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Novel one-shot inner bounds for unassisted fully quantum channels

via rate splitting*

Sayantan Chakraborty† Aditya Nema‡ Pranab Sen†§

Abstract

We prove the first non-trivial one-shot inner bounds for sending quantum information over an entanglement

unassisted two-sender quantum multiple access channel (QMAC) and an unassisted two-sender two-receiver quan-

tum interference channel (QIC). Previous works only studied the unassisted QMAC in the limit of many independent

and identical uses of the channel also known as the asymptotic iid limit, and did not study the unassisted QIC at

all. We employ two techniques, rate splitting and successive cancellation, in order to obtain our inner bound. Rate

splitting was earlier used to obtain inner bounds, avoiding time sharing, for classical channels in the asymptotic

iid setting. Our main technical contribution is to extend rate splitting from the classical asymptotic iid setting to

the quantum one-shot setting. In the asymptotic iid limit our one-shot inner bound for QMAC approaches the rate

region of Yard et al. [2]. For the QIC we get novel non-trivial rate regions in the asymptotic iid setting. All our

results also extend to the case where limited entanglement assistance is provided, in both one-shot and asymptotic

iid settings. The limited entanglement results for one-setting for both QMAC and QIC are new. For the QIC the

limited entanglement results are new even in the asymptotic iid setting.

1 Introduction

The multiple access channel (MAC), where two independent senders Alice (A) and Bob (B) have to send their respec-

tive messages to a single receiver Charlie (C) via a communication channel with two inputs and one output, is arguably

the simplest multiterminal channel. Yet, it abstracts out important practical situations like several independent users

transmitting their respective messages to a base station. Ahlswede [3], and independently Liao [4], obtained the first

optimal rate region for the classical MAC in the asymptotic iid setting, using a powerful method called simultaneous

decoding. Their region looks like the one in Figure 1, where I(A : B) := H(A) + H(B) − H(AB) denotes the

mutual information between two jointly distributed random variables A, B. Simultaneous decoding means that Char-

lie is able to decode any point in the rate region, e.g. point P in Figure 1, by a one-step procedure. Later on, other

authors obtained the same rate region in a computationally less intensive fashion by using successive cancellation

and time sharing. In successive cancellation decoding Charlie first decodes Alice’s message and then uses it as an

additional channel output in order to next decode Bob’s message, or vice versa. In other words, Charlie can either

decide to decode point S or point T in Figure 1. In order to decode another point in the rate region, e.g. point P in

Figure 1, Charlie first figures out the convex combination (α, 1− α) of points S and T that would give point P. Out of

n iid channel uses, Charlie then decodes the first αn uses according to point S’s decoding strategy and the remaining

(1− α)n channel uses according to point T’s decoding strategy. This idea is called time sharing.

The interference channel is another important channel where sender Alice wants to send her message to receiver

Charlie and sender Bob, whose message is independent of that of Alice, wants to send his message to receiver Damru
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Bob

Alice

n→∞
P

(0, I(B : AC))

(I(A : BC), 0)

S = (I(A : BC), I(B : C))

T = (I(A : C), I(B : AC))

x+ y = I(AB : C)

Figure 1: Achievable rate region per channel use for the classical MAC in the asymptotic iid setting.

via a communication channel with two inputs and two outputs. It abstracts out the important practical situation where

independent sender-receiver pairs are communicating simultaneously via a noisy medium. Han and Kobayashi [5]

(see also [6]) obtained the best known inner bound for this channel in the classical asymptotic iid setting.

The multiple access and interference channels can be defined in the context of quantum information theory also.

Early work studied the sending of classical information over a quantum MAC, without [7] or with [8] entanglement

assistance, in the asymptotic iid setting. These works obtained the natural quantum analogues of the optimal clas-

sical rate regions using successive cancellation and time sharing. Later, Fawzi et al. [9] and Sen [10] studied the

sending of classical information over a quantum interference channel in the asymptotic iid setting by first obtaining a

simultaneous decoder for the quantum MAC. The latter paper managed to obtain the natural quantum analogue of the

Han-Kobayashi inner bound.

For a variety of reasons recent research in Shannon theory has studied in depth the one-shot setting where the

channel can be used only once. This is the most general setting and subsumes the asymptotic iid, asymptotic non-

iid aka information spectrum, and finite block length settings. Ideally, the one-shot inner bounds should match or

supersede the best inner bounds for the respective channels in the asymptotic iid setting. Sen [11] obtained the natural

one-shot quantum analogues of best known classical rate regions for sending classical information over entanglement

unassisted and assisted quantum MACs and quantum interference channels. His one-shot inner bounds, obtained by

simultaneous decoding, approach the optimal inner bounds known earlier for the classical and quantum asymptotic iid

settings.

Note that presence of shared randomness does not affect the rates of sending classical or quantum information

over channels. Also the rates of sending quantum information and classical information over entanglement assisted

quantum channels are related by a factor of two because of quantum teleportation. So the main setting left unstudied

in the above works is the setting of sending quantum information over an entanglement unassisted quantum channel

i.e. the senders and the receivers do not share any entanglement prior to the beginning of the protocol. The first works

to address this setting looked at a point-to-point quantum channel in the asymptotic iid setting [12, 13], culminating

in the work of Devetak [14] which showed with full rigour that the regularised coherent information from sender A to

receiver B defined by I∗(A > B) := limk→∞ I(Ak > Bk)/k, I(Ak > Bk) := H(Bk)−H(AkBk) where AkBk is

defined by the channel action (NA′→B)⊗k on an arbitrary (in general entangled) pure state |σ〉Ak(A′)k
, is the capacity

of an unassisted quantum channel in the asymptotic iid limit.

Comment 1.1. Devetak [14] provided the first fully rigorous proof of this statement by proving an elegant connection

between the quantum capacity of an unassisted quantum channel and its classical private capacity.

Hayden et al. [15]. showed that one can recover Devetak’s result using a technique called decoupling
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Comment 1.2. Devetak’s private coding technique was geared towards a specific problem called entanglement trans-

mission where the sender has to transmit the quantum state of a system which might be entangled with a second

reference system, and the receiver must be able to decode the channel output so that at the end of the protocol the

joint quantum state of the system plus reference is approximately preserved. Hayden et al.’s decoupling technique was

geared towards another problem called entanglement generation where the protocol aims to create EPR pairs shared

between the sender and the receiver. Once such EPR pairs are created, it is easy to solve entanglement transmission

by quantum teleportation when an additional noiseless classical channel is provided. Though entanglement generation

looks to be weaker than entanglement transmission and moreover requires an additional noiseless classical channel, it

was shown in [16] that nevertheless both these as well as several variant tasks are essentially equivalent.

These works naturally lead one to consider unassisted multiterminal quantum channels. To the best of our knowl-

edge, the only inner bound known for the unassisted QIC is what one would obtain by treating the channel as two

independent unassisted point to point channels. For the unassisted QMAC more is known. Yard et al. [2] showed that

the natural quantum analogue of the classical rate region, with mutual information replaced by regularised coherent

information as in Figure 2, is an inner bound for the unassisted quantum MAC (QMAC) in the asymptotic iid setting.

They proved their inner bound by time sharing and a suitable adaptation of successive cancellation.
Bob

Alice

n→∞
P

(0, I∗(B > AC))

(I∗(A > BC), 0)

S = (I∗(A > BC), I∗(B > C))

T = (I∗(A > C), I∗(B > AC))

x+ y = I∗(AB > C)

Figure 2: Achievable rate region for the unassisted quantum MAC per channel use in the asymptotic iid setting.

The above works behoove one to consider the problem of sending quantum information over an unassisted quan-

tum channel in the one-shot setting. Buscemi and Datta [17] proved the first one-shot achievability result for the unas-

sisted point-to-point channel in terms of smooth modified Rényi entropies. Their result was generalised by Dupuis

[18] to the case where the receiver has some side information about the sender’s message. In the asymptotic iid limit,

these one-shot results approach the regularised coherent information obtained in earlier works.

It is thus natural to study inner bounds for the unassisted QMAC in the one-shot setting. In this paper we take the

first steps towards this problem. Observe that successive cancellation can only give the two endpoints S and T of the

dominant line of the pentagonal rate region in Figure 2. Since time sharing cannot be used in the one-shot setting, it is

not clear how to obtain other rate tuples like the point P . An alternative would be to develop a simultaneous decoder

for the QMAC which can obtain a point like P directly, but that is a major open problem with connections to the

notorious simultaneous smoothing open problem [19].

Instead in this paper, we take inspiration from another powerful classical channel coding technique called rate

splitting. Grant et al. [20] showed that it is possible to ‘split’ Alice into two senders Alice0 and Alice1, each sending

disjoint parts of Alice’s original message, such that any point in the pentagonal rate region of Figure 2 like P can

be obtained without time sharing by a successive cancellation process where Charlie first decodes Alice0’s message,

then Bob’s message using Alice0’s message as side information and finally Alice1’s message using Bob’s and Alice0’s

messages as side information. Though Grant et al.’s rate splitting technique was developed for the classical MAC in
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the asymptotic iid setting, in this paper we show how it can be adapted to the one-shot quantum setting. This is a

non-trivial task, which we tackle in two steps. In the first step we use ideas from Yard et al. [2] and Dupuis [18] and

suitably adapt successive cancellation to the one-shot unassisted quantum setting. In the second step, we adapt the rate

splitting function of Grant et al. [20] to the one-shot quantum setting. Our one-shot rates are in terms of the smooth

coherent Rényi-2 information defined in Section 3. Since the smooth coherent Rényi-2 information is not known to

possess a chain rule with equality, we get an achievable rate region of the form in Figure 3. Our achievable rate region

is a subset of the ‘ideal’ pentagonal rate region shown by the dashed line. Nevertheless, using a quantum asymptotic

equipartition result of Tomamichel et al. [21], we show that this ‘subpentagonal’ achievable rate region approaches

the ‘pentagonal’ region of Yard et al. [2] (equal to the region demarcated by the dashed line) in the iid limit. The
Bob

Alice

n = 1
n → ∞

S = (I
ε2/800
2 (A > BC), I

ε2/800
2 (B > C))

T = (I
ε2/800
2 (A > C), I

ε2/800
2 (B > AC))

(I
√
ε

2 (AB > C), 0)

(0, I
√
ε

2 (AB > C))

P

Figure 3: One-shot achievable rate region for the unassisted QMAC (for single channel use only), contained inside

the ‘ideal’ pentagonal region demarcated by the dashed line, and approaching it in the asymptotic iid limit. O(log ε)
additive factors have been ignored in the figure.

reason why splitting of Alice into Alice0 and Alice1 allows one to obtain a ‘middle’ rate point like P , in addition to

the ‘corner’ points S and T , is as follows. The rate point P is the projection onto the (Alice, Bob) plane of the ‘corner’

rate point P ′ in the (Alice0, Bob, Alice1) space where the rates of Alice0 and Alice1 are summed to obtain Alice’s

rate. The point P ′ can be obtained by a 3-step successive cancellation decoding. Note that the split of Alice depends

on the rate point P to be attained.

Alice0

Bob

Alice1
n = 1

(I
ε2/800
2 (A0 > C), I

ε2/800
2 (B > A0C),

I
ε2/800
2 (A1 > A0BC)) = P ′

Figure 4: The ‘corner’ point P ′ can be obtained by successive cancellation following the order Alice0→Bob→Alice1

with splitting of Alice followed by one use of the unassisted QMAC. Point P ′ projects down to point P in Figure 3.

Only the ‘dominant face’ of the rate region is shown. Successive cancellation can only obtain the corner points of

the dominant face and all ‘sub-points’ by ‘resource wasting’. It cannot obtain ‘middle’ points of the ‘dominant’ face.

O(log ε) additive factors have been ignored in the figure.

In fact, it turns out that our techniques are more general; they allow us to a obtain non-trivial achievable rate region
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for sending quantum information over a QMAC with rate limited entanglement assistance. In the case of rate limited

entanglement assistance, the amount of prior shared entanglement between the sender and the receiver is limited by a

certain upper bound. If this upper bound is set to 0, the situation reduces exactly to the unassisted case. As the upper

bound tends to infinity, the situation becomes the same as the QMAC with unlimited entanglement assistance.

We now state our result for the unassisted QIC. The trivial inner bound treats the QIC as two independent unas-

sisted point to point channels from Alice to Charlie and Bob to Damru. Rate splitting and successive cancellation

can be similarly used to obtain non-trivial rate regions for the unassisted QIC where one party, say Alice, sacrifices

her rate in order to boost Bob’s rate with respect to the trivial inner bound. The situation is summarised in Figure 5.

Though the discussion above only involved unassisted QMAC and QIC, our actual results also hold for the QMAC and
Bob

Alice

(I
ε2/800
2 (A > C), I

ε2/800
2 (B > D))

(I
ε2/800
2 (A0 > C), I

ε2/800
2 (B > A1D))

(I
ε2/800
2 (A > B1C), I

ε2/800
2 (B0 > D))

n = 1

Figure 5: One-shot achievable rate region (for single channel use only) for the unassisted QIC. The trivial region is

shown dotted. Alice can sacrifice her rate in order to boost Bob’s rate with respect to the trivial region, as shown by the

solid rectangle. The dashed rectangle can be similarly obtained by Bob sacrificing his rate in order to boost Alice’s.

O(log ε) additive factors have been ignored in the figure.

QIC with limited entanglement assistance. However they seem to be inferior to the known results when entanglement

assistance is unlimited [22].

Subsequent Works: After the arXiv and conference versions of this work were published [1], Saus and Winter

[23] obtained a partially smooth one shot simultaneous coding strategy for sending quantum information across the

QMAC. They proved their nice result by proving a partially smoothed generalisation of the (non smooth) multi sender

decoupling theorem given by Chakraborty et al. [19]. As a result they obtain the natural smooth one shot analog

of Figure 2. Hence they have an alternate derivation of the asymptotic iid rate region shown in Figure 2 without

appealing to rate splitting. However, their methods don’t seem to be generalisable to the case of the QMAC with

limited entanglement assistance. This is because their methods cannot smooth over the Choi state of the channel,

which seems crucial for obtaining any non-trivial inner bounds in the limited entanglement assisted setting. Thus

to the best of our knowledge, the present work is the only one providing a non-trivial smooth one shot achievable

rate region for the QMAC with limited entanglement assistance. Besides, rate splitting has proved to be a powerful

technique in classical network information theory, and so its generalisation to the most general one shot quantum

setting should be of independent interest.

