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Abstract

We consider the problem of communicating a general bivariate function of two classical sources observed at the encoders
of a classical-quantum multiple access channel. Building on the techniques developed for the case of a classical channel, we
propose and analyze a coding scheme based on coset codes. The proposed technique enables the decoder recover the desired
function without recovering the sources themselves. We derive a new set of sufficient conditions that are weaker than the current
known for identified examples. This work is based on a new ensemble of coset codes that are proven to achieve the capacity of
a classical-quantum point-to-point channel.

I. INTRODUCTION

Early research in quantum state discrimination led to the investigation of the information carrying capacity of quantum states.

Suppose Alice - a sender - can prepare any one of the states in the collection {ρx ∈ D(HY ) : x ∈ X} and Bob - the receiver -

has to rely on a measurement to infer the label x of the state, then what is the largest sub-collection C ⊆ X of states that Bob

can distinguish perfectly? Studying this question in a Shannon-theoretic sense, Schumacher, Westmoreland [1] and Holevo [2]

characterized the exponential growth of this sub-collection, thereby characterizing the capacity of a classical-quantum (CQ)

point-to-point (PTP) channel. In the following years, generalizations of this question with multiple senders and/or receivers

have been studied with an aim of characterizing the corresponding information carrying capacity of quantum states in network

scenarios [3].

In this work, we consider the problem of computing functions of information sources over a CQ multiple access channel

(MAC). Let (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) model a CQ-MAC. Sender j - the party having access to the choice

of label xj ∈ Xj - observes a classical information stream Sjt ∈ Sj : t ≥ 1. The pairs (S1t, S2t) : t ≥ 1 are independent

and identically distributed (IID) with a single-letter joint distribution WS1S2 . The receiver, who is provided with the prepared

quantum state, intends to reconstruct a specific function f(S1, S2) of the information observed by the senders. The question

of interest is under what conditions, specified in terms of the CQ-MAC, WS1S2 and f , can the receiver reconstruct the desired

function losslessly?

The conventional approach to characterizing sufficient conditions for this problem relies on enabling the receiver reconstruct

the pair of classical source sequences. Since the receiver is only interested in recovering the bivariate function f , and not the

pair, this approach can be strictly sub-optimal. Can we exploit this and design a more efficient communication strategy, thereby

weakening the set of sufficient conditions? In this work, we present one such communication strategy for a general CQ-MAC

that is more efficient than the conventional approach. This strategy is based on asymptotically good random nested coset codes.

We analyze its performance and derive new sufficient conditions for a general problem instance and identify examples for

which the derived conditions are strictly weaker.

Our findings here are built on the ideas developed in the classical setting. Focusing on a source coding formulation, i.e. a

noiseless MAC, Körner and Marton [4] devised an ingenious coding technique that enabled the receiver recover the sum of

the sources without recovering either source. In [5], the linearity of the Körner-Marton (KM) source coding map was further

exploited to enable the receiver recover the sum of the sources using only the sum of the KM indices, not even requiring the

pair. Leveraging this observation and focusing on the subclass of additive MACs, specific MAC channel coding techniques are

devised in [5] that enabled the receiver recover the sum of two channel coding message indices.

The techniques of [4], [5] are instances of a broader framework of coding strategies. Decoding functions of sources or

channel inputs efficiently require codes endowed with algebraic closure properties. To emphasize, the conventional approach of

Fig. 1. CQ-MAC used for computing sum of classical sources.
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deriving inner bounds/achievable rate region by analyzing expected performance of IID random codes is incapable of yielding

performance limits - capacity or rate-distortion regions as the case may be- in network communication scenarios. To improve

upon this, it is necessary to analyze the expected performance of random codes endowed with algebraic closure properties. In

a series of works [6], an information theoretic study of the latter codes has been carried out yielding new inner bounds for

multiple network communication scenarios.

In this work, we embark on developing these ideas in the CQ setup. After having provided the problem statement in Sec. II,

we focus on a simplified CQ MAC and illustrate the core idea of our coding scheme. The latter relies on developing a nested

coset code (NCC) based communication scheme for a CQ PTP channel and analyzing its performance (Sec. IV). Leveraging

this building block, we design and analyze the performance of an NCC-based coding scheme for computing sum over a general

CQ-MAC (Sec. VI). Going further we generalize this idea for computing arbitrary functions over a general CQ-MAC.

II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement the notation in [7] with the following. For positive integer n, [n] =∆ {1, · · · , n}. For a Hilbert space H,

L(H),P(H) and D(H) denote the collection of linear, positive and density operators acting on H, respectively. The von

Neumann entropy of a density operator ρ ∈ D(H) is denoted by S(ρ). Given any ensemble {pi, ρi}i∈[1,m], the Holevo

information [8] is denoted as χ
(
{pi; ρi}

)
. A POVM acting on H is a collection λX =∆ {λx}x∈X of positive operators that form

a resolution of the identity:
∑

x∈X λx = I , where X is a finite set. We employ an underline notation to aggregate objects of

similar type. For example, s denotes (s1, s2), x
n denotes (xn

1 , x
n
2 ), S denotes the Cartesian product S1 × S2.

Consider a (generic) CQ-MAC (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) specified through (i) finite sets Xj : j ∈ [2], (ii)

Hilbert space HY , and (iii) a collection (ρx1,x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) of density operators. This CQ-MAC is

employed to enable the receiver reconstruct a bivariate function of the classical information streams observed by the senders.

Let S1,S2 be finite sets and (S1, S2) ∈ S1×S2 distributed with PMF WS1S2 models the pair of information sources observed

at the encoders. Specifically, sender j observes the sequence Sjt ∈ Sj : t ≥ 1 and the sequence (S1t, S2t) : t ≥ 1 are IID with

single-letter PMF WS1S2 . The receiver aims to recover the sequence f(S1t, S2t) : t ≥ 1 losslessly, where f : S1 ×S2 → R is

a specified function.

A CQ-MAC code cf = (n, e1, e2, λRn) of block-length n for recovering f consists of two encoders maps ej : Sn → Xn
j :

j ∈ [2], and a POVM λRn = {λrn ∈ P(H⊗n
Y ) : rn ∈ Rn}. The average error probability of the CQ-MAC code cf is

ξ(cf ) = 1−
∑

sn:f(sn)=rn

W
n
S1S2

(sn1 , s
n
2 ) tr

(

λrnρ
⊗n
c,sn

)

where ρ⊗n
c,sn =∆ ⊗n

i=1ρx1i(sn1 )x2i(sn2 )
, where ej(s

n
j ) = xj1(s

n
j ), xj2(s

n
j ), · · · , xjn(s

n
j ) for j ∈ [2].

A function f of the sources WS1S2 is said to be reconstructible over a CQ-MAC if for ǫ > 0, ∃ a sequence c
(n)
f =

(n, e
(n)
1 , e

(n)
2 , λRn) : n ≥ 1 such that limn→∞ ξ(c

(n)
f ) = 0.

In this article, we are concerned with the problem of characterizing sufficient conditions under which a function f of the

sources WS1S2 is reconstructible over a generic MAC (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1×X2). One of our findings - Proposition

2 - provides a characterization of sufficient conditions in terms of a computable function of the associated objects- density

operators that characterize the CQ-MAC, function f and the source distribution WS1S2 .

As we shall see, the specific problem of computing sum of sources will play an important role in our work. In this case,

S = S1 = S2 = Fq is a finite field with q elements and the receiver aims to reconstruct f(S1, S2) = S1 ⊕q S2 where ⊕q

denotes addition in Fq . A CQ-MAC code c⊕ = (n, e1, e2, λSn) of block-length n for recovering the sum consists of two

encoders maps ej : Sn → Xn
j : j ∈ [2], and a POVM λSn = {λsn ∈ P(H⊗n

Y ) : sn ∈ Sn}.

Restricting f to a sum, we say the sum of sources WS1S2 over field Fq is reconstructible over a CQ-MAC if S1 = S2 = Fq

and the function f(S1, S2) = S1⊕qS2 is reconstructible over the CQ-MAC. The problem of characterizing sufficient conditions

under which a sum of sources is reconstructible over a CQ-MAC plays an important role in this work. One of our findings

- Theorem 2 - provides a computable characterization of a set of sufficient conditions under which a sum of sources is

reconstructible over a CQ-MAC. As the reader will note, this encapsulates the central element of our characterization in

Proposition 2.

