that k|K , hence shifting the

position of stars in the (K
k
−1)th column of P̃1 towards down

by k units will result in the pattern of stars in the 0th column

of P̃1. The pattern of stars in the 0th column of P̃1 and P̃2 is

the same. Hence shifting the position of stars in the (K
k
−1)th

column of P towards down by k units will result in the pattern

of stars in the (K
k
)th column of P. Similarly after every K

k

columns the pattern repeats. So, the PDA P is k-cyclic. This

completes the proof.

V. DISCUSSION

In this work, we have constructed a new class

of PDAs which we call as t-cyclic g-regular PDA.

This class of PDA is used for providing the delivery

scheme for multi-access coded caching problems when

γ ∈
{

k
K

: k|K, (K − kL+ k)|K, k ∈ [1,K]
}

. The sub-

packetization level required for our scheme is the least com-

pared to the state-of-the-art schemes. For certain ranges of

values of L, the transmission rate is also less compared to

some of the existing schemes. We have obtained a scheme

based on PDA only for certain ranges of values of γ. Obtaining

a scheme based on PDA with linear sub-packetization for the

entire range of γ is an interesting problem to work on.

ACKNOWLEDGEMENT

This work was supported partly by the Science and Engi-

neering Research Board (SERB) of Department of Science and

Technology (DST), Government of India, through J. C. Bose

National Fellowship to B. Sundar Rajan.

REFERENCES

[1] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[2] K. Wan, D. Tuninetti and P. Piantanida, “On the optimality of uncoded
cache placement,” in Information Theory Workshop (ITW), 2016 IEEE,
pp. 161–165.

[3] Q. Yu, M. A. Maddah-Ali and A. S. Avestimehr, “The Exact Rate-
Memory Tradeoff for Caching With Uncoded Prefetching,” in IEEE

Transactions on Information Theory, vol. 64, no. 2, pp. 1281-1296, Feb.
2018.

[4] S. Jin, Y. Cui, H. Liu and G. Caire, “Uncoded placement optimization
for coded delivery,” in IEEE 16

th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
2018, pp. 1–8.

[5] J. Gómez-Vilardebó, “Fundamental Limits of Caching: Improved Rate-
Memory Tradeoff With Coded Prefetching," in IEEE Transactions on

Communications, vol. 66, no. 10, pp. 4488-4497, Oct. 2018

[6] U. Niesen and M. A. Maddah-Ali, “Coded Caching With Nonuniform
Demands," in IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 1146-1158, Feb. 2017

[7] E. Ozfatura and D. Guenduez, “Uncoded Caching and Cross-Level Coded
Delivery for Non-Uniform File Popularity,” 2018 IEEE International

Conference on Communications (ICC), Kansas City, MO, 2018, pp. 1-6

[8] M. A. Maddah-Ali and U. Niesen, “Decentralized Coded Caching Attains
Order-Optimal Memory-Rate Tradeoff," in IEEE/ACM Transactions on
Networking, vol. 23, no. 4, pp. 1029-1040, Aug. 2015

[9] M. Ji, G. Caire and A. F. Molisch, “Fundamental Limits of Caching in
Wireless D2D Networks," in IEEE Transactions on Information Theory,
vol. 62, no. 2, pp. 849-869, Feb. 2016.

[10] Q. Yan, M. Cheng, X. Tang and Q. Chen, “On the Placement Delivery
Array Design for Centralized Coded Caching Scheme,” in IEEE Transac-

tions on Information Theory, vol. 63, no. 9, pp. 5821-5833, Sept. 2017.
[11] M. Cheng, J. Jiang, X. Tang and Q. Yan, “Some Variant of Known

Coded Caching Schemes With Good Performance," in IEEE Transactions

on Communications, vol. 68, no. 3, pp. 1370-1377, March 2020.
[12] M. Cheng, J. Jiang, Q. Wang and Y. Yao, “A Generalized Grouping

Scheme in Coded Caching," in IEEE Transactions on Communications,
vol. 67, no. 5, pp. 3422-3430, May 2019.

[13] M. Cheng, J. Jiang, Q. Yan and X. Tang, “Constructions of Coded
Caching Schemes With Flexible Memory Size," in IEEE Transactions
on Communications, vol. 67, no. 6, pp. 4166-4176, June 2019.

[14] J. Michel and Q. Wang, “Placement Delivery Arrays From Combinations
of Strong Edge Colorings," in IEEE Transactions on Communications,
vol. 68, no. 10, pp. 5953-5964, Oct. 2020.

[15] C. Shangguan, Y. Zhang and G. Ge, “Centralized Coded Caching
Schemes: A Hypergraph Theoretical Approach," in IEEE Transactions

on Information Theory, vol. 64, no. 8, pp. 5755-5766, Aug. 2018.
[16] Q. Yan, X. Tang, Q. Chen and M. Cheng, “Placement Delivery Array

Design Through Strong Edge Coloring of Bipartite Graphs," in IEEE

Communications Letters, vol. 22, no. 2, pp. 236-239, Feb. 2018.
[17] X. Zhong, M. Cheng and J. Jiang, “Placement Delivery Array Based on

Concatenating Construction," in IEEE Communications Letters, vol. 24,
no. 6, pp. 1216-1220, June 2020

[18] J. Hachem, N. Karamchandani and S. N. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Transactions on Information
Theory, vol. 63, no. 5, pp. 3108–3141, 2017.

[19] K. S. Reddy and N. Karamchandani, “Rate-memory trade- off for multi-
access coded caching with uncoded placement,” IEEE Transactions on
Communications, Vol. 68, No. 6, pp. 3261-3274, 2020.

[20] B. Serbetci, E. Parrinello and P. Elia, “Multi-access coded caching: gains
beyond cache-redundancy,” 2019 IEEE Information Theory Workshop

(ITW), Visby, Sweden, 2019, pp. 1-5.
[21] S. Sasi, B. S. Rajan, “An Improved Multi-access Coded Caching with

Uncoded Placement,” arXiv:2009.05377v2 [cs.IT], Oct 2020.
[22] M. Cheng, D. Liang, K. Wan, M. Zhang, and G. Caire, “A Novel

Transformation Approach of Shared-link Coded Caching Schemes for
Multiaccess Networks,” arXiv:2012.04483 [cs.IT], Dec 2020.

[23] K. S. Reddy, N. Karamchandani, “Structured Index Coding Problem and
Multi-access Coded Caching,” arXiv:2012.04705 [cs.IT], Dec 2020.

[24] A. A. Mahesh, B. S. Rajan, “A Coded Caching Scheme with Linear
Sub-packetization and its Application to Multi-Access Coded Caching,”
arXiv:2009.10923 [cs.IT], Sep 2020.

[25] Digvijay Katyal, Pooja Nayak M, and B. Sundar Rajan, “Multi-access
Coded Caching Schemes From Cross Resolvable Designs,” IEEE Trans-

actions on Communications, (Available as early access article in IEEE
Xplore).

http://arxiv.org/abs/2009.05377
http://arxiv.org/abs/2012.04483
http://arxiv.org/abs/2012.04705
http://arxiv.org/abs/2009.10923

	I introduction
	I-A Multi-access Coded Caching
	I-B Previous Results
	I-C Our Contributions

	II Main Result
	II-A Comparison with the NT Scheme
	II-B Comparison with the RK Scheme
	II-C Comparison with the SPE Scheme
	II-D Comparison with the NK Scheme

	III placement and delivery scheme
	III-A Placement Scheme
	III-B Review on Placement Delivery Arrays
	III-C A New Class of PDAs
	III-D Delivery Scheme

	IV Proof of Theorem 3
	V Discussion
	References