2 Organisation of the Paper

The paper is organised as follows. In Section 3 we present the definitions and facts regarding one-shot entropic

quantities and other necessary mathematical tools that we will need throughout the paper. In Section 5 we introduce

the concept of quantum rate splitting and demonstrate it in the case of entanglement transmission across the point
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to point channel. We also develop the technique of successive cancellation decoding for entanglement transmission

codes in this section. In Section 6 we use the ideas introduced in Section 5 to derive inner bounds for entanglement

transmission over the QMAC and the QIC. Finally, in Section 7 we present the asymptotic IID versions of the one-shot

inner bounds presented in paper.

3 Preliminaries

3.1 Notation

We will use the following conventions throughout the rest of the paper :

1. We use the shorthand M ·N :=MNM † for operators M and N .

2. Suppose that |ω(U)〉XA′B′
be a generic intermediary state (defined in Section 5.2), where X is a placeholder

for other systems involved in the protocol. Suppose we are given a channel NA′B′→C and its corresponding

Stinespring dilation UA′B′→CE
N . Then, we denote the state UN |ω(U)〉XA′B′

by the symbol |ω(U)〉XCE . Al-

though the two states are denoted using the same greek letter, we differentiate them by the systems on which

they are defined. These systems will always be explicitly mentioned whenever we make use of this convention.

3. We will use the same rule for control states, For example, suppose |σ〉A”A′B”B′
is a control state for some

channel coding protocol. Suppose we are given the channel NA′B′→C Then we use the following convention

σA”B”C := N · σA”A′B”B′

We will use this convention while specifying entropic quantities. It will be clear from context which state we

refer to. For example, consider the expressions Hε
min(A”)σ and Iεmin(A”|C)σ . It is clear from the arguments of

the entropic expressions that in the first case σ = σA”A
′B”B′

and in the second case σ = σA”B
′C .

4. We will, on several occasions use the operator opX→Y A′B′
(|ω(U)〉XY A′B′

). To lessen the burden on notation,

whenever we use this operator, we will not mention the systems on which the argument of the op operator is

defined. It will however always mention the domain and range of the op operator in these cases to avoid any

confusion.

3.2 Smooth Entropies

For a pair of subnormalised density matrices ρ and σ in the same Hilbert space their purified distance is denoted by

P (ρ, σ) :=
√

1− F (ρ, σ)2 where F (ρ, σ) :=
∥

∥

√
ρ
√
σ
∥

∥

1
+
√

(1− Tr[ρ]) · (1− Tr[σ]) is the generalised fidelity and

‖·‖1 is the Schatten 1-norm. We use σ ≈ε ρ as a shorthand for P (σ, ρ) ≤ ε. See [24] for more details.

The von Neumann entropy for a normalised quantum state ρA is defined by H(A)ρ := −Tr[ρ log ρ]. For a

bipartite quantum state ρAB , the Coherent Information I(A > B) is defined as I(A > B) := H(A|E) where the

conditional entropy H(A|E) is computed with respect to the purification |ρ〉ABE of the state ρAB.

Definition 3.1. [ε-smooth sandwiched Rényi-2 conditional entropy] Given a bipartite state ρAB , the ε-smooth sand-

wiched Rényi-2 conditional entropy is defined as

Hε
2(A|E)ρ :=

−2 log min
(ρ′)AE≈ερAE

min
σE

∥

∥

∥
(11A ⊗ (σE)−1/4) · (ρ′)AE

∥

∥

∥

2
,

6



where σE ranges over non-singular normalised states over E.

Definition 3.2. [ε-smooth conditional min-entropy]

The ε-smooth conditional min-entropy is given by

Hε
min(A|E)ρ :=

− log min
(ρ′)AE≈ερAE

min
σE :(ρ′)AE≤11A⊗σE

Tr[σE ],

where σE ranges over positive semidefinite operators on E.

The unconditional smooth entropies are now defined from the conditional ones by taking the conditioning system

to be one dimensional.

Definition 3.3. [ε-smooth coherent min-information] Then the ε-smooth coherent min-information aka the negative

of the ε-smooth conditional max-entropy is given by

Iεmin(A〉B)ρ := −Hε
max(A|B)ρ := Hε

min(A|E)ρ,

where again |ρ〉ABE is a purification of ρAB.

As shown in [18], the smooth sandwiched Rényi-2 conditional entropy upper bounds the smooth conditional min-

entropy. The smooth conditional min-entropy is further lower bounded by the familiar conditional Shannon entropy

in the amortised sense in the asymptotic iid limit [21], a result that is sometimes referred to as the fully quantum

asymptotic equipartition property. To summarise, the smooth sandwiched Rényi-2 coherent information upper bounds

the Shannon coherent information in the amortised sense in the asymptotic iid limit.

We will now state some properties on the smooth conditional min entropy that we will use throughout the rest of

the paper.

Fact 3.4 (Chaining for Smooth min-entropy [25, 26]). Let ε > 0 and ε′, ε” ≥ 0 and let ρABC be a quantum state.

Then

Hε+2ε′+ε”
min (AB|C)ρ ≥ Hε′

min(A|BC)ρ +Hε”
min(B|C)ρ − log

2

ε2

Fact 3.5 (Unitary Invariance of Smooth min-entropy). Given ε ≥ 0, a quantum state ρAB and isometries U : HA →
HC and V : HB → HD, define the state σCD := (U ⊗ V )ρAB(U † ⊗ V †). Then

Hε
min(A|B)ρ = Hε

min(C|D)σ

Fact 3.6 (Continuity of Smooth min-entropy). Given two quantum states ρAB and σAB such that P (ρAB , σAB) ≤ δ

and ε > 0, then

|Hε
min(A|B)ρ −Hε

min(A|B)σ| ≤ c · δ′

where c is an absolute constant and depends on the dimensions of system A and B and δ′ =
√
δ2 + 2εδ

The proofs of both Fact 3.5 and Fact 3.6 can be found in [24].

Fact 3.7 (Quantum Asymptotic Equipartition Property [21]). Given a bipartite quantum state ρAB on the system

HA ⊗HB, ε > 0, an integer n ∈ N and the iid extension of the state ρnAB it holds that

lim
ε→0

lim
n→∞

1

n
Hε

min(A
n|Bn)ρn = H(A|B)ρ

7



3.3 The op Operator

One of the main technical tools we use in this paper, which is a workhorse in most of our proofs, is the notion of

mapping a vector into an operator. This operation is denoted simply by ’op’ and we compile some of its properties in

this section for completeness. The interested reader is referred to [18] for further details.

Definition 3.8. [The op operator] Given the systems A and B, fix the standard bases |ai〉A and |bj〉B . Then we define

opA→B : A⊗B → L(A,B) as

opA→B(|ai〉 |bj〉) := |bj〉 〈ai| ∀i, j

Notice that this definition is basis dependant and hence whenever we use this operator a choice of bases is implied,

although not always explicitly mentioned.

Fact 3.9. Let |ψ〉AB and |ϕ〉AC be vectors on the systems AB and AC respectively. Then

opA→C(|ϕ〉AC) |ψ〉AB = opA→B(|ψ〉AB) |ϕ〉AC

Fact 3.10. Given a vector |ψ〉AB , let |Φ〉AA′
be an EPR state, where A ∼= A′. Then,

√

|A|opA→B(|ψ〉AB) |Ψ〉AA′
= |ψ〉A′B

Fact 3.11. For all vectors |ψ〉AB and any MA→C ,

opC→B(M |ψ〉) = opA→B(|ψ〉)MT

Fact 3.12. For all |ψ〉AB,

TrB [ψ
AB ] = opB→A(|ψ〉)opB→A(|ψ〉)†

3.4 The Smooth Single Sender Decoupling Theorem

Fact 3.13. Smooth Decoupling Theorem [27] Given ε > 0 a density matrix ρAE and any completely positive

operator T A→R, define ωA
′R :=

(

T ⊗ I
A′)

ΦAA
′

such that Tr
[

ωA
′R
]

= 1. Then

∫

U(A)

∥

∥T
(

U · ρ
)

− ωE ⊗ ρR
∥

∥

1
≤ 2−

1
2
Hε

2 (A
′|R)ω− 1

2
Hε

2 (A|E)ρ + 8ε

where the integration is over the Haar measure on the set of all unitaries on the system A, denoted by U(A).

The single sender decoupling theorem implies the following channel coding theorem.

Fact 3.14. [18, Theorem 3.14] Let |ψ〉ABR be a pure state, NA′→C be any CPTP superoperator with Stinespring

dilation UA
′→CE

N , N and complementary channel N̄A′→E , let ωA”CE := UN · σA”A′
, where σA”A

′
is any pure state

and A” ∼= A′ , and let ε > 0. Then, there exists an encoding partial isometry V A→A′
and a decoding superoperator

DCB→AB such that:

‖N̄ (V · ψAR)− ωE ⊗ ψR‖1 ≤ 2
√

2δ1 + δ2

8



and

‖(D ◦N ◦ E)ψABR − ψABR‖1 ≤ 2

√

(4
√

2δ1 + 2δ2)

where δ1 := 3× 2
1
2
Hε

max(A)ψ− 1
2
Hε

2 (A”)ω + 24ε, δ2 := 3 · 2− 1
2
Hε

2(A”|E)ω− 1
2
Hε

2 (A|R)ψ + 24ε

3.5 Miscellaneous Useful Facts

Fact 3.15. Given states ρABC , σA, ηC , σAB , ωBC such that

∥

∥ρABC − σA ⊗ ωBC
∥

∥

1
≤ ε1

∥

∥ρABC − σAB ⊗ ηC
∥

∥

1
≤ ε2

it holds that

∥

∥ρABC − σA ⊗ σB ⊗ ηC
∥

∥

1
≤ 2ε1 + ε2

Fact 3.16. For any two density matrices ρ and σ and any real c ∈ R, the following holds true:

‖ρ− σ‖1 ≤ 2 ‖cρ− σ‖1

4 Quantum Channel Capacities: Definitions and Previous Work

The capacity of a quantum channel can have many different and distinct interpretations, based on the information

processing task being considered. The various definitions of the quantum capacity arise from considerations such as

whether the information being sent through the channel is classical data or whether it consists of arbitrary quantum

states. Further, the definition of capacity changes whether the sender and the receiver can make use of pre-shared

entanglement or EPR pairs, that they prepared before the protocol began. In this section, we will introduce the

entanglement unassisted and entanglement assisted quantum capacities of a quantum channel.

We will first define the capacities assuming that the sender Alice and the receiver Bob can utilise only one copy

of the channel i.e. the one-shot regime. We will then generalise to the case when many copies of the channel are

available for use i.e. the iid regime.

The definition of the quantum capacity of a quantum channel stems from the following intuition: given a quantum

channel NA′→B , we want to exhibit a subspace AGOOD ⊂ A′ such that channel acts approximately like the identity

channel on this subspace. To make this precise, consider that the sender Alice has some system A which holds her

quantum message and an encoder EA→A′
. After receiving the quantum system B, Bob produces a guess for the

contents of Alice’s A system, by using the decoding map DB→A. Note that the state on system A can be arbitrarily

entangled with systems that are not accessible to the protocol. To capture this notion, we consider the purification

|ψ〉AR of the state on the system A. Thus, the goal of the protocol is to fulfil the condition:

∥

∥ψAR −D ◦N ◦ E(ψ)
∥

∥

1
≤ ε

for all pure states |ψ〉AR. This is precisely equivalent to the condition that

∥

∥I
A −D ◦ N ◦ E

∥

∥

⋄ ≤ ε.
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It is difficult to show the existence of coding schemes using this definition of the quantum capacity, due to the max-

imisation over all pure states. However, in 2003, Werner and Kretschmann [16] showed that there exist several other

equivalent definitions of the quantum capacity that are operationally more useful. One such definition is the entangle-

ment transmission capacity of a quantum channel:

Definition 4.1. [Entanglement Transmission Capacity] A (Q, ε) entanglement transmission code consists of an

encoder EA→A′
and a decoding CPTP DB→A such that

|Φ〉RA =
1

2Q

2Q
∑

i=1

|i〉R |i〉A ,

F
(

|Φ〉RA , IR ⊗ (D ◦ N ◦ E)(ΦRA)
)

≥ 1− ε.

Q is said to be an achievable rate for entanglement transmission if there exists a (Q, ε) entanglement transmission

code. The supremum of the set of all achievable rates Q, where the supremum is taken over all encoding and decoding

maps, is defined to be the entanglement transmission capacity of the channel.

Werner and Kretschmann showed that given a (Q, ε) entanglement transmission code with the encoder decoder

pair (E ,D), there exists another encoder decoder pair (E ′,D′) such that, for all pure states |ψ〉AR

∥

∥ψAR −D′ ◦ N ◦ E ′(ψ)
∥

∥

1
≤ ε,

where

log |A| ≥ Q− 1.

Refer to [16, 17] and [28] for details. In this paper, we will only prove the existence of codes for entanglement

transmission.

We will now consider the case when Alice and Bob share EPR pairs to potentially boost the rate of entanglement

transmission. In this setting, Alice and Bob share the EPR state |Φ〉ÃB where Ã is with Alice and B lies with Bob. The

two parties are allowed to use this state during the protocol, which aims to transmit the M system of the maximally

entangled state |Φ〉RM from Alice to Bob. Thus Alice needs to possess an encoder EMÃ→A′
and Bob a decoder

DB→M such that

F
(

|Φ〉RM , IR ⊗ (D ◦N ◦ E)(ΦRM ⊗ ΦÃB)
)

≥ 1− ε.

This is known as entanglement transmission with entanglement assistance. As before, let Q denote the rank of the

EPR state to be transmitted (in this case log |M |) and E denote the rate at which pre-shared entanglement is available

for use during the protocol (in this case log |Ã|). Then, the rate (Q,E) is said to be ε-achievable for entanglement

transmission with entanglement assistance if there exists an encoder and decoder pair for which the above fidelity

condition holds. Q is said to be achievable for unassisted transmission if no pre-shared entanglement is used during

the protocol i.e. if (Q, 0) is ε-achievable.

Now suppose that instead of constraining Alice and Bob to code for only one copy of the channel, we allow them

to code for n tensor copies i.e. the channel N⊗n, where n can be arbitrarily large. In this case, we define the capacity

of the channel as the maximum rate at which qubits can be transmitted across the channel per channel use. We state

the formal definition below:

Definition 4.2. [Quantum Capacity in the iid Regime] An (n,Q) code for a quantum NA′→B consists of an encod-
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ing map En := EA→A
′n

and a decoding map Dn := DCn→A such that

∥

∥I
A −Dn ◦ N⊗n ◦ En

∥

∥

⋄ ≤ ε.