We also formalize the notions of a CQ-PTP and CQ-MAC codes for communicating uniform messages. A CQ-MAC code

cm = (n, I1, I2, e1, e2, λI) for a CQ-MAC (ρx ∈ D(HY ) : x ∈ X ) consists of (i) index sets Ij : j ∈ [2], (ii) encoder

maps ej : Ij → Xn
j : j ∈ [2] and a decoding POVM λI = {λm ∈ P(H⊗n

Y ) : m ∈ I1 × I2}. For m ∈ I1 × I2, we let

ρ⊗n
c,m =∆ ⊗n

i=1ρx1i,x2i where ej(mj) = xj1 · · ·xjn for j ∈ [2].
A CQ-PTP code cm = (n, I, e, λI) for a CQ-PTP (ρx ∈ D(HY ) : x ∈ X ) consists of (i) an index set I, (ii) and encoder

map e : I → Xn and a decoding POVM λI = {λm ∈ P(H⊗n
Y ) : m ∈ I}. For m ∈ I, we let ρ⊗n

c,m =∆ ⊗n
i=1ρxi

where

e(m) = x1 · · ·xn.
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III. THE CENTRAL IDEA

Let us consider the specific problem of reconstructing the sum of sources each taking values in S = Fq . We begin by

reviewing the KM coding scheme for the case of a noiseless classical MAC. It was shown in [4] the existence of linear code

with a parity matrix H ∈ Sl×n and decoder map d : F l
q → Sn such that

∑

sn∈Sn Wn
S(s

n)1{d(Hsn1 ⊕qHsn2 ) 6=sn1 ⊕qsn2 } ≤ ǫ, for

any ǫ > 0, and sufficiently large n, so long as
l log2 q

n > H(S1 ⊕q S2). This implies that a receiver equipped with the decoding

map d can recover the sum if it possesses the sum M l
1 ⊕q M

l
2 of the Körner-Marton indices M l

j = HSl
j : j ∈ [2].

We are therefore led to building an efficient CQ-MAC coding scheme that enables the receiver only reconstruct the sum of

the two message indices. Indeed, if the two senders send the KM indices to such a CQ-MAC channel code and the receiver

employs the above source decoder d on the decoded sum of the KM indices, it can recover the sum of sources. To illustrate

the design of the desired CQ-MAC channel code, let us consider a CQ-MAC (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 ×X2) wherein

X1 = X2 = Fq and the collection ρx : x ∈ X satisfies ρx1x2 = ρx̂1x̂2 whenever x1 ⊕q x2 = x̂1 ⊕q x̂2. Consider a CQ-PTP

(X = Fq, σu : u ∈ X ) where σu = ρx1⊕x2 for any (x1, x2) satisfying x1⊕qx2 = u. Suppose we are able to communicate over

this CQ-PTP via a linear CQ-PTP code C ⊆ Xn. Specifically, suppose there exists a generator matrix G ∈ X l×n and a POVM

{λml : ml ∈ F l
q} so that 1−q−l

∑

ml tr
(
λmlσ⊗n

mlG

)
≤ ǫ. for any ǫ > 0 and sufficiently large n, where σ⊗

mlG
= σx1 ⊗· · ·⊗σxn

where mlG = xn. We can then use this linear CQ-PTP code as our desired CQ-MAC channel code. Indeed, observe that,

suppose both senders employ this same linear CQ-PTP code, then sender j maps its KM index ml
j = Hsnj to the channel

codeword xn
j = ml

jG. Observe that the structure of the CQ-MAC implies ρ⊗n
xn
1 ,x

n
2
= σ⊗n

xn
1⊕xn

2
= σ⊗

(ml
1⊕qml

2)G
. If the receiver

employs the POVM {λml : ml ∈ F l
q} designed for the CQ-PTP, it ends up decoding the sum of the KM indices ml

1 ⊕q m
l
2,

and consequently, recover the sum of the sources.

A careful analysis of the above idea reveals that two MAC channel codes employed by the encoders do not ‘blow up’ when

added, is crucial to the efficiency of the above scheme. A linear code being algebraically closed enables this. However, the

codewords of a random linear code are uniformly distributed and cannot achieve the capacity of an arbitrary classical PTP

channel, let alone a CQ-PTP channel. We are therefore forced to enlarge a linear code to identify sufficiently many codewords

of the desired empirical distribution. We are thus led to a nested coset code (NCC) [9]. A NCC comprises of cosets of a coarse

linear code within a fine code. Within each coset, we can identify a codeword of the desired empirical distribution. We choose

as many cosets as the number of messages. Analogous to our illustration above where we chose a linear code that achieves the

capacity of the CQ-PTP (X = Fq, σu : u ∈ X ), our first step (Sec. IV) is to design a NCC with its POVM that can achieve

capacity of an arbitrary CQ PTP. Our second step is to endow both senders with this same NCC and analyze decoding the

sum of the messages. This gets us to our next challenge - How do we analyze decoding their message sum, for a general

CQ-MAC ρx : x ∈ X for which x1 ⊕q x2 = x̂1 ⊕q x̂2 does not necessarily imply ρx1x2 = ρx̂1x̂2 . In Sec. V, we address this

challenge, leverage our findings in Sec. IV and generalize the idea for a general CQ-MAC.

IV. NESTED COSET CODES ACHIEVE CAPACITY OF CQ-PTP

We begin by formalizing the structure of an NCC.

Definition 1. An (n, k, l, gI , gO/I , b
n) NCC built over a finite field V = Fq comprises of (i) generator matrices gI ∈ Vk×n,

gO/I ∈ V l×n (ii) a bias vector bn, an encoder map e : V l → Vk. We let vn(a,m) = agI ⊕q mgO/I ⊕q b
n : (a,m) ∈ Vk × V l

denote elements in the range space of the generator matrix [gtI gtO/I ]
t.

Definition 2. A CQ-PTP code (n, I = F l
q, e, λI) is an NCC CQ-PTP if there exists an (n, k, gI , gO/I , b

n) NCC such that

e(m) ∈ {un(a,m) : a ∈ Fk
q } for all m ∈ F l

q.

Theorem 1. Given a CQ-PTP (ρv ∈ D(HY ) : v ∈ Fq) and a PMF pV on Fq, ǫ > 0 there exists a CQ-PTP code

c = (n, I = F l
q, e, λI) such that (i) q−l

∑

m∈[I]
∑

m̂ 6=[I]\{m} tr
(
λm̂ρ⊗n

c,m

)
≤ ǫ, (ii) c = (n, I = F l

q, e, λI) is a NCC CQ-PTP,

(iii)
k log2 q

n > log2 q −H(V ) and
(k+l) log2 q

n < log2 q −H(V ) + χ({pv, ρv}) for all n sufficiently large.

Proof. In order to achieve a rate R = χ({pv, ρv}), the standard approach is to pick 2nR codewords uniformly and independently

from T n
δ (pV ). However, the resulting code is not algebraically closed. On the other hand, if we pick a random generator matrix

G ∈ F l×n
q , with l = nR

log2 q , whose entries from Fq are IID uniform, then its range space - the resulting collection of 2nR

codewords - are uniformly distributed and pairwise independent but not pV −typical.

To satisfy the dual requirements of algebraically closure and pV −typicality, we observe the following. If a collection of

qk codewords are uniformly distributed in Fn
q and pairwise independent, as we found the range space of G to be, then the

expected number of codewords that are pV −typical is qk

qn |T n
δ (pV )| = exp{n log2 q

(
k
n −

[

1− H(V )
log2 q

])

}. This indicates that if

we pick a generator matrix GI ∈ Fk×n with entries uniformly distributed and IID, such that k
n > 1 − H(V )

log2 q , then its range

space will contain codewords that are pV -typical. The latter codewords can be used for communication.