The rate Q = 1
n log|A| is said to be an achievable rate for a the channel NA′→B if there exists a sequence of (n,Q)

codes (En,Dn) such that

lim
n→∞

∥

∥I
A −Dn ◦ N⊗n ◦ En

∥

∥

⋄ = 0.

The quantum capacity of NA′→B is the supremum of all achievable rates for this channel.

One can similarly generalise the above definition to the case when entanglement assistance is available.

4.1 Entanglement Transmission over the QMAC

Definition 4.3. [One-Shot Entanglement Transmission over the QMAC] Given the QMACNA′B′→C , with senders

Alice and Bob and receiver Charlie, suppose that Alice and Bob are given the A and B parts of the maximally

entangled states |Φ1〉R1A and |Φ2〉R2B . Alice and Bob want to send the systems A and B to Charlie via the QMAC

with high fidelity. An entanglement transmission code for the QMAC then consists of the encoding maps EA→A′
1 and

EB→B′
2 belonging to Alice and Bob respectively, and the decoding map DC→AB such that

F (|Φ1〉 |Φ2〉 ,D ◦ N ◦ E1 ⊗ E2 (Φ1 ⊗ Φ2)) ≥ 1− ε.

The rate of the code is defined as

RA := log|A|
RB := log|B|.

Comment 4.4. Note that the above definition is easily generalized to the asymptotic iid case, as well as the case when

Alice and Bob have access to pre-shared entanglement with Charlie.

Definition 4.5. [Entanglement Transmission Capacity Region of the QMAC] Any rate pair (RA, RB) for which

there exists a corresponding entanglement transmission code is called ε-achievable. The union of all ε-achievable

rate pairs is defined as the achievable rate region for entanglement transmission over the QMAC.

A natural question is whether we can strengthen the definition of the achievable region for the QMAC to include all

states that lie in the spaces corresponding to the systems A and B. To that end, we define the task of strong subspace

transmission [2]:

Definition 4.6. [Strong Subspace Transmission] Suppose Alice and Bob posses some pure quantum states |ψ〉R1A

and |ϕ〉R2B, where we place no restrictions on the systems R1 and R2 other than that they be finite dimensional. A

strong subspace transmission code then consists of encoding maps
(

EA→A′
1 , EB→B′

2

)

and a decoding map DC→AB

such that, for all |ψ〉R1A and |ϕ〉R2B

F (|ψ〉 |ϕ〉 ,D ◦ N ◦ E1 ⊗ E2 (ψ ⊗ ϕ)) ≥ 1− ε.

The rate pair

(RA, RB) := (log|A|, log|B|)
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are said to be achievable for strong subspace transmission if there exists a corresponding strong subspace transmission

code. The union of all achievable rates gives the achievable region for this task.

In [2, Section 5], the authors showed that given that Alice and Bob have access to independent public coins

with Charlie, the rate regions for entanglement transmission and strong subspace transmission over the QMAC are

equivalent. Thus, in this paper, we will design all our protocols for entanglement transmission.

The authors of the paper [2] also provide the best known achievable bounds for this task in the asymptotic iid

setting. We state their result below:

Theorem 4.7. Given the QMAC NA′B′→C its capacity region is given by the closure of

∞
⋃

k=1

1

k
Q(N⊗k),

where the region Q(M) equals the pairs of non-negative rates (RA, RB) satisfying

RA <I(A〉BC)σ

RB <I(B〉AC)σ

RA +RB <I(AB〉C)σ,

where all the entropic quantities are computed with respect to the control state

σABC :=
(

I
AB ⊗M

)

(

ΩAA
′ ⊗∆BB′

)

for a pair of pure states |Ω〉AA′
and |∆〉BB′

.

The achievable region shown in the theorem can be picturized by the rate region given in Fig. 6. In the figure, we

use the shorthand

I∗(A〉B) := lim
k→∞

1

k
I(Ak〉Bk).

Please note that the above shorthand is informal since the quantity on the right hand side is computed with respect to

a state on the systems AkBk. Thus, the precise description of the rate region actually requires a union over all such

states, over all values of k. We use this informal notation to emphasise the shape of the rate region and the fact that

the rate expressions are regularised.

4.2 Unassisted vs. Rate Limited Assistance

As mentioned previously, a rate pair (Q,E) is said to be ε-achievable for entanglement assisted entanglement trans-

mission across a point-to-point quantum channel NA′→B if there exists an encoder and decoder pair which consume

pre-shared entanglement at a rate E to faithfully transmit one half of a maximally entangled state at rate Q. The two

extreme cases are when E = 0 (the unassisted case) and when E can be arbitrarily large. Recall that Lloyd, Shor

and Devetak [12, 13, 14] showed that an achievable rate for the unassisted transmission of entanglement across the

point-to-point channel is given by the maximum of the coherent information

I(A〉B)

12



Bob

Alice

n→∞
P

(0, I∗(B〉AC))

(I∗(A〉BC), 0)

S = (I∗(A〉BC), I∗(B〉C))

T = (I∗(A〉C), I∗(B〉AC))

x+ y = I∗(AB〉C)

Figure 6: Achievable rate region for the unassisted quantum MAC per channel use in the asymptotic iid setting for a

fixed control state. The full region is the convex closure of all such pentagonal regions corresponding to all bipartite

input control states.

over all control states of the form ΩAB. For the case of entanglement assisted transmission, Bennet, Shor, Smolin and

Thapliyal [29] showed that the rate
1

2
I(A : B)

is achievable, whenever entanglement assistance is available at the rate 1
2 (H(A) +H(A|B)). We mention that the

one-shot analogue of this result was proved by Anshu, Jain and Warsi [30]. In this paper, we will be interested in

proving theorems which interpolate between these two cases. To be precise, we will prove achievable bounds for

entanglement transmission of the following sort:

Q+ E <I1

Q− E <I2.

Note that to recover the unassisted achievable bounds, one simply sets E = 0. On the other hand, to recover the

entanglement assisted bounds, can simply saturate the first condition. Thus this situation is more general, where we

can limit the rate of entanglement assistance. We therefore call this case entanglement transmission with rate limited

entanglement assistance .

It is not hard to prove a coding theorem in the case of rate limited entanglement assistance in the asymptotic

iid setting, simply by time sharing between the two types of protocols. However, the situation is not so easy in the

one-shot setting, since in that regime time sharing is impossible. To the best of our knowledge, bounds of this kind

appeared first in the work of Dupuis [18] . All the theorems in this paper are written with this more general setting in

mind.

5 Quantum Rate Splitting I

In this section we introduce the tools required to do quantum rate splitting. We demonstrate the technique for the point-

to-point quantum channel. We will apply the tools introduced in this section to the problem of one-shot entanglement

transmission over the QMAC and QIC in later sections. Another key element in our proof, which we discuss in this

section, is a way to do successive cancellation decoding for entanglement transmission codes when the receiver has

some side information. This allows us to generalise our bounds to the case when the sender and the receiver may share

some limited number of EPR states before the protocol starts.
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5.1 Rate Splitting for point-to-point Channels

5.1.1 Rate Splitting in the Classical Regime

In this section, we briefly review the idea of rate splitting, as detailed in [20]. Consider the classical point-to-point

channel (A, PB|A,B) between Alice and Bob and let PA be the input distribution that maximises I(A : B). The

idea is to split Alice into two independent senders, Alice0 and Alice1 and then have Bob decode their messages via a

successive cancellation strategy. To do this, we create two new distributions

P θU and P θV

with respect to some parameter θ ∈ [0, 1], where the random variables U and V both range over the same classical

alphabet A. These distributions are meant to be the input distributions of Alice0 and Alice1 respectively. However,

we must maintain the invariant that the distribution at the input to the channel must be PA. To do this, we define a

deterministic function f which has the following properties:

f : A×A → A
f(U, V ) ∼ PA, where U ∼ P θU and V ∼ P θV .

Moreover, when θ = 0, V is distributed exactly like A and U is a single point distribution, and when θ = 1, U is

distributed exactly like A and V is a single point distribution. Furthermore, appealing to the properties of the mutual

information one can show that

I(A : B) = I(U θV θ : B) = I(U θ : B) + I(V θ : BU θ).

From the above discussion it is clear that a simple encoding-decoding strategy is as follows:

1. Alice is split into Alice0 and Alice1.

2. Alice0 uses a code of rate I(U θ : B) regarding Alice1 as noise and Alice1 uses a code of rate I(V θ : BU θ)

regarding Alice0 as side information at the receiver.

3. Bob decodes via successive cancellation.

4. Finally, one can show that (I(U θ : B), I(V θ : BU θ)) is a continuous function in θ ∈ [0, 1] and so the ordered

pair traces out the straight line joining the points (0, I(A : B)) and (I(A : B), 0) due to the chain rule of mutual

information with equality.

With this construction in hand, one can design an encoding and decoding scheme for the classical MAC without

appealing to time sharing or jointly typical simultaneous decoding. Firstly, split Alice into the two users Alice0 and

Alice1 by the construction above. Then Charlie does a successive cancellation decoding for this 3 sender MAC with

senders Alice0, Bob and Alice1: first decode Alice0’s message treating the other senders as noise, then decode Bob’s

message regarding Alice0’s message as side information and Alice1 as noise, and finally, decode Alice1’s message

regarding Bob’s and Alice0’s message as side information. Thus three point-to-point channel decodings are done by

Charlie in order to decode the sent messages at the rate triple (I(U θ : C), I(C : BU θ), I(V θ : CBU θ)). Notice that,

all points in the dominant face of the achievable region in Figure 1 can be achieved in this way due to continuity as θ

varies from 0 to 1. Also, observe that the split of Alice depends on θ.
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The triple (f, P θU , P
θ
V ) with respect to the distribution PA is called a split of PA. That such a triple exists is given

by the following fact:

Fact 5.1. Given a distribution PA on the setA, there exist two distributions P θU and P θV (both defined onA), parameter

θ ∈ [0, 1] and a function f : A×A → A such that the following hold true:

1. f(U, V ) ∼ PA

2. For fixed values of x and u, P θf(U,V )|U (a|u) is a continuous function of θ.

3. For θ = 0, P θf(U,V )|U (a|u) = PA(a).

4. For θ = 1, and all u ∈ A, P θf(U,V )|U (a|u) puts all its mass on one element.

Proof. We demonstrate an explicit construction, as shown in [20]. Assume that A is an ordered set. We describe

the distribution in terms of distribution functions, for which we use the letter F along with the appropriate subscript.

Then, define, for all i ∈ A:

F θU (i) := θFA(i) + 1− θ

F θV (i) :=
FA(i)

F θU (i)

f(u, v) := max {u, v} ∀u, v ∈ A.

It is easy to check the triple defined above satisfies all the properties in Fact 5.1. The interested reader may look at

[20] for details.

5.1.2 Rate Splitting in the Quantum Case

To describe rate splitting in the entanglement transmission scenario, we will define an abstract splitting scheme with

some properties of interest:

Definition 5.2. Splitting Scheme Given a control state |Ω〉A′′A′
and systems A′′

0 and A′′
1 such that A′′ ∼= A′′

1
∼= A′′

0 , we

define a splitting scheme to be a family of isometric embeddings
{

U
A′′→A′′

0A
′′
1

θ

}

parametrized by a variable θ ∈ [0, 1],

such that:

1. For all θ, θ′ ∈ [0, 1] and ε > 0 there exists δ > 0 such that whenever |θ − θ′| ≤ δ, ‖Uθ · Ω− Uθ′ · Ω‖1 ≤ ε.

2. Given any channel NA′→C and its Stinespring dilation UA′→CE
N ,

I(A′′
0〉C)UN ·Ω0 = I(A′′

1〉C)UN ·Ω1 = I(A′′〉C)UN ·Ω

where Ω0 := U0 · Ω and Ω1 := U1 · Ω.

The splitting scheme defined above can be defined with respect to the more general control state

|σ〉A′′A′B′′B′
:= |Ω〉A′′A′ |∆〉B′′B′

.
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This will be useful when we describe the splitting protocol for more general multi-terminal channels, viz. NA′B′→C .

In that case, the second condition in Definition 5.2 can be stated as

I(A′′
0B

′′〉C)UN ·σ0 = I(A′′
1B

′′〉C)UN ·σ1 = I(A′′B′′〉C)σ

where σ0 := U0 · σ and σ1 := U1 · σ. For the purposes of this section, where we only demonstrate splitting for the

point-to-point channel, one may simply ignore the state |∆〉. Also, note that the invariants in the splitting scheme are

specified in terms of the coherent information. A more general definition would be to specify the invariants in terms

of the smooth min-entropy. We work with this more general definition.

We will first give an overview of the strategy for the unassisted case. We will then state and prove the main

technical lemma of this section, Proposition 5.3. The ideas used in proving this lemma will generalise easily to the

setting of the multi-terminal channels such as the QMAC and the QIC.

We will emulate the strategy outlined in Section 5.1.1 for a bipartite pure quantum state

|Ω〉A′′A′
:=

∑

a′′∈A′′

√

PA′′(a) |a〉A′′ |ζa〉A
′
,

where |a′′〉 runs over the computational basis of A′′ and PA′′ is a probability distribution on the basis set A′′. We

split the system A′′ into two registers A′′
0 and A′′

1 corresponding to the two senders Alice0 and Alice1. Let the split

(P θU , P
θ
V , f) be as in the previous subsection. Define the isometric embedding USPLIT(θ)

A′′→A′′
0A

′′
1 as follows:

√

PA(a) |a〉A
′′ USPLIT (θ)7−→

∑

(u,v)∈f−1(a′′)

√

P θU (u)P
θ
V (v) |u〉

A′′
0 |v〉A′′

1 ,

and |Ω(θ)〉A′′
0A

′′
1A

′
:= USPLIT(θ) |Ω〉A

′′A′
.

We now pass the system A′ through a point-to-point channel NA′→B and obtain the quantum state |Ω(θ)〉A′′
0A

′′
1B.

By unitary invariance, Iεmin(A
′′〉B)Ω = Iεmin(A

′′
0A

′′
1〉B)Ω(θ). From the works of [18, 27] applied to transmission of

quantum information over one-shot unassisted point to point quantum channels, we first realise that Bob can decode

Alice0’s quantum message at the rate of I
O(ε2)
min (A′′

0〉B)Ω(θ) −O(log ε−1) with error at most O(
√
ε). Then, employing

the successive cancellation methods of Yard et al. [2] Bob can decode Alice2’s quantum message at the rate of

I
O(ε2)
min (A′′

1〉BA′′
0)Ω(θ) −O(log ε−1) with error at most O(

√
ε).

Doing both the steps above requires us to overcome a few technical challenges. We do this by defining a notion

of almost CPTP maps (see Section 5.2) and combining it with another proof technique by Dupuis for the unassisted

quantum broadcast channel [18]. We believe that the notion of almost CPTP maps should be useful in other situations

as well.

We have thus operationally shown the chain rule inequality I
O(ε2)
min (A′′

1〉BA′′
0)Ω(θ)+I

O(ε2)
min (A′′

0〉B)Ω(θ) ≤ Iεmin(A
′′
0A

′′
1〉B)Ω(θ)

(suppressing the log factors). One can prove this fact independently using the chain rule for the smooth min-entropy

Fact 3.4. We now see that as θ varies from 0 to 1, the point (R0(θ), R1(θ)) = (I
O(ε2)
min (A′′

0〉B)Ω(θ), I
O(ε2)
min (A′′

1〉BA′′
0)Ω(θ))

traces out a continuous curve that lies on or below the line segment joining the point (Iεmin(A〉B), 0) to the point

(0, Iεmin(A〉B)) and meets it at its endpoints. The continuity of the curve follows from the continuity of the states

and the functionals involved. Continuity of the functionals is implied by Fact 3.6, whereas continuity of the states is

implied by Lemma A.1. This rate splitting and successive cancellation idea can now be easily generalised to the case

of entanglement transmission over QMAC with limited entanglement assistance.

We will now consider the general case when Bob has side information available at the decoder. Recall that the
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users Alice0 and Alice1 obtained from splitting the sender Alice are treated as independent senders. Hence, suppose

Alice0 and Alice1 wish to transmit the systems A0 and A1 of the states |η〉A0B0R0 and |ψ〉A1B1R1 to Bob. We wish to

prove there exists an encoder EA0A1→A′
and a decoder CBC0C1→A0A1 such that

F
(

C ◦ N ◦ E(η ⊗ ψ), η ⊗ ψ
)

≥ 1− ε.

Given that such an encoder decoder pair exist, set |η〉A0B0R0 ← |Φ〉M0R0 |Φ〉Ã0B0 and |ψ〉A1B1R1 ← |Φ〉A1M1 |Φ〉Ã1B1 .

Let QA0 = log|M0|, QA1 = log|M2|, and EA0 = log|B0|, EA1 = log|B1|. The rates QA0 , QA1 are the entanglement

transmission rates of Alice0 and Alice1 and EA0 and EA1 quantify the amount of pre-shared entanglement available

to them before the protocol begins.

We will consider the simpler case, when Alice0 does not share any entanglement with Bob, but Alice1 does, i.e.

the register C0 is trivial. We quantify the rates in the following lemmas:

Proposition 5.3. Given the control state |Ω〉A′′A′
, the point-to-point quantum channel NA′→C and the splitting

scheme
{

UA
′′

θ

}

, suppose Alice has to send states |η〉A0R0 ⊗ |ψ〉A1BR1 to Bob, where A0 and A1 are the message

registers and B models the side information Bob has about the A1. R0 and R1 are reference systems. We define

|Ω′(θ)〉A′′
0A

′′
1A

′
:= UA

′′
θ |Ω〉A

′′A′
and

|Ω(θ)〉A′′
0A

′′
1CE := UA′→CE

N |Ω(θ)〉A′′
0A

′′
1A

′
.

Then there exist an encoder EA0A1→A′
and a decoder CBC→A0A1 such that

∥

∥C ◦ N ◦ E(ηA0R0 ⊗ ψA1B1R1)− ηA0R0 ⊗ ψA1B1R1
∥

∥

1
≤ δ,

where δ = 4
√

2δdec(0) + 2
√

2δdec(1) + 2
√

2δenc(0) + 2δenc(1)

and

δdec(0) = 20 · 2− 1
2
Hε

2(A0|R0)η− 1
2
H
ε0
min(A

′′
0 |A′′

1E)Ω(θ) + 160ε

δdec(1) = 20 · 2− 1
2
Hε

2(A1|R1)ψ− 1
2
H
ε0
min(A

′′
1 |E)Ω(θ) + 160ε

δenc(0) = 20 · 2 1
2
Hε

max(A0)η− 1
2
H
ε0
min(A

′′
0 |A′′

1 )Ω(θ) + 160ε

δenc(1) = 2
1
2
Hε

max(A1)ψ− 1
2
Hε

min(A
′′
1 )Ω(θ) + 12ε,

where ε0 = O(ε2) for some positive ε.

An easy corollary of Proposition 5.3 is the following:

Corollary 5.4. Given the control state |Ω〉A′′A′
, the parameter θ ∈ [0, 1] and the point-to-point channel NA′→B, and

the splitting scheme
{

U
A′′→A′′

0A
′′
1

θ

}

, Alice can transmit EPR states to Bob at the rate QA0 + QA1 given EA1 bits of
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pre-shared entanglement, with error at most 240
√
ε whenever

QA0 < Hε0
max(A

′′
0 |A′′

1)Ω′(θ) + log 4ε2

QA0 < Iε0min(A
′′
0〉B)UN ·Ω′(θ) + log 4ε2

QA1 + EA1 < Hε
max(A

′′
1)Ω′(θ) + log 4ε2

QA1 − EA1 < Iε0min(A
′′
1〉A′′

0B)UN ·Ω′(θ) + log 4ε2,

where ε0 = O(ε2) and |Ω′(θ)〉A′′
0A

′′
1A

′
= UA

′′
θ |Ω〉A

′′A′
.

Proof. We initialise the states |η〉A0R0 and |ψ〉A1R1B1 as follows

|η〉A0R0 ← |Φ〉A0R0

|ψ〉A1R1B1 ← |Φ〉R1M1 |Φ〉Ã1B1 .

Here, the registers M1Ã1 play the roles of A1, and the notation Φ is used generically to mean an EPR state. Let

|R0| = 2QA0

|R1| = 2QA1 and |B1| = 2EA1 .

Note that Alice’s actual rate QA is QA0 +QA1 . The following relations are easy to check:

Hmax(A0)η = QA0 =⇒ Hε
max(A0)η ≤ QA0

Hmax(M1Ã1)ψ = QA1 + EA1 =⇒ Hε
max(M1Ã1)ψ ≤ QA1 + EA1

Hmin(A0|R0)η = QA0 =⇒ Hε
min(A0)η ≥ QA0

Hmin(M1Ã1|R1)ψ = EA1 −QA1 =⇒ Hε
min(M1Ã1|R1)ψ ≥ EA1 −QA1 .

Then, from Proposition 5.3, we set

δdec(0) < 200ε

δdec(1) < 200ε

δenc(0) < 200ε

δenc(1) < 16ε.

Plugging in these numbers in the bounds shown in Proposition 5.3 completes the proof.

5.2 Tools for Successive Cancellation: Intermediate States and Almost CPTP Maps

As mentioned in section Section 5.1.2, we will require the notion of almost CPTP maps to be able to successive

cancellation decoding for entanglement transmission codes. An upshot of this technique is that it allows the decoder

to use side information that the receiver may have, to boost the sender’s entanglement transmission rate. This is what

essentially allows us to provide the bounds in the general case when only limited entanglement is available.

The problem that we consider is as follows: we are given the channelNA′→C and the split control state |Ω〉A′′
0A

′′
1A

′
.
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The two split senders Alice0 and Alice1 wish to send the A0 and A1 parts of the states |η〉R0A0 and |ψ〉A1BR1 to the

receiver Charlie. Additionally, Charlie also holds the system B as side information, which he can potentially use to

boost Alice1’s rate. As a first step, we embed the systems A0 and A1 into the systems A′′
0 and A′′

1 via the action of the

isometries W
A0→A′′

0
0 and W

A1→A′′
1

1 :

|η〉R0A′′
0 :=W0 |η〉R0A0

|ψ〉R1BA′′
1 :=W1 |ψ〉R1BA′′

1 .

Our encoder will be of the form

EA′′
0A

′′
1→A′

(·) ≡ |A′′
0A

′′
1 |opA

′′
0A

′′
1→A′

(ΩA
′′
0A

′′
1A

′
)UA

′′
0 ⊗ UA′′

1 (·),

where UA
′′
0 and UA

′′
1 are random unitaries, picked independently from the Haar measure. The above map is not trace

preserving in general, and is only CPTP on average over the choices of the two random unitaries. One of our main

aims will be to show that, with respect to the states η and ψ, there exist fixed instantiations of UA
′′
0 and UA

′′
1 such that

EA′′
0A

′′
1→A′ ◦W0 ⊗W1 · (η ⊗ ψ) ≡ V A0A1→A′ · (η ⊗ ψ)

where V A0A1→A′
is an isometry. This isometry should also have a corresponding decoding mapDBB→A0A1 such that

F
(

|η〉A0R0 |ψ〉A1BR1 ,D ◦N ◦ E(W0 · η ⊗W1 · ψ)
)

≥ 1− ε.

To show the existence of the encoder V and its corresponding decoder D, we first need a good way to manipulate

the quantity EA′′
0A

′′
1→A′ ◦W0 ⊗W1 · (η ⊗ ψ), which we henceforth abbreviate as E(η ⊗ ψ). To that end, we define

intermediate states.

5.2.1 Intermediate States

Definition 5.5. Intermediate State Given the control state |Ω〉A′′
0A

′′
1A

′
and the state |ψ〉A′′

1BR1 , we define the inter-

mediate state

|ω〉A′′
0BR1A′

:=
√

|A′′
1 | opA

′′
1→A′′

0A
′
(|Ω〉A′′

0A
′′
1A

′
)UA

′′
1 |ψ〉A′′

1BR1 .

The following lemma will enable us to write the encoded state in terms of the intermediate state.

Lemma 5.6. Intermediate State Lemma Given the intermediate state |ω〉A′′
0BR1A′

, the following holds

E(η ⊗ ψ) = |A′′
0 |opA

′′
0→BR1A′

(

ωA
′′
0BR1A′

)

◦ UA′′
0 · (ηA′′

0R0).
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Proof. Consider the following series of equalities:

√

A′′
0A

′′
1 opA

′′
0A

′′
1→A′

(|Ω〉A′′
0A

′′
1A

′
) (UA

′′
0 ⊗ UA′′

1 ) |η〉A′′
0R0 |ψ〉A′′

1BR1

=
√

A′′
0A

′′
1 opA

′′
0A

′′
1→R0BR1

(

(UA
′′
0 ⊗ UA′′

1 ) |η〉A′′
0R0 |ψ〉A′′

1BR1

)

|Ω〉A′′
0A

′′
1A

′

=

(

√

A′′
0 opA

′′
0→R0(UA

′′
0 |η〉A′′

0R0)⊗
√

A′′
1 opA

′′
1→BR1(UA

′′
1 |ψ〉A′′

1BR1)

)

|Ω〉A′′
0A

′′
1A

′

=
√

A′′
0 opA

′′
0→R0(UA

′′
0 |η〉A′′

0R0)

(

√

A′′
1 opA

′′
1→BR1(UA

′′
1 |ψ〉A′′

1BR1) |Ω〉A′′
0A

′′
1A

′
)

=
√

A′′
0 opA

′′
0→BR1A′

(

√

A′′
1 opA

′′
1→BR1(UA

′′
1 |ψ〉A′′

1BR1) |Ω〉A′′
0A

′′
1A

′
)

UA
′′
0 |η〉A′′

0R0

=
√

A′′
0 opA

′′
0→BR1A′

(

√

A′′
1 opA

′′
1→A′′

0A
′
(|Ω〉A′′

0A
′′
1A

′
)UA

′′
1 |ψ〉A′′

1BR1

)

UA
′′
0 |η〉A′′

0R0

The above derivation uses the properties of the op operator proved in Section 3.3 of Section 3. Writing the first and

the last terms in the state notation gives us the required result.

Note that the intermediate states may not be quantum states in the sense that they may not have trace 1. In the following

lemma, we prove that intermediate states have trace 1 on average over the choice of random unitaries, assuming some

entropic inequalities are satisfied.

Lemma 5.7. Trace of Intermediary States Given the intermediary state

|ω〉A′′
0BR1A′

=
√

|A′′
1 |opA

′′
1→A′′

0A
′
(|ΩA′′

0A
′′
1A

′〉)UA′′
1 |ψ〉A′′

1R1B

where UA
′′
1 is a random unitary sampled from the Haar measure and given that

Hε
max(A)ψ ≤ Hε

min(A
′′
1)Ω +O(log ε),

the following holds

E

UA
′′
1

[|Tr[ω]− 1|] ≤ O(ε).

Proof. Using the single sender decoupling theorem 3.13, we see that

E

UA
′′
1

∥

∥

∥
|A′′

1 |TrA′′
0A

′ opA
′′
1→A′′

0A
′
(|ΩA′′

0A
′′
1A

′〉)UA′′
1 · ψA′′

1R1B − ψR1B
∥

∥

∥

1

≤ 2−
1
2
Hε

min(A1|R1B)ψ− 1
2
Hε

min(A
′′
1 )Ω + 12ε

= 2
1
2
Hε

max(A1)ψ− 1
2
Hε

min(A
′′
1 )Ω + 12ε.

We can replace A′′
1 with the system A1 in the entropic quantity corresponding to |ψ〉A′′

1BR1 since |ψ〉A′′
1BR1 is an

isometric embedding of |ψ〉A1R1B. The last equality follows from the duality of the smooth min- and max- entropies

for pure states. This concludes the proof.

We will now show the following approximate data processing type inequality:

Suppose we are given the intermediary state

|ω〉A′′
0BR1A′

=
√

|A′′
1 |opA

′′
1→A′′

0A
′
(|ΩA′′

0A
′′
1A

′〉)UA′′
1 |ψ〉A′′

1R1B
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where UA
′′
1 is a Haar random unitary. Then, with constant probability over the choice of UA

′′
1

Hε
min(A

′′
0 |BR1)ω ≥ Hf(ε)

min (A
′′
0 |A′′

1)Ω −O(1),

where f(ε) is some function of ε. There are several technical issues that one should note here. For example, the

expression Hε
min(A

′′
0 |BR1)ω is, strictly speaking, not defined, since ω is not really a normalised state. Hence, what

we actually want to show is that the above data processing like inequality holds for the quantity Hε
min(A

′′
0 |BR1)ω̃,

which is defined with respect to he normalised version of ω. To that end, we first define almost CPTP maps in the

following section.