Each coset of GI ∈ Fk×n where k
n > 1 − H(V )

log2 q will play an analogous role as a single codeword in a conventional IID

random code. Just as we pick 2nR of the latter, we consider 2nR cosets of GI within a larger linear code with generator
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matrix G =

[
GI

GO/I

]

∈ F (k+l)×n
q with l = nR

log2 q . The messages index the 2nR cosets of GI . A predetermined element in

each coset that is pV −typical is the assigned codeword for the message and chosen for communication.1 A formal proof we

provide below has two parts - error probability analysis for a generic fixed code followed by an upper bound on the latter via

code randomization.

Upper bound on Error Prob. for a generic fixed code : Consider a generic NCC (n, k, l, gI , gO/I , b
n) with its range space

vn(a,m) = agI ⊕q mgO/I ⊕q b
n : (a,m) ∈ Vk × V l. We shall use this and define a CQ-PTP code (n, I = F l

q, e, λI) that is

an NCC CQ-PTP. Towards that end, let θ(m) =∆
∑

a∈Vk 1{vn(a,m)∈Tn
δ
(pV )} and

s(m) =∆

{

{a ∈ VK : vn(a,m) ∈ T n
δ (pV )} if θ(m) ≥ 1

{0k} if θ(m) = 0,

for each m ∈ V l. For m ∈ V l, a predetermined element am ∈ s(m) is chosen. On receiving message m ∈ V l, the encoder

prepares the quantum state ρ⊗n
m =∆ ρ⊗n

vn(am,m) =∆ ⊗n
i=1ρvi(am,m) and is communicated. The encoding map e is therefore

determined via the collection (am∈ s(m) :m ∈V l).
Towards specifying the decoding POVM let ρv =

∑

y∈Y pY |V (y|v)
∣
∣ey|v

〉 〈
ey|v

∣
∣ be a spectral decomposition for v ∈ V .

We let pV Y =∆ pV pY |V . For any vn ∈ Vn, let πvn be the conditional typical projector as in [7, Defn. 15.2.4] with respect

to the ensemble {ρv : v ∈ V} and distribution pV . Similarly, let πρ be the (unconditional) typical projector of the state

ρ =∆
∑

v∈V pV (v)ρv as defined in [7, Defn. 15.1.3]. For (a,m) ∈ Vk ×V l, we let πa,m =∆ πvn(a,m)1{vn(a,m)∈Tn
δ
(pV )}. We let

λI =∆ {
∑

a∈Vk λa,m : m ∈ I = V l, λ−1}, where

λa,m=∆
(∑

â∈Vk

∑

m̂∈Vl

γâ,m̂

)−1/2

γa,m

(∑

ã∈Vk

∑

m̃∈Vl

γã,m̃

)−1/2

, (1)

λ−1 =∆ I −
∑

m∈Vl

∑

a∈Vk λa,m and γa,m =∆ πρπa,mπρ. Since 0 ≤ γa,m ≤ I , we have 0 ≤ λa,m ≤ I . The latter lower

bound implies λI ⊆ P(H). The same lower bound coupled with the definition of the generalized inverse implies I ≥
∑

a∈Vk

∑

m∈Vl λa,m ≥ 0. We thus have 0 ≤ λ−1 ≤ I . It can now be verified that λI is a POVM. In essence, the elements of

this POVM is identical to the standard POVMs except the POVM elements corresponding to a coset have been added together.

Indeed, since each coset corresponds to one message, there is no need to disambiguate within the coset.

We have thus associated an NCC (n, k, l, gI , gO/I , b
n) and a collection (am ∈ s(m) : m ∈ V l) with a CQ-PTP code. The

error probability of this code is

q−l
∑

m∈I
tr((I −

∑

a∈Vk

λa,m)ρ⊗n
m ) ≤ q−l

∑

m∈I
tr((I − λam,m)ρ⊗n

m ). (2)

Denoting event E = {θ(m) < 1}, its complement E c and the associated indicator functions 1E ,1E c respectively, a generic

term in the RHS of the above sum satisfies

tr((I − λam,m)ρ⊗n
m )1E c + tr((I − λam,m)ρ⊗n

m )1E ≤ 1E c +

3∑

i=1

T2i,

where

T21 = 2 tr
(
(I − γam,m)ρ⊗n

m

)
1E , T22 = 4

∑

â 6=am

tr
(
γâ,mρ⊗n

m

)
1E , and T23 = 4

∑

m̂ 6=m

∑

ã

tr
(
γã,m̂ρ⊗n

m

)
1E ,

where we have used Hayashi-Nagaoka inequality [10].

Distribution of the Random Code : The objects gI ∈ Vk×n, gO/I ∈ V l×n, bn ∈ Vn and the collection (am ∈ s(m) : m ∈ V l)
specify an NCC CQ-PTP code unambiguously. A distribution for a random code is therefore specified through a distribution

of these objects. We let upper case letters denote the associated random objects, and obtain

P
(

GI = gI , GO/I = gO/I

Bn = bn, Am = am : m ∈ S(m)

)

= q−(k+l+1)n
∏

m∈Vl

1

Θ(m)
,

and analyze the expectation of E and the terms T2i; i ∈ [1, 3] in regards to the above random code. We begin by EP [E ] =
P(
∑

a∈Vk 1{V n(a,m)∈Tn
δ
(pV )} < 1). For this, we provide the following proposition.

Proposition 1. There exist ǫT1(δ), δT1 (δ), such that for all sufficiently small δ and sufficiently large n, we have EP [E ] ≤ ǫT1(δ),
if k

n ≥ log q −H(V ) + δS , where ǫS , δS ց 0 as δ ց 0.

Proof. The proof follows from Appendix B of [11] with the identification of S = φ.

1The reader is encouraged to relate to the bounds stated in theorem statement and induced bounds on the rate of communication
l log2 q

n
.
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We now consider T21. Deriving an upper bound on T21 is by deriving a lower bound tr(λam,mρ⊗n
m ). This follows by an

argument that is colloquially referred to as ‘pinching’. Lemma 2 in Appendix A proves the existence of λ > 0 such that

EP{T21} ≤ exp{−nλδ2} for sufficiently large n. We now analyze EP [T22]. Denoting the event

J =∆
{

Θ(m) ≥ 1,V n(â, m̂) = x̂n

Am = d, V n(d,m) = xn

}

⊆K =∆
{

V n(â, m̂) = x̂n

V n(d,m) = xn

}

(3)

we perform the following steps.

EP [T22] =
∑

â∈Vk

EP [tr(Γâ,mρ⊗n
m )1{θ(m)≥1}1{â 6=Am}] =

∑

d∈Vk

∑

â∈Vk

∑

xn∈Tn
δ
(pV )

∑

x̂n∈Vn

E
[
tr(Γâ,mρ⊗n

m )1â 6=d1J
]

=
∑

d∈Vk

∑

â 6=d

∑

xn∈Tn
δ
(pV )

∑

x̂n∈Vn

E
[
tr(Γâ,mρ⊗n

m )1J
]

where the restriction of the summation xn to T n
δ (pV ) is valid since S(m) > 1 forces the choice Am ∈ S(m) such that

V n(Am,m) ∈ T n
δ (pV ). Going further, we have

EP [T22] =
∑

d,â∈Vk

â 6=d

∑

xn∈Tn
δ
(pV )

∑

x̂n∈Tn
δ
(pV )

E
[
tr(πρπx̂nπρρ

⊗n
xn )1J

]

=
∑

d,â:â 6=d

∑

xn∈Tn
δ
(pV )

∑

x̂n∈Tn
δ
(pV )

tr(πρπx̂nπρρ
⊗n
xn )P(J )

(a)

≤
∑

d,â:â 6=d

∑

x̂n∈Tn
δ
(pV )

tr(πx̂nπρ)P(J )2−n[S(ρ)−H(pV )+ǫV ]

(b)

≤
∑

d,â:â6=d

∑

x̂n∈Tn
δ
(pV )

tr(πx̂nπρ)P(K)2−n[S(ρ)−H(pV )+ǫV ]

(c)
=

∑

d,â:â 6=d

∑

x̂n∈Tn
δ
(pV )

tr(πx̂nπρ)
1

q2n
2−n[S(ρ)−H(pV )+ǫV ]

(d)

≤ 2−n[χ({pV ;ρv})+ǫV −2H(pV )− 2k
n

log q+2 log q], (4)

where the restriction of the summation x̂n to T n
δ (pV ) follows from the fact that πx̂n is the zero projector if x̂n /∈ T n