5.2.2 Almost CPTP Maps

Definition 5.8 (Almost CPTP). We call a linear map T A′′
1→BR1 as an almost CPTP if T has the following properties:

1. T is CP.

2. Tr[T (πA′′
1 )] ∈ [1− δ, 1 + δ] for some small δ ≥ 0.

3.
∫

T (UA′′
1 · ξ)dµ = Tr[ξ]T (πA′′

1 ).

Lemma 5.9. [Approximate Data Processing Inequality for Almost CPTP Maps] When the measure µ is set to be

the Haar measure on the unitary group on A′′
1 , and given the condition that

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)Ω +O(log f(ε)),

then the following holds with constant probability over the choice of UA
′′
1 ,

Hε
min(A

′′
0|BR1)ω̃ ≥ HO(ε2)

min (A′′
0 |A′′

1)Ω −O(1)

where ω̃ := ω
Tr[ω] and f(ε) = O(ε2).

Proof. First, given the condition that H
f(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1) + 2 log f(ε), from Lemma 5.7 we see that

E

UA
′′
1

|Tr[ω]− 1| ≤ 13f(ε).

Next, define

T A′′
1→BR1(ξ) := |A′′

1 |
(

opA
′′
1→BR1(ψ) · ξ

)

.

Checking T is almost CPTP

Firstly, it is clear that T is CP. Next, we see that

Tr[T (πA′′
1 )] = Tr[opA

′′
1→BR1(ψ)opA

′′
1→BR1(ψ)†]

= Tr[TrA′′
1
(ψ)]

= 1.
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It is another easy verification, using the properties of Haar integrals, that

∫

T (UA′′
1 · ξ)dµ = Tr[ξ]T (πA′′

1 ).

This shows that T is indeed an almost CPTP.

Applying T to the operator inequality

Again, using the properties of the op operator we see that

T
(

(UA
′′
1 )T · Ω

)

= |A′′
1 |
(

opA
′′
1→BR1(ψ) ·

(

(UA
′′
1 )T · ΩA′′

0A
′′
1A

′)
)

= |A′′
1 |
(

opA
′′
1→BR1(UA

′′
1ψ) · ΩA′′

0A
′′
1A

′
)

= |A′′
1 |
(

opA
′′
1→A′′

0A
′
(Ω) ·

(

UA
′′
1 · ψA′′

1BR1
)

)

= ω.

Now, suppose that Ω̃ is the optimiser in the definition of H
f(ε)
min (A

′′
0 |A′′

1)Ω and that

∥

∥

∥
Ω̃− Ω

∥

∥

∥

1
≤ 2f(ε). Suppose also

that λA
′′
1 be a positive semidefinite matrix such that Tr[λA

′′
1 ] = 2−H

f(ε)
min (A′′

0 |A′′
1 )Ω and

Ω̃A
′′
0A

′′
1 ≤ I

A′′
0 ⊗ λA′′

1 .

Then, using the fact that T is a CP map, we see that

T
(

(

UA
′′
1
)T · Ω̃A′′

0A
′′
1

)

≤ I
A′′

0 ⊗ T
(

(

UA
′′
1
)T · λA′′

1

)BR1

.

First notice that, by properties 2 and 3 of almost CPTP maps (Definition 5.8),

∫

T
(

(

UA
′′
1
)T · λA′′

1

)

dUA
′′
1 =

∫

T
(

UA
′′
1 · λA′′

1

)

dUA
′′
1

= Tr[λA
′′
1 ]T (πA′′

1 )

Taking trace on both sides

Tr

[
∫

T
(

(

UA
′′
1
)T · λA′′

1

)

dUA
′′
1

]

= 2−H
f(ε)
min (A′′

0 |A′′
1 )Ω ,

where the last equality stems from the fact that for T , property 2 holds with δ = 0. Next, from the fact that Ω̃− Ω is

Hermitian, we can write Ω̃−Ω = ∆+ −∆− where ∆± are positive semidefinite matrices with disjoint support. This

implies that

∥

∥

∥
Ω̃− Ω

∥

∥

∥

1
= Tr[∆+] + Tr[∆−]

≤ 2f(ε),
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then

∫

∥

∥

∥
T
(

(

UA
′′
1
)T · Ω̃

)

− T
(

(

UA
′′
1
)T · Ω

)∥

∥

∥

1
dUA

′′
1 =

∫

∥

∥

∥
T
(

(

UA
′′
1
)T ·

(

∆+ −∆−
)

)∥

∥

∥

1
dUA

′′
1

≤
∫

Tr
[

T
(

(

UA
′′
1
)T ·

(

∆+

)]

dUA
′′
1 +

∫

Tr
[

T
(

(

UA
′′
1
)T ·

(

∆−)
)]

dUA
′′
1

=
(

Tr[∆+] + Tr[∆−]
)

Tr[T (πA′′
1 )]

≤ 4f(ε).

Derandomization

Consider the following random variables:

1. X1 := |Tr[ω]− 1| .

2. X2 := Tr[T
(

(

UA
′′
1
)T · λA′′

1

)

] .

3. X3 :=
∥

∥

∥
T
(

(

UA
′′
1
)T · Ω̃

)

− ω
∥

∥

∥

1
.

We know from the previous arguments that

1. E[X1] ≤ 13f(ε) =: µ1 .

2. E[X2] = 2−H
f(ε)
min (A′′

0 |A′′
1 )Ω =: µ2 .

3. E[X3] ≤ 4f(ε) =: µ3 .

Then, by Markov’s inequality and a union bound, for some integer k ≥ 4, we see that

Pr[
∏

i∈[3]
{Xi ≤ k · µi}] ≥ 1− 3

k
.

This implies that there exists, with at least constant probability, a fixed value of UA
′′
1 such that

1. ‖Tr[ω]− 1‖1 ≤ k · 13f(ε) .

2. Tr[T
(

(

UA
′′
1
)T · λA′′

1

)

] ≤ k · 2−Hf(ε)
min (A′′

0 |A′′
1 )Ω .

3.

∥

∥

∥
T
(

(

UA
′′
1
)T · Ω̃

)

− ω
∥

∥

∥

1
≤ k · 4f(ε) .

Consider now

∥

∥

∥

∥

∥

∥

T
(

(

UA
′′
1
)T · Ω̃

)

Tr[T
(

(

UA
′′
1

)T · Ω̃
)

]
− ω

Tr[ω]

∥

∥

∥

∥

∥

∥

1

≤

∥

∥

∥

∥

∥

∥

T
(

(

UA
′′
1
)T · Ω̃

)

Tr[T
(

(

UA
′′
1

)T · Ω̃
)

]
− T

(

(

UA
′′
1
)T · Ω̃

)

∥

∥

∥

∥

∥

∥

1

+
∥

∥

∥
T
(

(

UA
′′
1
)T · Ω̃

)

− ω
∥

∥

∥

1

+

∥

∥

∥

∥

ω − ω

Tr[ω]

∥

∥

∥

∥

1

= |Tr[T
(

(

UA
′′
1
)T · Ω̃

)

]− 1|

+
∥

∥

∥
T
(

(

UA
′′
1
)T · Ω̃

)

− ω
∥

∥

∥

1
+ |Tr[ω]− 1|

≤ k · 17f(ε) + k · 4f(ε) + k · 13f(ε) = k · 34f(ε) := k′f(ε).
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Notice that
T
(

(

UA
′′
1

)T
·Ω̃
)

Tr[T
(

(

UA
′′
1

)T
·Ω̃
)

]

is a normalized state in the
√

k′f(ε) ball (w.r.t the purified distance) around the state

ω̃. This means that
T
(

(

UA
′′
1

)T
·Ω̃
)

Tr[T
(

(

UA
′′
1

)T
·Ω̃
)

]

is a candidate optimiser for H

√
k′·f(ε)

min (A′′
0 |BR1)ω̃. To be precise, using Item 2,

we see that

H

√
k′·f(ε)

min (A′′
0 |BR1)ω̃ ≥ Hf(ε)

min (A
′′
0 |A′′

1)Ω − log k + log(1− 17kf(ε)).

We now set the function f(ε) as ε2

k′ . Then, substituting we get

Hε
min(A

′′
0 |BR1)ω̃ ≥ HO(ε2)

min (A′′
0 |A′′

1)Ω −O(1),

which concludes the proof.

The following lemma demonstrates the use of almost CPTP maps with the decoupling theorem in a channel coding

scenario.

Lemma 5.10. Given the intermediary state |ω〉A′′
0A

′BR1 and the channel NA′→C with Stinespring dilation UA′→CE ,

let the measure µ to be the Haar measure over the unitary group corresponding to the system A′′
1 . Let |ω̃〉 we the

normalised unit vector obtained from |ω〉. Suppose that we are given the condition

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)Ω +O(log f(ε)).

Then following holds true with constant probability over the choices of UA
′′
0 and UA

′′
1

∥

∥

∥

∥

(

|A′′
0 | TrC UN opA

′′
0→A′BR1(ω̃) UA

′′
0 · ηA′′

0R0

)R0BR1E − ηR0 ⊗ ω̃EBR1

∥

∥

∥

∥

1

≤ 2−
1
2
H
O(ε2)
min (A′′

0 |A′′
1E)UN ·Ω− 1

2
Hε

min(A0|R0)η+2 log k + 12kε,

where k is a constant positive integer and f(ε) = O(ε2).

Proof. First, we define the intermediary state

|ω〉A′′
0BR1CE := UA′→CE

N |ω〉A′′
0BR1A′

.

It is not hard to see from the properties of the op operator that

|ω〉A′′
0BR1CE =

√

|A′′
1 |
(

opA
′′
1→A′′

0CE(UN |Ω〉)UA
′′
1 |ψ〉A′′

1BR1

)

.

Note that since UN is trace preserving, the traces of ωA
′′
0BR1CE and ωA

′′
0BR1A′

are the same. We refer to this trace

quantity as Tr[ω] throughout the proof.

Recall that, the condition H
f(ε)
max(A)ψ ≤ Hf(ε)

min (A
′′
1)Ω + 2 log f(ε) along with Lemma 5.7 implies that

E
A′′

1

|Tr[ω]− 1| ≤ 13f(ε).
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We work with the same almost CPTP map T A′′
1→BR1 as in Lemma 5.9. Suppose Ω̃A

′′
0A

′′
1E is the optimiser in the

definition of H
f(ε)
min (A

′′
0|A′′

1E)UN ·Ω and

∥

∥

∥
UN · Ω− Ω̃

∥

∥

∥
≤ 2f(ε). Let λA

′′
1E be a positive semidefinite matrix such that

Tr[λA
′′
1E ] =2−H

f(ε)
min (A′′

0 |A′′
1E)UN ·Ω

and

Ω̃ ≤ I
A′′

0 ⊗ λA′′
1E

=⇒ T
(

(

UA
′′
1
)T · Ω̃

)

≤ I
A′′

0 ⊗ T
(

(

UA
′′
1
)T · λA′′

1E
)

.

As before, we note that the action of the random map T
(

(

UA
′′
1
)T

(·)
)

does not change the trace of λA
′′
1E on average:

∫

T
(

(

UA
′′
1
)T · λA′′

1E
)

dUA
′′
1 =

∫

T
(

UA
′′
1 · λA′′

1E
)

dUA
′′
1

= T (πA′′
1 )⊗ λE .

Taking trace on both sides

Tr[

∫

T
(

(

UA
′′
1
)T · λA′′

1E
)

dUA
′′
1 ] = Tr[λE]

= Tr[λA
′′
1E ]

= 2−H
f(ε)
min (A′′

0 |A′′
1E)UNΩ .

It is also not hard to see via the definition of |ω〉A′′
0BR1CE that

T
(

(

UA
′′
1
)TUN · Ω

)A′′
0BR1CE

= ωA
′′
0BR1CE .

We will now apply the smooth single sender decoupling theorem to the quantity on the left in the theorem state-

ment, after appropriate normalisation:

∫

1

Tr[ω]

∥

∥

∥

∥

(

|A′′
0| TrC UN opA

′′
0→A′BR1(ω) UA

′′
0 · ηA′′

0R0

)R0BR1E − ηR0 ⊗ ωBR1E

∥

∥

∥

∥

1

dUA
′′
0

≤ 2−
1
2
Hε

min(A
′′
0 |BR1E)ω̃− 1

2
Hε

min(A0|R0)η + 12ε.

Derandomization

Next, define the random variables

1. X1 := ‖Tr[ω]− 1‖1

2. X2 := Tr[T
(

(

UA
′′
1
)T · λA′′

1E
)

]

3. X3 :=

∥

∥

∥

∥

(

T
(

(

UA
′′
1
)T · Ω̃

)A′′
0BR1E − ωA′′

0BR1E

∥

∥

∥

∥

1

4. X4 :=
1

Tr[ω]

∥

∥

∥

∥

(

|A′′
0 | TrC UN opA

′′
0→A′BR1(ω) UA

′′
0 · ηA′′

0R0

)R0BR1E − ηR0 ⊗ ωBR1E

∥

∥

∥

∥

1
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5. µ4(U
A′′

1 ) := 2−
1
2
Hε

min(A
′′
0 |BR1E)ω̃− 1

2
Hε

min(A0|R0)η + 12ε

We define µ1, µ2 and µ3 analogously as in Lemma 5.9. We already know from the single sender decoupling

theorem that

E

UA
′′
0

[X4 | UA
′′
1 ] ≤ µ4(UA

′′
1 ).

Let k ∈ N be some positive integer ≥ 5. Then, via the conditional Markov inequality we see that

Pr
UA

′′
0 ,UA

′′
1

[X4 ≥ k · µ4(A′′
1)] =

∑

UA
′′
1

Pr
UA

′′
0

[X4 ≥ k · µ4(A′′
1) | UA

′′
1 ] · Pr[UA′′

1 ]

≤
∑

UA
′′
1

1

k
Pr[UA

′′
1 ]

=
1

k
.

Since X1,X2 and X3 are only functions of UA
′′
1 , Markov’s inequality along with a union bound imply that

Pr
UA

′′
0 ,UA

′′
1

[
∏

i∈[4]
{Xi ≤ k · µi}] ≥ 1− 4

k
.

Then, repeating the arguments in Lemma 5.9, one can see that there exists, with probability at least 1 − 4
k , fixed

unitaries UA
′′
0 and UA

′′
1 such that the following holds:

H

√
34kf(ε)

min (A′′
0 |BR1E)ω̃ ≥ Hf(ε)

min (A
′′
0 |A′′

1E)UN ·Ω − log k + log(1− 17kf(ε))

and

1

Tr[ω]

∥

∥

∥

∥

(

|A′′
0 | TrC UN opA

′′
0→A′BR1(ω) UA

′′
0 · ηA′′

0R0

)R0BR1E − ηR0 ⊗ ωBR1E

∥

∥

∥

∥

1

≤ k · 2− 1
2
Hε

min(A
′′
0 |BR1E)ω̃− 1

2
Hε

min(A0|R0)η + 12kε.

Setting f(ε) = ε2

34k and making the appropriate substitutions, we see that

1

Tr[ω]

∥

∥

∥

∥

(

|A′′
0 | TrC UN opA

′′
0→A′BR1(ω) UA

′′
0 · ηA′′

0R0

)BR0R1E − ηR0 ⊗ ωBR1E

∥

∥

∥

∥

1

≤ k · 1

(1− ε2

2 )
· 2− 1

2
H

ε2

34k
min (A′′

0 |A′′
1E)UN ·Ω− 1

2
Hε

min(A0|R0)η+log k + 12kε

≤ 2−
1
2
H

ε2

34k
min (A′′

0 |A′′
1E)UN ·Ω− 1

2
Hε

min(A0|R0)η+O(log k) + 12kε.

This concludes the proof.

5.3 Proof of Proposition 5.3

We are now ready to prove our main theorem in this section, which is Proposition 5.3.
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Proof. At the outset we assume that

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)Ω +O(log f(ε)),

where f(ε) = O(ε2). Consider the randomised encoder

EA0A1→A′
RAND ≡

√

|A′′
0 ||A′′

1 |opA
′′
0A

′′
1→A′

(Ω′(θ))
(

UA
′′
0W

A1→A′′
0

0 ⊗ UA
′′
1

1 W
A1→A′′

1
1

)

.

From the Lemma 5.6 we know that

E(η ⊗ ψ) = |A′′
0 |opA

′′
0→BR1A′

(|ω〉A′′
0BR1A′

)UA
′′
0 · ηA′′

0R0 ,

where |ω〉A′′
0BR1A′

is the intermediate state defined as

|ω〉A′′
0BR1A′

=
√

|A′′
1 |opA

′′
1→A′′

0A
′
(|ΩA′′

0A
′′
1A

′〉)UA′′
1 |ψ〉A′′

1R1B .

We also use the convention that ω̃ is the normalised version of ω.

The Decoupling Step

We consider the four decoupling equations corresponding to the encoding and decoding steps for Alice0 and Alice1.

The Encoding Equations

E

UA
′′
0

[ ∥

∥

∥
|A′′

0 |TrA′ opA
′′
0→A′BR1(ω̃) UA

′′
0W0 · ηR0A0 − ηR0 ⊗ ω̃BR1

∥

∥

1

]

≤ 2
1
2
Hε

max(A0)η− 1
2
Hε

min(A
′′
0 |B1R1)ω̃ + 12ε. (enc Alice0)

E

UA
′′
1

[
∥

∥

∥
|A′′

1 |TrA′′
0A

′ opA
′′
1→A′′

0A
′
(Ω(θ)) UA

′′
1W1 · ψR1BA1 − ψR1B

∥

∥

1

]

≤ 2
1
2
H
f(ε)
max (A1)ψ− 1

2
H
f(ε)
min (A′′

1 )Ω + 12f(ε). (enc Alice1)

The Decoding Equations

E

UA
′′
0

[
∥

∥

∥
|A′′

0 |TrC UN opA
′′
0→A′BR1(ω̃) UA

′′
0W0 · ηR0A0 − ηR0 ⊗ ω̃BR1E

∥

∥

1

]

≤ 2−
1
2
Hε

2 (A0|R0)η− 1
2
Hε

min(A
′′
0 |BR1E)ω̃ + 12ε. (dec Alice0)
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E

UA
′′
1

[
∥

∥

∥
|A′′

1 |TrCA′′
0
UN opA

′′
1→A′′

0A
′
(Ω) UA

′′
1W1 · ψR1A1 − ψR1 ⊗ ΩE

∥

∥

1

]

≤ 2−
1
2
Hε

2(A1|R1)ψ− 1
2
Hε

min(A
′′
1 |E)UN ·Ω + 12ε.

(dec Alice1)

Derandomisation

Note that under the assumption that

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)Ω +O(log f(ε)),

the upper bound in Eq. (enc Alice1) is at most 13f(ε). Then, following steps that are similar to the arguments in

Lemma 5.10, we see that for a large enough but constant integer k, there exist unitaries UA
′′
0 and UA

′′
1 such that

∥

∥

∥
|A′′

0|TrA′ opA
′′
0→A′BR1(ω̃) UA

′′
0W0 · ηR0A0 − ηR0 ⊗ ω̃BR1

∥

∥

1

≤ k · 2 1
2
Hε

max(A0)η− 1
2
Hε

min(A
′′
0 |B1R1)ω̃ + 12kε,

∥

∥

∥
|A′′

1|TrA′′
0A

′ opA
′′
1→A′′

0A
′
(Ω(θ)) UA

′′
1W1 · ψR1BA1 − ψR1B

∥

∥

1

≤ 13kf(ε),
∥

∥

∥
|A′′

0|TrC UN opA
′′
0→A′BR1(ω̃) UA

′′
0W0 · ηR0A0 − ηR0 ⊗ ω̃BR1E

∥

∥

1

≤ k · 2− 1
2
Hε

2(A0|R0)η− 1
2
Hε

min(A
′′
0 |BR1E)ω̃ + 12kε,

∥

∥

∥
|A′′

1|TrCA′′
0
UN opA

′′
1→A′′

0A
′
(Ω) UA

′′
1W1 · ψR1A1 − ψR1 ⊗ ΩE

∥

∥

1

≤ k · 2− 1
2
Hε

2 (A1|R1)ψ− 1
2
Hε

min(A
′′
1 |E)UN ·Ω + 12kε,

Hε
min(A

′′
0 |BR1)ω̃ ≥ H

ε2

34k
min(A

′′
0 |A′′

1)Ω − log k + log(1− ε2

34
),

Hε
min(A

′′
0 |BR1E)ω̃ ≥ H

ε2

34k
min(A

′′
0 |A′′

1E)UN ·Ω − log k + log(1− ε2

34
),

where we get the data processing inequalities by setting f(ε) = ε2

34k . Simplifying the above and using the definition

of ω we see that the above inequalities imply that

∥

∥

∥
|A′′

0 |TrA′ opA
′′
0→A′BR1(ω̃) UA

′′
0W0 · ηR0A0 − ηR0 ⊗ ω̃BR1

∥

∥

1

≤ 2
1
2
Hε

max(A0)η− 1
2
H
O(ε2)
min (A′′

0 |A′′
1 )Ω+O(log k) + 12kε

:= δenc(1),
∥

∥ωR1B − ψR1B
∥

∥

1
≤ 13kf(ε) := δenc(2),

∥

∥

∥
|A′′

0 |TrC UN opA
′′
0→A′BR1(ω̃) UA

′′
0W0 · ηR0A0 − ηR0 ⊗ ω̃BR1E

∥

∥

1

≤ 2−
1
2
Hε

2 (A0|R0)η− 1
2
H
O(ε2)
min (A′′

0 |A′′
1E)UN ·Ω+O(log k) + 12kε

:= δdec(1),
∥

∥ωR1E − ψR1 ⊗ΩE
∥

∥

1
≤ 2−

1
2
Hε

2(A1|R1)ψ− 1
2
Hε

min(A
′′
1 |E)UN ·Ω+O(log k) + 12kε := δdec(2).
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Normalisation and Uhlmann’s Theorem

Note that, the matrices on the left inside each 1-norm expression is unnormalised. We use Lemma A.2 to replace

each of these with their normalised counterparts, which increases each of the upper bounds by a multiplicative factor

of 2. Also note that, by Corollary A.3,

∥

∥

∥

∥

∥

|A′′
0 |TrA′ opA

′′
0→A′BR1(ω) UA

′′
0W0 · ηR0A0

Tr
[

|A′′
0 |TrA′ opA

′′
0→A′BR1(ω) UA

′′
0W0 · ηR0A0

] − ηR0 ⊗ ω̃BR1

∥

∥

∥

∥

∥

1

≤ 2δenc(1)

which, by the definition of E(η ⊗ ψ) is equivalent to

∥

∥

∥

∥

TrA′
E(η ⊗ ψ)

Tr [E(η ⊗ ψ)] − η
R0 ⊗ ω̃BR1

∥

∥

∥

∥

1

≤ 2δenc(1).

Then, combining the first two inequalities (after appropriately appending ηR0 to the second inequality) we see that

∥

∥

∥

∥

TrA′
E(η ⊗ ψ)

Tr [E(η ⊗ ψ)] − η
R0 ⊗ ψR1B

∥

∥

∥

∥

1

≤ 2δenc(1) + 2δenc(2).

Thus, applying Uhlmann’s theorem, we see that there exists an encoding isometry V A0A1→A′
enc such that

∥

∥

∥

∥

E(η ⊗ ψ)
Tr [E(η ⊗ ψ)] − V

A0A1→A′
enc · ηA0R0 ⊗ ψA1BR1

∥

∥

∥

∥

1

≤ 2
√

2δenc(1) + 2δenc(2).

Next, note that 1√
Tr[ω]

|ω〉A′′
0BR1CE is a valid purification of the state ω̃BR1E appearing in the inequality corresponding

to δdec(1) and also of the state ω̃R1E appearing in the normalised version of the inequality corresponding to δdec(2).

Then, via Uhlmann’s theorem we see that there exist isometries

V C→A0

◦
C

◦
A′′

0
1

V
◦
A

′′
0

◦
CB→A1BF

2 ,

such that

∥

∥

∥

∥

V C→A0

◦
C

◦
A′′

0
1 · UN

( E(η ⊗ ψ)
Tr [E(η ⊗ ψ)]

)

− ηA0R0 ⊗ ω̃
◦
A

′′
0

◦
CR1BE

∥

∥

∥

∥

1

≤ 2
√

2δdec(1)

and

∥

∥

∥

∥

V
◦
A

′′
0

◦
CB→A1BF

2 · ω̃
◦
A

′′
0

◦
CR1BE − ψA1BR1 ⊗ ΩEF

∥

∥

∥

∥

1

≤ 2
√

2δdec(2).

Then, by using the triangle inequality after appending the state ηA0R0 to the second inequality and applying the

isometry V2 to the first inequality, we see that

∥

∥

∥

∥

V2 ◦ V1 ◦ UN
( E(η ⊗ ψ)
Tr [E(η ⊗ ψ)]

)

− ηA0R0 ⊗ ψA1BR1 ⊗ ΩEF
∥

∥

∥

∥

1

≤ 2
√

2δdec(1) + 2
√

2δdec(2)

:= δ′.
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Defining

CBC→A0A1 := TrF V2 ◦ V1

and discarding the E system, we see that

∥

∥

∥

∥

C ◦ N
( E(η ⊗ ψ)
Tr [E(η ⊗ ψ)]

)

− ηA0R0 ⊗ ψA1BR1

∥

∥

∥

∥

1

≤ δ′.

A further application of the triangle inequality with the expression which bounds the encoding error (after acting the

operator C ◦ N on it) shows that

∥

∥C ◦ N ◦ Venc(η ⊗ ψ)− ηA0R0 ⊗ ψA1BR1
∥

∥

1
≤ δ′ + 2

√

2δenc(1) + 2δenc(2)

:= δ.

Successive Cancellation

The decoding algorithm is now clear.

1. Alice creates a state close to
(

E(η⊗ψ)
Tr[E(η⊗ψ)]

)

by using the encoding isometry Venc on |η〉A0R0 |ψ〉A1BR1 .

2. Charlie first recovers the A0 system of |η〉A0R0 by applying the isometry V1. This isometry also does the job of

locally simulating the system A′′
0 of the state ω at Charlie’s end.

3. Using the locally created A′′
0 system and the pre-shared B system as ’side information’, Bob decodes the A1

register of the state |ψ〉A1BR1 .

4. The entire decoding procedure, after discarding the purifying system F is encapsulated by the operator C.

This completes the proof of the theorem.

6 Quantum Rate Splitting II

In this section, we apply the quantum rate splitting and successive cancellation decoding techniques developed in

Section 5 to the problem of entanglement transmission across the QMAC and the QIC in the one-shot setting. This

allows us to prove non-trivial achievability results in the one-shot setting in terms of smoothed one-shot entropic

quantities, without appealing to a simultaneous decoder. We have already mentioned that Yard et al. [2] showed that

the natural quantum analogue of the pentagonal rate region, with the mutual information replaced by the regularised

coherent information, is achievable for the QMAC. To the best of our knowledge, the only inner bound known for the

QIC (for both the unassisted and entanglement assisted regimes) is what one would obtain by treating the channel as

two independent unassisted point-to-point channels.

Recall that the idea in rate splitting is to ‘split’ Alice into two senders Alice0 and Alice1, each sending disjoint

parts of Alice’s original message, such that any point in the pentagonal rate region of Figure 7 like P can be obtained

without time sharing by a successive cancellation process where Charlie first decodes Alice0’s message, then Bob’s

message using Alice0’s message as side information and finally Alice1’s message using Bob’s and Alice0’s messages

as side information.
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Bob

Alice

n→∞
P

(0, I(B〉AC))

(I(A〉BC), 0)

S = (I(A〉BC), I(B〉C))

T = (I(A〉C), I(B〉AC))

x+ y = I(AB〉C)

Figure 7: Achievable rate region for the unassisted quantum MAC per channel use in the asymptotic iid setting with

respect to a fixed bipartite input control state. The actual rate region is the convex closure of all such pentagonal

regions.

Our one-shot rates are in terms of the smooth coherent min-information defined in Definition 3.3. Since the

smooth coherent min-information is not known to possess a chain rule with equality, we get an achievable rate region

of the form in Figure 8. Our achievable rate region is a subset of the ‘ideal’ pentagonal rate region shown by the

dashed line. Nevertheless, using a quantum asymptotic equipartition result of Tomamichel et al. [21], we show that

this ‘subpentagonal’ achievable rate region approaches the ‘pentagonal’ region of Yard et al. [2] (equal to the region

demarcated by the dashed line) in the iid limit.
Bob

Alice

n = 1
n → ∞

(I
O(ε2)
min (A〉BC), I

O(ε2)
min (B〉C))

(I
O(ε2)
min (A〉C), I

O(ε2)
min (B〉AC))

(I
√
ε

min(AB〉C), 0)

(0, I
√
ε

min(AB〉C))

P

x+ y = I
√
ε

min(AB〉C)

Figure 8: One-shot achievable rate region for the unassisted QMAC (for single channel use only), contained inside

the ‘ideal’ pentagonal region demarcated by the dashed line, and approaching it in the asymptotic iid limit. O(log ε)
additive factors have been ignored in the figure. The dotted curve shows the situation for some large finite n, intuitively

indicating that the region is approaching the dashed line when n → ∞. Note that the above region corresponds to a

fixed bipartite input control state. The actual region is a union over all such regions.