δ (pV ),
(a) follows from the operator inequality

∑

xn∈Tδ(pV ) πρρxnπρ ≤ 2n(H(pV )+ǫV (δ))πρρ
⊗nπρ ≤ 2n(H(pV )+ǫV (δ)−S(ρ))πρ found

in [12, Eqn. 20.34, 15.20], (b) follows from Def. 3, (c) follows from pairwise independence of the distinct codewords, and (d)

follows from πρ ≤ I and [12, Eqn. 15.77] and ǫV (δ) ց 0 as δ ց 0. We now derive an upper bound on EP [T23]. We have

EP [T23]=
∑

d,â∈Vk

∑

m̂ 6=m

∑

xn,x̂n∈
Tn
δ (pV )

E

[

tr(πρΠâ,m̂πρρ
⊗n
Am,m)1J

]

=
∑

d,â∈Vk

∑

m̂ 6=m

∑

xn,x̂n∈Tn
δ (pV )

tr(πx̂nπρρ
⊗n
xn πρ)P(J )

≤
∑

d,â∈Vk

∑

m̂ 6=m

∑

x̂n∈Tn
δ (pV )

tr(πx̂nπρ)P(J )2−n[S(ρ)−H(pV )+ǫV ]

≤
∑

d,â∈Vk

∑

m̂ 6=m

∑

x̂n∈Tn
δ (pV )

tr(πx̂nπρ)P(K)2−n[S(ρ)−H(pV )+ǫV ]

=
∑

d,â∈Vk

∑

m̂ 6=m

∑

x̂n∈Tn
δ (pV )

tr(πx̂nπρ)
1

q2n
2−n[S(ρ)−H(pV )+ǫV ]

≤ 2−n[χ({pV ;ρv})+2 log2 q−2H(pV )− 2k+l
n

log2 q+ǫV ],

where the inequalities above uses similar reasoning as in (4).

We have therefore obtained three bounds k
n > 1− H(pV )

log2 q , 2k
n < 2 + χ({pV ;ρv})−2H(pV )

log2 q , 2k+l
n < 2 + χ({pV ;ρv})−2H(pV )

log2 q . A

rate of χ({pV ; ρv})− ǫ is achievable by choosing k
n = 1− H(pV )

log2 q + ǫ
2 , l

n =
χ({pV ;ρv})−ǫ log2

√
q

log2 q thus completing the proof.

V. DECODING SUM OVER CQ-MAC

Throughout this section, the source alphabets S =∆ S1 = S2 = Fq is a finite field with q elements and the receiver intends

to reconstruct the sum f(S1, S2) = S1 ⊕q S2 of the sources. As discussed in Sec. III, we propose a ‘separation based’ coding
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scheme consisting of a Körner Marton (KM) source code followed by a CQ MAC channel code designed to communicate the

sum of the message indices input at the channel code encoders. The focus of this section is to design, analyze and thereby

characterize performance of the latter CQ MAC channel code tasked to communicate the sum of messages. Towards that end,

we begin with a definition.

Definition 3. Let V = Fq be a finite field and (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 × X2) be a CQ-MAC. A CQ-MAC code

cm⊕ = (n, I1 = I2 = F l
q, e1, e2, λ[ql]) of block-length n for recovering Fq−sum of messages consists of two encoders maps

ej : V l → Xn
j : j ∈ [2], and a POVM λql = {λm ∈ P(H⊗n

Y ) : m ∈ V l}.

An Fq−message-sum rate R > 0 is achievable if given any sequence l(n) ∈ N : n ∈ N such that lim supn→∞
l(n) log q

n < R,

any sequence p
(n)
M1M2

of PMFs on F l(n)
q ×F l(n)

q , there exists a CQ-MAC code c
(n)
m⊕ = (n, I = I1 = I2 = F l(n)

q , e
(n)
1 , e

(n)
2 , λI)

of block-length n for recovering F l(n)
q −sum of messages such that for every δ > 0, have

lim
n→∞

ξ(c
(n)
m⊕) = lim

n→∞
1−

∑

(m1,m2)
∈I1×I2

pM1pM2(m1,m2) tr
(

λm1⊕m2ρ
⊗n
c,m

)

= 0

where ρ⊗n
c,m =∆ ⊗n

i=1ρx1i(m1)x2i(m2), where ej(mj) = xj1(mj), xj2(mj), · · · , xjn(mj) for j ∈ [2]. The closure of the set of all

achievable Fq−message-sum rates is the message-sum capacity of the CQ-MAC.

From our discussion in Sec. III and the above definition, a road map for characterizing sufficient conditions for computing

the sum over a CQ-MAC must be evident. Referring back to Sec. III, we note that is joint PMF WS1S2 of the sources is

such that H(S1 ⊕q S2) is dominated by the message-sum capacity of the CQ-MAC, then the corresponding sum of sources

can be reconstructed over the CQ-MAC. Therefore, if R > 0 is an achievable message-sum rate over a CQ-MAC, then

H(S1 ⊕q S2) < R is a sufficient condition. We now state the main contribution of this section - a lower bound on the

message-sum capacity of a CQ-MAC. Following its proof, we leverage the above argument in Thm. 2 to characterize sufficient

conditions for reconstructing sum of sources over an arbitrary CQ-MAC.

Definition 4. Given a CQ-MAC ρX =∆ (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 ×X2) and a prime power q, let

P(ρX , q) =∆







(pV1V2U , ρu : u ∈ V) :

pV1X1pV2X2 is a PMF on V × X1 × V × X2,V = Fq,

pV1V2U (v1, v2, u) =
∑

x1,x2∈X
pV1X1(v1, x1)pV2X2(v2, x2)1{u=v1⊕qv2}

ρu =∆
∑

v1∈Fq

∑

v2∈Fq

pV1V2|U (v1, v2|u)ρv1v21{v1⊕qv2=u},

ρv1v2 =∆
∑

x1∈X1,x2∈X2

pX1|V1
(x1|v1)pX2|V2

(x2|v2)ρx1x2







For (pV1V2U , ρu : u ∈ Fq) ∈ P(ρX , q), let

R(pV1V2U , ρV) =
∆ min{H(V1), H(V2)} −H(U) + χ({pU ; ρu}) and R(ρX , q) =∆ sup

pV1V2U ,ρV∈P(ρX ,q)

R(pV1V2U , ρV). (5)

Lemma 1. Fq−message-sum rate R(ρX , q) is achievable over a CQ-MAC ρX = (ρx1x2 ∈ D(HY ) : (x1, x2) ∈ X1 ×X2).

Proof. Let (pV1V2U , ρu : u ∈ V) ∈ P(ρX , q) with associated collection (ρv1v2 : (v1, v2) ∈ V1 × V2) of density operators and

PMF pV1X1pV2X2 on V1 ×X1 × V2 ×X2 where V1 = V2 = Fq .

We now describe the coding scheme in terms of a specific code. It is instructive to revisit Sec. III, wherein we specified the

import of both encoders employing cosets of the the same linear code. In order to choose codewords of a desired empirical

distribution pVj
, we employ NCCs (as was done for the same reason in Sec. IV). Following the same notation as in proof of

Thm. 1, we now specify the random coding scheme.

Let GI ∈ Fk×n
q , GO/I ∈ F l×n

q , Bj ∈ Fn
q : j ∈ [2] be mutually independent and uniformly distributed on their respective

range spaces. Through out this proof, we let ⊕ = ⊕q . Let V n
j (a,mj) =

∆ aGI ⊕mjGO/I ⊕ Bn
j : (a,mj) ∈ Fk+l

q for j ∈ [2]

and Un(a,m) =∆ aGI ⊕mGO/I ⊕Bn
1 ⊕Bn

2 : (a,m) ∈ Fk+l
q . For j ∈ [2], let

Sj(mj) =
∆







{a ∈ Vk : V n
j (a,mj) ∈ T n

δ (pVj
)} if

∑

a∈Vk

1{V n
j (a,mj)∈Tn

δ
(pVj

)} ≥ 1

{0k} otherwise, i.e
∑

a∈Vk

1{V n
j (a,mj)∈Tn

δ
(pVj

)} = 0,

for each mj ∈ V l. For mj ∈ V l, a predetermined element Aj,mj
∈ Sj(mj) is chosen. We let Θj(mj) =∆ |Sj(mj)|. For

mj ∈ V l, a predetermined Xn
j (mj) ∈ Xn

j is chosen. As we shall see later, the choice of Xn
j (mj) is based on V n

j (Aj,mj
,mj).