6.1 The QMAC

In this section, we will use the techniques developed till now to show the existence of encoders and a decoder for

entanglement transmission over the QMACNA′B′→C with senders Alice and Bob and receiver Charlie. As usual, we

consider the Stinespring dilation of this operator UA′B′→CE
N . We will first specify the control state

|σ〉A′′A′B′′B′
:= |Ω〉A′′A′ |∆〉B′′B′

.
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The state |Ω〉A′′A′
is associated with Alice and |∆〉B′′B′

is associated with Bob. As before we consider the action of a

splitting scheme on this state. In particular, we will again split Alice into the two senders Alice0 and Alice1, by acting

a unitary Uθ on the system A′′. Thus we will deal with the split control state

|σ(θ)〉A′′
0A

′′
1A

′B′′B′
:= |Ω(θ)〉A′′

0A
′′
1A

′ |∆〉B′′B′
.

As before we will often omit the θ in the notation for the state. The states to be transmitted are denoted as |η〉A0C0R0 , |ψ〉A1C1R1

for Alice |ϕ〉BDS for Bob, and where C0, C1 and D represent side information held by the receiver Charlie. The sys-

tems R0, R1 and S represent reference systems which remain untouched by the protocol.

We will prove the following lemma:

Proposition 6.1. Consider the quantum multiple access channelNA′B′→C . Consider a pure ‘control state’ |σ〉A′′B′′A′B′
:=

|Ω〉A′′A′ |∆〉B′′B′
. Let |ψ〉A1C1R1 ⊗ |η〉A0C0R0 and |φ〉BDS be the states that are to be sent to Charlie through the

channel by Alice and Bob respectively, where C0, C1, D model the side information about the respective messages

A0, A1, B that Charlie possesses and R0, R1, S are reference systems that are untouched by channel and coding

operators. Let I denote the identity superoperator. For θ ∈ [0, 1], let {Uθ}A
′′

be a splitting scheme. We define

|σ(θ)〉A′′
0A

′′
1A

′B′′B′
:= Uθ |Ω〉A

′′A′ |∆〉B′′B′
and

σ(θ)A
′′
0A

′′
1B

′′C := (NA′B′→C ⊗ I
A′′

0A
′′
1B

′′
)(σ(θ)A

′′
0A

′′
1A

′B′′B′
).

Then there exist encoding maps AA0A1→A′
, BB→B′

and a decoding map CCC0C1D→A0C0A1C1BD such that

∥

∥(C ⊗ I
R0R1S)((N ⊗ I

C0R0C1R1DS)( (A⊗ B ⊗ I
C0R0C1R1DS)((η ⊗ ψ)⊗ φ))) − η ⊗ ψ ⊗ φ‖1 ≤ δ,

whenever

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)σ + 2 log f(ε),

Hf(ε)
max(B)φ ≤ Hf(ε)

min (B
′′)σ + 2 log f(ε),
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where δ := δenc + δdec and

2
√

2δenc(3) + 2
√

2δenc(2) + 2δenc(1) :=δenc,

2
√

2δdec(1) + 2
√

2δdec(2) + 2
√

2δdec(3) :=δdec,

2 ·
(

2−
1
2
Hε

min(A1|R1)ψ− 1
2
H
O(ε2)
min (A′′

1 |E)UN ·σ+O(log k) + 12kε

)

:=2δdec(3),

2 ·
(

2−
1
2
Hε

min(B|S)φ− 1
2
H
O(ε2)
min (B′′|A′′

1E)UN ·σ+O(log k) + 12kε

)

:=2δdec(2),

2 ·
(

2−
1
2
Hε

min(A0|R0)η− 1
2
H
O(ε2)
min (A′′

0 |A′′
1BE)UN ·σ+O(log k) + 12kε

)

:=2δdec(1),

2 ·
(

k · 2 1
2
H
f(ε)
max (B)φ− 1

2
H
f(ε)
min (B′′)∆ + 12kf(ε)

)

:=2δenc(3),

2 ·
(

k · 2 1
2
H
f(ε)
max (A1)ψ− 1

2
H
f(ε)
min (A′′

1 )Ω + 12kf(ε)
)

:= 2δenc(2),

2 ·
(

2
1
2
Hε

max(A0)η− 1
2
H
O(ε2)
min (A′′

0 |A′′
1 )σ+O(log k) + 12kε

)

:= 2δenc(1),

where k is a constant integer and f(x) = O(x2).

Proposition 6.1 immediately implies the following theorem, by the arguments presented in Corollary 5.4.

Theorem 6.2. Consider the setting of Proposition 6.1. Let QA, EA, QB, EB be the number of message qubits and

number of available ebits of Alice and Bob respectively. Let θ, ε ∈ [0, 1] and ε0 := O(ε2), where the order hides some

multiplicative constant. Then there exist encoding and decoding maps such that any message cum ebit rate 4-tuple

satisfying either the following set of constraints or the set obtained by interchanging A′′
0 with A′′

1, QA(0) with QA(1)

and EA(0) with EA(1) in the right-hand sides of the first two inequalities, is achievable with error at most O(
√
ε):

QA = QA(0) +QA(1), EA = EA(0) + EA(1),

QA(0) + EA(0) < Hε0
min(A

′′
0 |A′′

1)σ(θ) +O(log ε)−O(1),

QA(1) + EA(1) < H
f(ε)
min (A

′′
1)σ(θ) +O(log ε),

QA(0)− EA(0) < Iε0min(A
′′
0〉C)σ(θ) +O(log ε)−O(1),

QA(1)− EA(1) < Iε0min(A
′′
1〉CA′′

0B
′′)σ(θ) +O(log ε)−O(1),

QB + EB < H
f(ε)
min (B

′′)σ(θ) +O(log ε),

QB − EB < Iε0min(B
′′〉CA′′

0)σ(θ) +O(log ε)−O(1).

The O(1) in the region above hides the O(log k) factors from Proposition 6.1.

6.1.1 Intermediate States and Almost CPTP Maps for the QMAC

The development in this section closely follows the layout and logical flow of Section 5.2.
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We first define isometric embeddings W
A0→A′′

0
0 ,W

A1→A′′
1

1 and WB→B′′
3 which map

|η〉A′′
0C0R0 :=W0 |η〉A0C0R0 ,

|ψ〉A′′
1C1R1 :=W1 |ψ〉A1C1R1 ,

|ϕ〉B′′DS :=W3 |ϕ〉BDS .

We define an intermediate state as follows:

Definition 6.3. Intermediate State for the QMAC We define

|ω12〉A
′′
0C1R1DSA′B′

:=
√

|B′′A′′
1 |opA

′′
1B

′′→A′′
0A

′B′
(|σ〉)(UA′′

1 ⊗ UB′′
) |ψ〉A′′

1C1R1 |φ〉B′′DS .

Lemma 6.4. Trace of Intermediate State Given the conditions

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)σ + 2 log f(ε),

Hf(ε)
max(B)φ ≤ Hf(ε)

min (B
′′)σ + 2 log f(ε),

we have that

E

UA
′′
1 ,UB′′

[|Tr[ω12]− 1|] ≤ 26f(ε).

Proof. First, notice that

|ω12〉 =
√

|B′′A′′
1|opA

′′
1B

′′→A′′
0A

′B′
(|σ〉)(UA′′

1 ⊗ UB′′
) |ψ〉A′′

1C1R1 |φ〉B′′DS

=
(

√

|B′′|opB
′′→B′

(|∆〉)UA′′
1 |φ〉B′′DS

)

⊗
(

√

|A′′
1|opA

′′
1→A′′

0A
′
(|Ω〉)UA′′

1 |ψ〉A′′
1C1R1

)

:= |ω1〉B
′DS |ω2〉A

′′
0C1R1A′

.

Notice that the state ω2 is similar to the state ω in the last section. We essentially repeat the analysis of Lemma 5.7 for

|ω1〉 and |ω2〉. Notice that this implies that if the conditions given in the hypothesis of the lemma are satisfied, then

E
UB′′

[|Tr[ω1]− 1|] ≤ 13f(ε),

E

UA
′′
1

[|Tr[ω2]− 1|] ≤ 13f(ε).

Then notice that

|Tr[ω12]− 1| = |Tr[ω1] · Tr[ω2]− 1|
≤ Tr[ω1] · |Tr[ω2]− 1|+ |Tr[ω1]− 1|

Since UA
′′
1 and UB

′′
are sampled independently,

E

UA
′′
1 ,UB′′

[|Tr[ω12]− 1|] ≤ E
UB′′

[Tr[ω1]] · E

UA
′′
1

[|Tr[ω2]− 1|] + E
UB′′

[|Tr[ω1]− 1|].
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It is not hard to see that

E
UB′′

[Tr[ω1]] = 1.

Therefore

E

UA
′′
1 ,UB′′

[|Tr[ω12]− 1|] ≤ 26f(ε).

This concludes the proof.

Lemma 6.5. Rewriting the Intermediate State for Coding The intermediate state |ω12〉A
′′
9C1R1DSA′B′

can be

rewritten as

|ω12〉A
′′
0C1R1DSA′B′

:=
√
B′′opB

′′→A′′
0A

′B′C1R1(|ω〉3)UB
′′ |φ〉B′′DS ,

where

|ω3〉B
′′A′′

0A
′B′C1R1 :=

√

|A′′
1|opA

′′
1→B′′A′′

0A
′B′

(|σ〉)UA′′
1 |ψ〉A′′

1C1R1 .

Proof.

|ω12〉A
′′
0C1R1DSA′B′

=
√

|B′′A′′
1|opA

′′
1B

′′→A′′
0A

′B′
(|σ〉)(UA′′

1 ⊗ UB′′
) |ψ〉A′′

1C1R1 |φ〉B′′DS

=
√

|B′′A′′
1|opA

′′
1B

′′→C1R1DS
(

(UA
′′
1 ⊗ UB′′

) |ψ〉A′′
1C1R1 |φ〉B′′DS

)

|σ〉A′′
0A

′′
1B

′′A′B′

=

(

√

|B′′|opB
′′→DS

(

UB
′′ |φ〉B′′DS

)

⊗
√

|A′′
1 |opA

′′
1→C1R1

(

UA
′′
1 |ψ〉A′′

1C1R1

)

)

|σ〉

=
√

|B′′|opB
′′→DS

(

UB
′′ |φ〉B′′DS

)

(

√

|A′′
1 |opA

′′
1→C1R1

(

UA
′′
1 |ψ〉A′′

1C1R1

)

|σ〉
)

=
√

|B′′|opB
′′→DS

(

UB
′′ |φ〉B′′DS

)

(

√

|A′′
1 |opA

′′
1→B′′A′′

0A
′B′

(|σ〉)UA′′
1 |ψ〉A′′

1C1R1

)

=
√

|B′′|opB
′′→DS

(

UB
′′ |φ〉B′′DS

)

|ω3〉B
′′A′′

0A
′B′C1R1

=
√

|B′′|opB
′′→A′′

0A
′B′C1R1(|ω3〉)UB

′′ |φ〉B′′DS

where e have used the properties of the op operator as proved in Section 3.3.

Lemma 6.6. Trace of |ω3〉.
Tr[ω3] = Tr[ω2].

Proof. Recall that, from Lemma 6.4,

|ω2〉A
′′
0C1R1A′

=
√

|A′′
1 |opA

′′
1→A′′

0A
′
(|Ω〉)UA′′

1 |ψ〉A′′
1C1R1 .

Now

|ω3〉B
′′A′′

0A
′B′C1R1 =

√

|A′′
1 |opA

′′
1→B′′A′′

0A
′B′

(|σ〉)UA′′
1 |ψ〉A′′

1C1R1

=
√

|A′′
1 |opA

′′
1→B′′A′′

0A
′B′

(

|Ω〉A′′
0A

′′
1A

′ |∆〉B′′B′)

UA
′′
1 |ψ〉A′′

1C1R1

= |∆〉B′′B′ ⊗
√

|A′′
1 |opA

′′
1→A′′

0A
′
(

|Ω〉A′′
0A

′′
1A

′)

UA
′′
1 |ψ〉A′′

1C1R1

= |∆〉B′′B′ |ω2〉A
′′
0C1R1A′

.
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Since by definition, Tr[∆] = 1, we have that

Tr[ω3] = Tr[ω2].

This concludes the proof.

Lemma 6.7. Approximate DPI with |ω12〉 Given the intermediate state

|ω12〉A
′′
0C1R1DSA′B′

:=
√

|B′′A′′
1 |opA

′′
1B

′′→A′′
0A

′B′
(|σ〉)(UA′′

1 ⊗ UB′′
) |ψ〉A′′

1C1R1 |φ〉B′′DS ,

and the relations

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)σ + 2 log f(ε),

Hf(ε)
max(B)φ ≤ Hf(ε)

min (B
′′)σ + 2 log f(ε),

there exist unitaries UA
′′
1 and UB

′′
, with constant probability, such that

H

√
O(f(ε))

min (A′′
0 |C1R1DSE)UN ·ω12 ≥ H

f(ε)
min (A

′′
0 |A′′

1B
′′E)UN ·σ −O(1).

Proof. Define the map

T A′′
1B

′′→C1R1DS(ξ) := |A′′
1B

′′|
(

opA
′′
1B

′′→C1R1DS(|ψ〉 |ϕ〉) · ξ
)

.

First, recall the following properties of Haar integration

1.
∫

UA1 ⊗ UB2 · ρABdU1dU2 = Tr[ρAB ]πAB ,

2.
∫

UA1 ⊗ UB2 ⊗ IC · ρABCdU1dU2 = πAB ⊗ ρC .

It is now easy to verify that T is indeed an almost CPTP. The first two properties can be shown to be true using

reasoning similar to that used in Lemma 5.9. Finally, using property 1 of double Haar integration above, one can

immediately see that

∫

T (UA′′
1 ⊗ UB′′ · ξA′′

1B
′′
)dU1dU2 = Tr[ξ]T (πA′′

1B
′′
).