We are thus led to the encoding rule.
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Encoding Rule: On receiving message (m1,m2) ∈ V l × V l, the quantum state ρm1m2 =∆ ρXn
1 (m1)Xn

2 (m2) =∆

⊗n
t=1ρX1t(m1)X2t(m2) is (distributively) prepared.

Distribution of the Random Code: The distribution of the random code is completely specified through the distribution P(·)
of GI , GO/I , B

n
1 , B

n
2 , (A1,m1 : m1 ∈ V l), (A2,m2 : m2 ∈ V l) and (Xn

j (mj) : mj ∈ V l). We let

P





(A1,m1 = a1,m1 : m1 ∈ V l), (A2,m2 = a2,m2 : m2 ∈ V l),
Bn

j = bnj : j ∈ [2], (X1(m1) = xn
1 (m1) : m1 ∈ V l),

GI = gI , GO/I = gO/I , (X2(m2) = xn
2 (m2) : m2 ∈ V l)



 =

[
∏

m1

1{a1,m1∈s1(m1)}

Θ(m1)
pnX1|V1

(xn
1 (m1)|vn1 (a1,m1 ,m1))

]

×

[
∏

m2

1{a2,m2∈s2(m2)}

Θ(m2)
pnX2|V2

(xn
2 (m2)|vn2 (a2,m2 ,m2)

]

× 1

qkn+ln+2n
.

Towards specifying a decoding POVM, we state the associated density operators modeling the quantum systems, their spectral

decompositions and projectors. Let

ρ =∆
∑

y∈Y
sY (y) |hy〉 〈hy| , ρx1x2 =∆

∑

y∈Y
pY |X1X2

(y|x1, x2)
∣
∣ey|x1x2

〉 〈
ey|x1x2

∣
∣ : (x1, x2) ∈ X

ρv1v2 =∆
∑

y∈Y
qY |V1V2

(y|v1, v2)
∣
∣fy|v1v2

〉 〈
fy|v1v2

∣
∣ : (v1, v2) ∈ V , ρu =∆

∑

y∈Y
rY |U (y|u)

∣
∣gy|u

〉 〈
gy|u

∣
∣ : u ∈ U ,

Decoding POVM: Unlike a generic CQ-MAC decoder [3], which aims at decoding both the classical messages from the

quantum state received, the decoder here is designed to decode only the sum of messages transmitted. For this, the decoder

employs the nested coset code (n, k, l, GI , GO/I , B
n), where Bn = Bn

1 ⊕Bn
2 . We define Un(a,m) =∆ aGI +mGO/I +Bn to

represent a generic codeword. We let Πa,m =∆ πUn(a,m)1{Un(a,m)∈T (n)
δ

(pU )}, where pU is as defined in the theorem statement.

The decoder is provided with a sub-POVM ΛI =∆ {Λm =∆
∑

a∈Fk
q
Λa,m : m ∈ F l

q} where

Λa,m =∆
( ∑

â∈Fk
q

∑

m̂∈F l
q

Γâ,m̂

)−1/2

Γa,m

( ∑

â∈Fk
q

∑

m̂∈F l
q

Γâ,m̂

)−1/2

,

Λ−1 =∆ I −∑a∈Fk
q

∑

m∈F l
q
Λa,m and Γa,m =∆ πρΠ(a,m)πρ. We note that

πρ =∆
∑

yn∈Tn
δ
(sY )

n⊗

t=1

|hyt
〉 〈hyt

| and πun =∆
∑

yn:(un,yn)∈Tn
δ
(pUrY |U )

n⊗

t=1

∣
∣gyt|ut

〉 〈
gyt|ut

∣
∣ ,

denote the typical and conditional typical projectors (as stated in Definition 15.2.4 [7]) with respect to ρ =∆
∑

u∈Fq
pU (u)ρu

and (ρu : u ∈ U), respectively.

Error Analysis: We derive upper bounds on EP{ξ(cm⊕)}. Our derivation will be similar to those adopted in proof of Thm. 1.

Let us define event

E =∆











V n
1 (A1.m1 ,m1), X

n
1 (m1),

V n
2 (A2.m2 ,m2), X

n
2 (m2),

V n
1 (A1.m1 ,m1)⊕ V n

2 (A2.m2 ,m2)



 ∈ T8δ(pV1X1V2X2U )






. (6)

We have

EP

{
∑

m1

∑

m2

pM1M2(m1,m2) tr([I − Λm1⊕m2 ])ρ
⊗n
m1m2

}

≤ EP

{
∑

m1

∑

m2

pM1M2(m1,m2) tr([I − Λm1⊕m2 ])ρ
⊗n
m1m2

1E c

}

︸ ︷︷ ︸

T1

+EP

{
∑

m1

∑

m2

pM1M2(m1,m2) tr([I − Λm1⊕m2 ])ρ
⊗n
m1m2

1E

}

︸ ︷︷ ︸

T2

.

In regards to T1, the sub-POVM nature of ΛI and the fact that ρ⊗n
m1,m2

is a density operator enables us conclude T1 ≤ EP{1E c}.

Furthermore, observe that Xj(mj) is distributed with PMF pnXj |Vj
conditionally on V n

j (Aj,mj ,mj
). (See (6). In addition,

pV1X1V2X2 = pV1X1pV2X2 implies that, standard conditional typicality arguments yields

EP{1E c} ≤ EP

{
∑

m1

pM1(m1)1{Θ1(m1)=0} +
∑

m2

pM2(m2)1{Θ1(m2)=0}

}

+ exp{−nδ}, (7)
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where δ is chosen appropriately. In the above inequality, the second term on the RHS is an upper bound

on the probability of the event (Xn
1 (m1, X

n
2 (m2)) /∈ T n

δ (pV1X1V2X2U |vn1 , vn2 , vn1 ⊕ vn2 ) conditioned on

(V n
1 (A1.m1 ,m1), V

n
2 (A2.m2 ,m2), V

n
1 (A1.m1 ,m1) ⊕ V n

2 (A2.m2 ,m2)) = (vn1 , v
n
2 , v

n
1 ⊕ vn2 ) ∈ T n

δ (pV1V2U ) and the first

term provides an upper bound on the complement of the latter event. An upper bound on T1 therefore reduces to deriving an

upper bound on the first term on the RHS of (7). This task - deriving an upper bound on the first term on the RHS of (7) -

being a classical analysis, has been detailed in several earlier works [13]–[16] and in particular [6, Proof of Thm. 2.5] or [13,

Appendix B]. Following this, we have

EP







∑

mj

pMj
(mj)1{Θj(mj)=0}






≤ exp

{

−n

(
k log q

n
− [log q −H(Vj)]

)}

(8)

thereby ensurnig T1 ≤ 2 exp{−nδ} if

k log q

n
≥ max {log q −H(V1), log q −H(V2)} = log q −min{H(V1), H(V2)}. (9)

We now analyze T2. Applying the Hayashi-Nagaoka inequality, we haveT2

(a)

≤ T21 + T22 + T23, where

T21 =∆ EP

{

2
∑

m1

∑

m2

pM1M2(m1,m2) tr
(

[I − ΓA⊕
m,m⊕ ]ρ

⊗n
m1m2

]
)

1E

}

(10)

T22 =∆ EP






4
∑

m1

∑

m2

∑

â 6=A⊕
m

pM1M2(m1,m2) tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1E







T23 =∆ EP






4
∑

m1

∑

m2

∑

â 6=A⊕
m

∑

m̂ 6=m⊕

pM1M2(m1,m2) tr
(
Γâ,m̂ρ⊗n

m1m2

)
1E






,

and A⊕
m =∆ A1,m1 ⊕A2,m2 ∈ Vk,m⊕ =∆ m1 ⊕m2 ∈ V l. We note that (10(a)) follows from an argument analogous to the one

in (2). We now analyze T21, T22 and T23. We begin with T21. Deriving an upper bound on T21 is by deriving a lower bound

EP
{

tr
(

ΓA⊕
m,m⊕ρ⊗n

m1m2
]
)

1E

}

. This follows by an argument that is colloquially referred to as ‘pinching’. Refer to Lemma

2 in Appendix A. Set A = V = Fq, B = X , pAB = pV1⊕V2,X and the density operators correspondingly. With this choice,

Lemma 2 proves the existence of λ > 0 such that EP
{

tr
(

ΓA⊕
m,m⊕ρ⊗n

m1m2
]
)

1E

}

≥ 1− exp{−nλδ2} for sufficiently large n.

We now analyze T22. Denoting the event

J =∆
{(

V n
1 (A1.m1 ,m1), X

n
1 (m1), V

n
2 (A2.m2 ,m2), X

n
2 (m2)

)
= (vn1 , x

n
1 , v2, x2) ∈ Tδ4(pV1X1V2X2)

}
, (11)

abbreviating vn⊕ = vn1 ⊕ vn2 , a⊕ = a1 ⊕ a2, we have

EP [T22] = EP







4
∑

m

∑

a1,a2

∑

â 6=a⊕

∑

(vn,x)∈
Tδ4

(pV X)

pM (m) tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1J 1{Aj,mj

=aj :j∈[2]}







(12)

= 4
∑

m

∑

a1,a2

∑

â 6=a⊕

∑

(vn,x)∈
Tδ4

(pV X)

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
xn
1 x

n
2
πρ

)

EP







1J1





Aj,mj
= aj : j ∈ [2]

Un(â,m1 ⊕m2) = v̂n













(13)

≤ 4
∑

m

∑

a1,a2

∑

â 6=a⊕

∑

(vn)∈
Tδ4

(pV )

∑

xn∈Xn

∑

v̂n∈Vn

pM (m)





2∏

j=1

pXj |Vj
(xn

j |vnj )



 tr
(

πv̂nπρρ
⊗n
xn
1 x

n
2
πρ

)

P





V n
j (aj ,mj) = vnj

Aj,mj
= aj : j ∈ [2]

Un(â,m1 ⊕m2) = v̂n





(14)
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= 4
∑

m

∑

a1,a2

∑

â 6=a⊕

∑

(vn)∈
Tδ4

(pV )

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
vn
1 vn

2
πρ

)

P
(

V n
1 (a1,m1) = vn1 , Aj,mj

= aj : j ∈ [2]
V n
2 (a2,m2) = vn2 , U

n(â,m1 ⊕m2) = v̂n

)

(15)

≤ 4
∑

m

∑

a1,a2

∑

â 6=a⊕

∑

(vn)∈
Tδ4

(pV )

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
vn
1 vn

2
πρ

)

P
(

V n
1 (a1,m1) = vn1 ,

V n
2 (a2,m2) = vn2 , U

n(â,m1 ⊕m2) = v̂n

)

(16)

≤ 4
∑

m

∑

a1,a2

∑

â 6=a⊕

∑

(vn)∈
Tδ4

(pV )

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
vn
1 vn

2
πρ

) 1

q3n

≤ 4
∑

m,
a1,a2

∑

â

∑

v̂n∈Vn

pM (m) tr(πv̂nπρ)
2−n(S(ρ)−H(V1,V2)−4δ)

q3n
(17)

= 4
∑

m,
a1,a2

∑

â

∑

v̂n∈Tδ(V1⊕V2)

pM (m) tr(πv̂nπρ)
2−n(S(ρ)−H(V1,V2)−4δ)

q3n
(18)

≤ 4
∑

m,
a1,a2

∑

â

pM (m)

exp

{

−n

[

S(ρ)−H(V1, V2)− 4δ −
∑

u

pV1⊕V2(u)S(ρu)−H(V1 ⊕ V2)

]}

q3n
(19)

≤ 4 exp

{

−n

{[

log q −
(
∑

u

pV1⊕V2(u)S(ρu) +H(V1 ⊕ V2)− S(ρ)

)]

+ [2 log q −H(V1, V2)]−
3k log q

n

}}

(20)

where (i) (13) follows from a summing over possible choices for Un(â,m1⊕m2), (ii) (14) follows from evaluating expectation,

enlarging the summation range of xn
1 , x

n
2 and substituting the distribution of the random code, (iii) (15) follows from the defini-

tions of ρv1v2 : v ∈ V , (iv) (16) follows as an upper bound since the event in question has been enlarged, (v) (17) follows from

[15, Lemma N.0.21c] and the operator inequality
∑

xn∈Tδ(pV ) πρρxnπρ ≤ 2n(H(pV )+ǫV (δ))πρρ
⊗nπρ ≤ 2n(H(pV )+ǫV (δ)−S(ρ))πρ

found in [12, Eqn. 20.34, 15.20], (vi) (18) follows from the definition of πv̂n which is the 0 projector if v̂n is not typical wrt

pV1⊕V2 , (vii) (19) follows from πρ ≤ I and [12, Eqn. 15.77] and, (viii) (20) collating all the bounds. We now analyze T23.

EP [T23] = EP







4
∑

m∈V2l

m̂ 6=m1⊕m2

∑

a∈V2k

â∈Vk

∑

(vn,x)∈
Tδ4

(pV X)

pM (m) tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1J1{Aj,mj

=aj :j∈[2]}







(21)

= 4
∑

m∈V2l

m̂ 6=m1⊕m2

∑

a∈V2k

â∈Vk

∑

(vn,x)∈
Tδ4

(pV X)

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
xn
1 x

n
2
πρ

)

EP







1J1





Aj,mj
= aj : j ∈ [2]

Un(â, m̂) = v̂n













(22)

≤ 4
∑

m∈V2l

m̂ 6=m1⊕m2

∑

a∈V2k

â∈Vk

∑

(vn)∈
Tδ4

(pV )

∑

xn∈Xn

∑

v̂n∈Vn

pM (m)





2∏

j=1

pXj |Vj
(xn

j |vnj )



 tr
(

πv̂nπρρ
⊗n
xn
1 x

n
2
πρ

)

P





V n
j (aj ,mj) = vnj

Aj,mj
= aj : j ∈ [2]

Un(â, m̂) = v̂n



 (23)

= 4
∑

m∈V2l

m̂ 6=m1⊕m2

∑

a∈V2k

â∈Vk

∑

(vn)∈
Tδ4

(pV )

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
vn
1 vn

2
πρ

)

P
(
V n
1 (a1,m1) = vn1 , Aj,mj

= aj : j ∈ [2]
V n
2 (a2,m2) = vn2 , U

n(â, m̂) = v̂n

)

(24)

≤ 4
∑

m∈V2l

m̂ 6=m1⊕m2

∑

a∈V2k

â∈Vk

∑

(vn)∈
Tδ4

(pV )

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
vn
1 vn

2
πρ

)

P
(

V n
1 (a1,m1) = vn1 ,

V n
2 (a2,m2) = vn2 , U

n(â, m̂) = v̂n

)

(25)

≤ 4
∑

m∈V2l

m̂ 6=m1⊕m2

∑

a∈V2k

â∈Vk

∑

(vn)∈
Tδ4

(pV )

∑

v̂n∈Vn

pM (m) tr
(

πv̂nπρρ
⊗n
vn
1 vn

2
πρ

) 1

q3n
≤ 4

∑

m∈V2l

m̂ 6=m1⊕m2

∑

a∈V2k

â∈Vk

∑

v̂n∈Vn

pM (m) tr(πv̂nπρ)
2−n(S(ρ)−H(V1,V2)−4δ)

q3n
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= 4
∑

m,
a1,a2

∑

â

∑

v̂n∈Tδ(V1⊕V2)

pM (m) tr(πv̂nπρ)
2−n(S(ρ)−H(V1,V2)−4δ)

q3n
(26)

≤ 4
∑

m,
a1,a2

∑

â

pM (m)

exp

{

−n

[

S(ρ)−H(V1, V2)− 4δ −
∑

u

pV1⊕V2(u)S(ρu)−H(V1 ⊕ V2)

]}

q3n
(27)

≤ 4 exp

{

−n

{[

log q −
(
∑

u

pV1⊕V2(u)S(ρu) +H(V1 ⊕ V2)− S(ρ)

)]

+ [2 log q −H(V1, V2)]−
(3k + l) log q

n

}}

.(28)

The above sequence of steps is analogous to those used to derive an upper bound on T22 and follow from the same set of

arguments as provided for the bounds (13) - (20). This completes the proof of the claimed statement.

We conclude this section with our main result in regards to decoding sum of sources. The proof of the following theorem

follows from the discussion provided just prior to Definition 4. We therefore omit a detailed proof but just state the encoding

and decoding techniques for completeness.

Theorem 2. The sum of a pair of sources distributed with PMF WS1S2 can be reconstructed on a CQ-MAC ρX = (ρx1x2 ∈
D(HY ) : (x1, x2) ∈ X1 × X2) if H(S1 ⊕q S2) < R(ρX , q).

Proof. We begin with an outline of our coding scheme. As stated in Sec. III, we propose a ‘separation based approach’ with

two modules - source and channel. The source coding module employs a (distributed) Körner Marton (KM) source code.

Specifically, [4] guarantees the existence of a parity check matrix h ∈ F l×n
q = Sl×n and a decoder map d : F l

q → Sn such

that
∑

sn∈Sn Wn
S(s

n)1{d(hsn1 ⊕qhsn2 ) 6=sn1⊕qsn2 } ≤ ǫ, for any ǫ > 0, and sufficiently large n, so long as
l log2 q

n > H(S1 ⊕q S2).

Both encoders of this KM source coding module employ one such parity check matrix h ∈ F l×n
q . The decoder of the

KM source code employs the corresponding decoder map d. KM Source encoder j outputs M l
j = h(Sn

j ). If the KM source

decoder is provided M l
1 ⊕q M

l
2, then it can reconstruct Sn

1 ⊕q S
n
2 with reliability at least 1 − ǫ. The task of the CQ-MAC

channel coding module is to make M l
1 ⊕q M

l
2 available to the KM source decoder. We are thus confronted with the problem

of designing a CQ-MAC channel coding module that can reliably communicate the sum of the messages indices that are input

at the encoders.

Specifically, this channel coding module must communicate M l
1 ⊕q M

l
2 ∈ F l

q within n channel uses. If we can prove that

there exists a MAC channel coding module for sufficiently large n so long as

l log2 q

n
< min{H(V1),H(V2)}−H(U)+χ({pU ; ρu})

for any choice of auxiliary

The source module employs the KM code. The corresponding KM decoder at the receiver only requires the sum of the

message indices output by the KM code. The CQ-MAC channel coding module needs to communicate only the sum of the

two message indices input by the two encoders. Given ǫc, we seek to identify a CQ-MAC code c = (n, e1, e2,M) such that

ξ(c) ≤ ǫc.

Encoding: The process of mapping source sequences to the CQ-MAC channel inputs is divided into two stages. In the first

stage, a distributed source code proposed in [4] is employed which maps the n−length source sequences to message indices

taking values over F l
q. For the second stage we develop functions mapping these message indices to channel input codewords.

We begin by defining the first stage of encoding which relies on Lemma 1 of [9]. This lemma guarantees the existence of a

parity check matrix h ∈ F l(n)×n
q and a map d : F l

q(n) → Fn
q , for a sufficiently large n, such that (i)

l(n)
n ≤ H(S1⊕q S2)+

ǫc
2

and (ii) P(d(hSn
1 ⊕ hSn

2 ) 6= Sn
1 ⊕ Sn

2 ) ≤ ǫc
2 . We use one such parity matrix which satisfies the above conditions and define

Mj =
∆ hSj , for j = 1, 2. This forms our first stage encoder.

Moving on to the second stage encoder, let us denote the maps of the two encoders as κj : F l
q → Xn

j : j = 1, 2..
For this stage, we use the NCC encoding developed in Section IV for a CQ-PTP. Consider two NCCs with parameters

(n, k, l, gI , gO/I , b
n
j ) : j ∈ {1, 2} with range spaces as vnj (a,mj) =

∆ agI ⊕mjgO/I ⊕ bnj : j ∈ {1, 2}, respectively. Note that the

two NCCs share the common gI and gO/I , but not necessarily the bias vector bnj . Encoder j then constructs its NCC CQ-PTP

code (n, I = F l
q, ej , λ

j
I) using the corresponding NCC (n, k, l, gI , gO/I , b

n
j ) as described in Definition 1. This defines the

second stage encoding. Integrating the two stages, we obtain the following. To transmit the source sequence pair (sn1 , s
n
2 ) the

sequence pair (e1(hs
n
1 ), e2(hs

n
2 )) is send over the CQ-MAC channel which produces the quantum state ρe1(hsn1 ),e2(hsn2 ) as the

output.

After performing the measurement and decoding the message m̂, the decoder then employs the KM decoder d(.) to obtain

the sum of sources d(m̂). An analysis of this coding scheme is provided in the Proof of Lemma 1.
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VI. DECODING ARBITRARY FUNCTIONS OVER CQ-MAC

Leveraging the technique developed in Theorem 2, we provide the following proposition to reconstruct an arbitrary function

of the sources

Proposition 2. The function f : S → S of sources WS1S2 can be reconstructed on a CQ-MAC (ρx1x2 ∈ D(HY ) : (x1, x2) ∈
X1 × X2) if there exists functions hj : Sj → Fq for j : 1, 2, a function g : Fq → S, and a PMF pV1V2X1X2 = pV1X1pV2X2

on V1 × X1 × V2 × X2, where V1 = V1 = Fq,such that f(s1, s2) = g(h1(s1) ⊕ h2(s2)) and H(h1(S1) ⊕q h2(S2)) ≤
min{H(V1), H(V2)}−H(U) + χ({pU ; ρu}), where pU and ρu are as defined in Theorem 2.

Proof. The proof follows from the proof of Theorem 2.

Example 1. Let X1 = X2 = S1 = S2 = X = {0, 1}, H = C
2, and ρx1,x2 = (1 − q)σ(x1∨x2) + qσ(x̄1∧x̄2), where

σ0, σ1 ∈ D(H) be arbitrary. Let ρ(q) , (1 − q)σ0 + qσ1. Consider correlated symmetric individually uniform sources with

WS1|S2
(1|0) = WS1|S2

(0|1) = p for p ∈ (0, 1). Let f(S1, S2) = S1 ∨ S2. Consider the sufficient conditions given by the

unstructured coding scheme: H(S1, S2) < χ({PX1,X2 , ρx1,x2}), with X1 and X2 being independent, which can be simplified

as 1 + hb(p) < S(ρ(0.5))− S(ρ(q)). This implies that the f is not reconstructible using the unstructured codes. We embed f
in the ternary field. In other words, the encoders and decoder work toward reconstructing S1 ⊕3 S2. The sufficient condition

given by the algebraic coding scheme turns out to be

H(S1 ⊕3 S2)<H(X1)−H(X1 ⊕3 X2) + χ({pX1⊕3X2 , ρx1⊕3x2}),

for some pX1,X2 , which can be simplified as

hb(2p− p2) + (2p− p2)hb(p/(2− p))<max
θ

[hb(θ)−hb(2θ−θ2)− (2θ−θ2)hb(θ/(2 − θ)) + S(ρ((2θ − θ2) ∗ q))− S(ρ(q))].

One can show that there exists choices for p, q, σ0 and σ1 such that this condition is satisfied.

APPENDIX A

CHARACTERIZATION OF CERTAIN HIGH PROBABLE SUBSPACES

In this appendix, we characterize certain high probability subspaces of tensor product quantum states. The statements we

prove here are colloquially referred to as ‘pinching’ [7] in the literature. We prove statements in a form that can be used for

use in the proof of both Theorems 1, Lemma 2. We begin with definitions of typical and conditional typical projectors. We

adopt strong (frequency) typicality. All statements hold for most of the variants of notion of typicality. For concreteness, the

reader may refer to [6, App. A].

Lemma 2. Suppose (i) A,B are finite sets, (ii) pAB is a PMF on A×B, (iii) (ρb ∈ D(H) : b ∈ B) is a collection of density

operators, ρa =∆
∑

b∈B pB|A(b|a)ρb for a ∈ A and ρ =
∑

a∈A
pA(a)ρa =

∑

b∈B
pB(b)ρb. There exists a strictly positive µ > 0,

whose value depends only on pAB , such that for every δ > 0, there exists a N(δ) ∈ N such that for all n ≥ N(δ), we have

tr
(
Πδ

ρΠ
δ
anΠδ

ρρbn
)
≥ 1− exp{−nλδ2}

whenever (an, bn) ∈ T n
δ
4

(pAB) where Πδ
an is the conditional typical projector of ρan = ⊗n

t=1ρat
[7, Defn. 15.2.4] and Πδ

ρ is

the unconditional typical projector [7, Defn. 15.1.3] of ρ⊗n .

Proof. We rename A = V , B = X , pAB = pVX , a as v and b as x. We have

tr
(
Πδ

ρΠ
δ
vnΠδ

ρρxn

)
= tr

(
Πδ

ρΠ
δ
vnρxnΠδ

ρ

)

≥ tr
(
Πδ

vnρxn

)
− 1

2

∥
∥ρxn −Πδ

ρρxnΠδ
ρ

∥
∥ . (29)

In the following we derive a lower bound on tr
(
Πδ

vnρxn

)
and derive an upper bound on

∥
∥ρxn −Πδ

ρρxnΠδ
ρ

∥
∥. Toward the

deriving the former, we recall that we have (vn, xn) ∈ Tδ/2
n(pVX). Let us define:

pY |XV (y|x, v) :=
〈
ey|v|ρx|ey|v

∣
∣ey|v|ρx|ey|v

〉
,

for all (x, v, y) ∈ X × V × Y .

Clearly, we have pY |XV (y|x, v) ≥ 0, and
∑

y∈Y pY |XV (y|x, v) =
∑

y∈Y
〈
ey|v|ρx|ey|v

∣
∣ey|v|ρx|ey|v

〉
= tr(ρx) = 1. Hence

we see that pY |XV is a stochastic matrix.
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Next we note that
∑

x∈X
pY |XV (y|x, v)pXV (x, v) =

∑

x∈X
pXV (x, v)

〈
ey|v|ρx|ey|v

∣
∣ey|v|ρx|ey|v

〉

= pV (v)

〈

ey|v|
∑

x∈X
pX|V (x|v)ρx|ey|v

∣
∣
∣
∣
∣
ey|v|

∑

x∈X
pX|V (x|v)ρx|ey|v

〉

= pV (v)
〈
ey|v|ρv|ey|v

∣
∣ey|v|ρv|ey|v

〉
= pV (v)qY |V (y|v), (30)

where we have used the spectral decomposition of ρv.

Observe that if (xn, vn) ∈ T n
δ/4(pXV ), and yn ∈ T n

δ (pXV pY |XV |xn, vn), then we have (xn, vn, yn) ∈ T n
δ (pXV pY |XV ).

This implies that we have (vn, yn) ∈ T n
δ (pV Y ), where pV Y is the marginal of pXV pY |XV . Using this and (30), we see that

(vn, yn) ∈ T n
δ (pV qY |V ). In summary, we see that if (xn, vn) ∈ Tδ/4(pXV ), then we have

T n
δ (pXV pY |XV |xn, vn) ⊆

{
yn : (vn, yn) ∈ T n

δ (pV qY |V )
}
.

We are now set to provide the promised lower bound. Consider

tr(Πvnρxn) = tr








∑

yn:(vn,yn)∈Tn
δ
(pV qY |V )

n⊗

t=1

∣
∣eyt|vt

〉 〈
eyt|vt

∣
∣









n⊗

j=1

ρxj







 (31)

= tr








∑

yn:(vn,yn)∈Tn
δ
(pV qY |V )

n⊗

t=1

∣
∣eyt|vt

〉 〈
eyt|vt

∣
∣ ρxt







 (32)

=
∑

yn:(vn,yn)∈Tn
δ
(pV qY |V )

n∏

t=1

〈
eyt|vt |ρxt

|eyt|vt
∣
∣eyt|vt |ρxt

|eyt|vt
〉

(33)

≥
∑

yn∈Tn
δ
(pXV pY |XV |xn,vn))

n∏

t=1

pY |XV (yt|xt, vt) (34)

≥ 1− 2|X ||Y||V| exp
{

−2nδ2pXV Y (x
∗, v∗, y∗)

4(log(|X ||Y||V|))2
}

, (35)

where we used the definition (30) in the last equality.

We next provide the upper bound. Note from the Gentle measurements lemma [7, Lemma 9.4.2], we have ‖ρxn −
Πδ

ρρxnΠδ
ρ|| ≤ 3

√
ǫ if tr

(
Πδ

ρρxn

)
≥ 1 − ǫ. In the following we provide a lower bound on tr

(
Πδ

ρρxn

)
. Recall that

Πδ
ρ =

∑

yn∈Tn
δ
(sY )

⊗n
t=1 |gyt

〉 〈gyt
|, where

ρ =
∑

y∈Y
sY (y) |gy〉 〈gy| ,

is the spectral decomposition of ρ, and ρ =
∑

x∈X pX(x)ρx. Let p̂Y |X(y|x) := 〈gy|ρx|gy|gy|ρx|gy〉, for all (x, y) ∈ X × Y .

Note that p̂Y |X is not related to pY |X defined previously. We note that p̂Y |X(y|x) ≥ 0, and
∑

y∈Y p̂Y |X(y|x) =
∑

y∈Y 〈gy|ρx|gy|gy|ρx|gy〉 = tr(ρx) = 1 for all x ∈ X . Thus we see that p̂Y |X is a stochastic matrix. It can also be

noted that

∑

x∈X
p̂Y |X(y|x)pX(x) =

〈

gy|
∑

x∈X
pX(x)ρx|gy

∣
∣
∣
∣
∣
gy|
∑

x∈X
pX(x)ρx|gy

〉

= 〈gy|ρ|gy|gy|ρ|gy〉 = sY (y),

for all y ∈ Y . This implies that the condition yn ∈ T n
δ (sY ) is equivalent to the condition yn ∈ T n

δ (p̂Y ), where p̂Y (y) =
∑

x∈X p̂Y |X(y|x)pX(x). Moreover, if xn ∈ T n
δ/2(pX), and yn ∈ T n

δ (pX p̂Y |X |xn), then we have (xn, yn) ∈ T n
δ (pX p̂Y |X).

Consequently, we have yn ∈ T n
δ (p̂Y ), which in turn implies that yn ∈ T n

δ (sY ). In essence, we have that if xn ∈ T n
δ/2(pX)

then T n
δ (pX p̂Y |X |xn) ⊆ T n

δ (sY ). Now we are set to provide the lower bound on tr
(
Πδ

ρρxn

)
as follows:

tr
(
Πδ

ρρxn

)
= tr




∑

yn∈Tδ(sY )

n⊗

t=1

|gyt
〉 〈gyt

| ρxt



 =
∑

yn∈Tδ(sY )

n∏

t=1

〈gyt
|ρxt

|gyt
|gyt

|ρxt
|gyt

〉

=
∑

yn∈Tδ(sY )

n∏

t=1

p̂Y |X(yt|xt) ≥
∑

yn∈Tδ(p̂Y |XpX |xn)

n∏

t=1

p̂Y |X(yt|xt)

≥ 1− 2|X ||Y| exp
{

−
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2

}

. (36)
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We therefore have

‖ρxn −Πδ
ρρxnΠδ

ρ‖ ≤ 6|X ||Y| exp
{

−
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2

}

,

and

tr(Πvnρxn) ≥ 1− 2|X ||Y|||V|
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2 ,

thereby permitting us to conclude that

tr
(
Πδ

ρΠ
δ
vnΠδ

ρρxn

)
≥ tr

(
Πδ

vnρxn

)
− 1

2
‖ρxn −Πδ

ρρxnΠδ
ρ‖ ≥ 1−

2nδ2p2X(x∗)p̂2Y |X(y|x)
4(log(|X ||Y|))2 ,

if (xn, vn) ∈ T n
δ/2(pXV ).
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