Next suppose σ̃A
′′
1A

′′
0B

′′CE be a state such thatH
f(ε)
min (A

′′
0 |A′′

1B
′′E)UN ·σ = Hmin(A

′′
0 |A′′

1B
′′E)σ̃ where ‖σ̃ − UN · σ‖1 ≤

2f(ε). Let λA
′′
1B

′′E be a positive semidefinite matrix such that

Tr[λ] = 2−H
f(ε)
min (A′′

0 |A′′
1B

′′E)UN ·σ ,

and

σ̃A
′′
0A

′′
1B

′′E ≤ I
A′′

0 ⊗ λA′′
1B

′′E.

Then, since T is CP,

T
(

(

UA
′′
1 ⊗ UB′′

)T
σ̃A

′′
0A

′′
1B

′′E
)

≤ I
A′′

0 ⊗ T
(

(

UA
′′
1 ⊗ UB′′

)T
λA

′′
1B

′′E
)

.
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Then, it holds that

Tr[

∫

T
(

(UA
′′
1 ⊗ UB′′

)T · λA′′
1B

′′EdUA
′′
1 dUB

′′
] = Tr[T (πA′′

1B
′′
)⊗ λE ]

= 2−H
f(ε)
min (A′′

0 |A′′
1B

′′E)UN ·σ .

Note that

T
(

(

UA
′′
1 ⊗ UB′′

)T
UN · |σ〉A

′′
0A

′′
1B

′′A′B′
)

= |A′′
1B

′′|
(

opA
′′
1B

′′→C1R1DS(|ψ〉 |φ〉)
(

UA
′′
1 ⊗ UB′′

)T
UA′B′→CE
N · σ

)

= |A′′
1B

′′|
(

opA
′′
1B

′′→C1R1DS(UA
′′
1 |ψ〉 ⊗ UB′′ |φ〉)UN · σ

)

= |A′′
1B

′′|
(

opA
′′
1B

′′→A′′
0CE(UN |σ〉)

(

UA
′′
1 ⊗ UB′′

)

· (ψ ⊗ φ)
)

= (UN · ω12)
A′′

0C1R1DSCE ,

which implies that

TrC T
(

(

UA
′′
1 ⊗ UB′′

)T
UN · |σ〉A

′′
0A

′′
1B

′′A′B′
)

= (UN · ω12)
A′′

0C1R1DSE .

Also, from the arguments used in Lemma 5.9, we see that there exist positive matrices ∆+ and ∆− such that

E

UA
′′
1 ,UB′′

∥

∥

∥

∥

T
(

(

UA
′′
1 ⊗ UB′′

)T
σ̃

)

− UN · ω12

∥

∥

∥

∥

1

= E

UA
′′
1 ,UB′′

∥

∥

∥

∥

T
(

(

UA
′′
1 ⊗ UB′′

)T
σ̃

)

− T
(

(

UA
′′
1 ⊗ UB′′

)T
UN · σ

)
∥

∥

∥

∥

1

= E

UA
′′
1 ,UB′′

∥

∥

∥

∥

T
(

(

UA
′′
1 ⊗ UB′′

)T
· (σ̃ − UN · σ)

)
∥

∥

∥

∥

1

= E

UA
′′
1 ,UB′′

∥

∥

∥

∥

T
(

(

UA
′′
1 ⊗ UB′′)T ·

(

∆+ −∆−)
)∥

∥

∥

∥

1

≤ E

UA
′′
1 ,UB′′

∥

∥

∥

∥

T
(

(

UA
′′
1 ⊗ UB′′

)T
·∆+

)
∥

∥

∥

∥

1

+ E

UA
′′
1 ,UB′′

∥

∥

∥

∥

T
(

(

UA
′′
1 ⊗ UB′′

)T
·∆−

)
∥

∥

∥

∥

1

= E

UA
′′
1 ,UB′′

Tr

[

T
(

(

UA
′′
1 ⊗ UB′′

)T
·∆+

)]

+ E

UA
′′
1 ,UB′′

Tr

[

T
(

(

UA
′′
1 ⊗ UB′′

)T
·∆−

)]

=
(

Tr[∆+] + Tr[∆−]
)

· Tr
[

T
(

πA
′′
1B

′′
)]

≤ 4f(ε).

Note also that given the entropic conditions in the hypothesis of the lemma, we see via Lemma 6.4 that

E

UA
′′
1 ,UB′′

[|Tr[ω12]− 1|] ≤ 26f(ε).

Then, via the derandomisation arguments used in Lemma 5.9, we see that there exists, with probability at least
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1− 3
k , for some constant integer k, fixed unitaries UA

′′
1 and UB

′′
such that

∥

∥

∥

∥

∥

∥

∥

∥

T
(

(

UA
′′
1 ⊗ UB′′

)T
σ̃

)

Tr
(

T
(

(

UA
′′
1 ⊗ UB′′)T σ̃

)) − UN · ω12

Tr[ω12]

∥

∥

∥

∥

∥

∥

∥

∥

1

≤ k · 60 · f(ε),

and

H

√
60kf(ε)

min (A′′
0 |C1R1DSE)UN ·ω12 ≥ H

f(ε)
min (A

′′
0 |A′′

1B
′′E)UN ·σ − log k + log(1− 30kf(ε)).

Setting f(ε) := ε2

60k and plugging this into the above inequality we get that

Hε
min(A

′′
0 |C1R1DSE)UN ·ω12 ≥ H

O(ε2)
min (A′′

0 |A′′
1B

′′E)UN ·σ − log k + log(1−O(ε2)).

This concludes the proof.

We will now prove the main theorem for the QMAC.

6.1.2 Proof of Proposition 6.1

Proof. We will begin with the assumptions that

Hf(ε)
max(A1)ψ ≤ Hf(ε)

min (A
′′
1)σ + 2 log f(ε),

Hf(ε)
max(B)φ ≤ Hf(ε)

min (B
′′)σ + 2 log f(ε).

We will use the intermediate states

|ω12〉A
′′
0C1R1DSA′B′

:=
√

|B′′A′′
1|opA

′′
1B

′′→A′′
0A

′B′
(|σ〉)(UA′′

1 ⊗ UB′′
) |ψ〉A′′

1C1R1 |φ〉B′′DS ,

|ω3〉B
′′A′′

0A
′B′C1R1 :=

√

|A′′
1 |opA

′′
1→B′′A′′

0A
′B′

(|σ〉)UA′′
1 |ψ〉A′′

1C1R1

and

|ω2〉A
′′
0C1R1A′

=
√

|A′′
1|opA

′′
1→A′′

0A
′
(|Ω〉)UA′′

1 |ψ〉A′′
1C1R1 .

Recall from Lemma 6.5 we have that

|ω12〉A
′′
0C1R1DSA′B′

:=
√

|B′′|opB
′′→A′′

0A
′B′C1R1(|ω3〉)UB

′′ |φ〉B′′DS .

We define the maps

EA0A1→A′
(|ξ〉) :=

√

|A′′
0A

′′
1|opA

′′
0A

′′
1→A′

(|Ω〉)
(

UA
′′
0 ⊗ UA′′

1

)(

W
A0→A′′

0
0 ⊗WA1→A′′

1
1

)

|ξ〉 ,

FB→B′
(|ζ〉) :=

√

|B′′|opB
′′→B′

(|∆〉)UB′′
WB→B′′ |ζ〉 .
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We start with the vector

(E ⊗ F) (|η〉A0C0R0 |ψ〉A1C1R1 |φ〉BDS)

=
√

|A′′
0B

′′A′′
1 |opA

′′
0B

′′A′′
1→A′B′

(|σ〉)UA′′
0 ⊗ UB′′ ⊗ UA′′

1 |η〉A′′
0C0R0 |φ〉B′′DS |ψ〉A′′

1C1R1

=
√

|A′′
0B

′′A′′
1 |opA

′′
0B

′′A′′
1→C0R0DSC1R1(UA

′′
0 ⊗ UB′′ ⊗ UA′′

1 |η〉A′′
0C0R0 |φ〉B′′DS |ψ〉A′′

1C1R1) |σ〉A′′
0B

′′A′′
1A

′B′

=

(

√

|A′′
0|opA

′′
0→C0R0(UA

′′
0 |η〉A′′

0C0R0)⊗
√

|B′′A′′
1 |opB

′′A′′
1→DSC1R1(UB

′′ ⊗ UA′′
1 |φ〉B′′DS |ψ〉A′′

1C1R1)

)

|σ〉

=
√

|A′′
0|opA

′′
0→C0R0(UA

′′
0 |η〉A′′

0C0R0)

(

√

|B′′A′′
1 |opB

′′A′′
1→DSC1R1(UB

′′ ⊗ UA′′
1 |φ〉B′′DS |ψ〉A′′

1C1R1) |σ〉
)

=
√

|A′′
0|opA

′′
0→C0R0(UA

′′
0 |η〉A′′

0C0R0)

(

√

|B′′A′′
1 |opB

′′A′′
1→A′′

0A
′B′

(|σ〉)UB′′ ⊗ UA′′
1 |φ〉B′′DS |ψ〉A′′

1C1R1

)

=
√

|A′′
0|opA

′′
0→C0R0(UA

′′
0 |η〉A′′

0C0R0) |ω12〉A
′′
0DSC1R1A′B′

=
√

|A′′
0|opA

′′
0→DSC1R1A′B′

(|ω12〉)UA
′′
0 |η〉A′′

0C0R0 .

Using similar reasoning one can also see that

√

|A′′
0A

′′
1 |opA

′′
0A

′′
1→A′

(|Ω〉)UA′′
0 ⊗ UA′′

1 |η〉A′′
0C0R0 |ψ〉A′′

1C1R1

=
√

|A′′
0 |opA

′′
0→C1R1A′

(|ω2〉A
′′
0C1R1A′

)UA
′′
0 |η〉A′′

0C0R0 .

The Decoupling Step

As before, we will first consider the relevant decoupling conditions that will ensure the existence of our encoders and

decoders.

The Encoding Equations

E

UA
′′
0

∥

∥

∥
|A′′

0 |TrA′ opA
′′
0→C1R1A′

(|ω̃2〉)UA
′′
0 · ηA′′

0C0R0 − ηR0C0 ⊗ ω̃C1R1
2

∥

∥

∥

1

≤2− 1
2
Hε

min(A0|C0R0)η− 1
2
Hε

min(A
′′
0 |C1R1)ω̃2 + 12ε,

E

UA
′′
1

∥

∥

∥
|A′′

1 |TrA′′
0A

′ opA
′′
1→A′′

0A
′
(|Ω〉)UA′′

1 · ψA′′
1C1R1 − ψC1R1

∥

∥

1

≤2− 1
2
H
f(ε)
min (A1|C1R1)ψ− 1

2
H
f(ε)
min (A′′

1 )Ω + 12f(ε),

E
UB′′

∥

∥

∥
|B′′|TrB′ opB

′′→B′
(|∆〉)UB′′ · φB′′DS − φDS

∥

∥

1

≤2− 1
2
H
f(ε)
min (B|DS)φ− 1

2
H
f(ε)
min (B′′)∆ + 12f(ε).

The Decoding Equations
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E

UA
′′
0

∥

∥

∥
|A′′

0 |TrC UA
′B′→CE

N opA
′′
0→DSC1R1A′B′

(|ω̃12〉)UA
′′
0 · ηA′′

0R0 − ηR0 ⊗ ω̃DSC1R1E
12

∥

∥

∥

1

≤2− 1
2
Hε

min(A0|R0)η− 1
2
Hε

min(A
′′
0 |DSC1R1E)UN ·ω̃12 + 12ε,

E
UB′′

∥

∥

∥
|B′′|TrA′′

0C
UA′B′→CE
N opB

′′→A′′
0C1R1A′B′

(|ω̃3〉)UB
′′ · φB′′S − φS ⊗ ω̃C1R1E

3

∥

∥

∥

1

≤2− 1
2
Hε

min(B|S)φ− 1
2
Hε

min(B
′′|C1R1E)UN ·ω̃3 + 12ε,

E

UA
′′
1

∥

∥

∥
|A′′

1 |TrA′′
0B

′′C UA
′B′→CE

N opA
′′
1→B′′A′′

0A
′B′

(|σ〉)UA′′
1 · ψA′′

1R1 − ψR1 ⊗ σE
∥

∥

1

≤2− 1
2
Hε

min(A1|R1)ψ− 1
2
Hε

min(A
′′
1 |E)UN ·σ + 12ε.

Derandomisation

Using the derandomisation arguments used previously, we see that there exists a constant integer k and constant

integers n1, n2, n2 such that, there exist fixed unitaries UA
′′
0 , UB

′′
and UA

′′
1 with probability at least 1− m

k (where m

is the number of events in the intersection and k is chosen to be larger than m) such that the encoding and decoding

conditions are satisfied along with the three data processing inequalities

H

√
n1·k·f(ε)

min (A′′
0 |C1R1)ω̃2 ≥ H

f(ε)
min (A

′′
0 |A′′

1)− log k + log(1− n1 · k · f(ε)),

H

√
n2·k·f(ε)

min (B′′|C1R1E)UN ·ω̃3 ≥ H
f(ε)
min (B

′′|A′′
1E)UN ·σ − log k + log(1− n2 · k · f(ε)),

H

√
n3·k·f(ε)

min (A′′
0 |DSC1R1E)UN ·ω̃12 ≥ H

f(ε)
min (A

′′
0 |A′′

1BE)UN ·σ − log k + log(1− n3 · k · f(ε)).

We choose f(ε) := ε2

k·max{n1,n2,n3} . Then using the fact that the smooth min-entropy increases with increasing ε, we

see that

Hε
min(A

′′
0 |C1R1)ω̃2 ≥ H

O(ε2)
min (A′′

0 |A′′
1)σ − log k + log(1−O(ε2))

Hε
min(B

′′|C1R1E)UN ·ω̃3 ≥ HO(ε2)
min (B′′|A′′

1E)UN ·σ − log k + log(1−O(ε2))

Hε
min(A

′′
0 |DSC1R1E)UN ·ω̃12 ≥ H

O(ε2)
min (A′′

0 |A′′
1BE)UN ·σ − log k + log(1−O(ε2)).

Then, plugging in the above bounds into the encoding and decoding equations, using the definitions of ω12, ω2 and ω3

and using Lemma A.2 we see that the derandomised encoding and decoding equations are equivalent to

Encoding
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∥

∥

∥

∥

∥

TrA′ EA0A1→A′
(ηA0R0C0 ⊗ ψA1R1C1)

Tr[E(η ⊗ ψ)] − ηR0C0 ⊗ ω̃C1R1
2

∥

∥

∥

1

≤2 ·
(

2
1
2
Hε

max(A0)η− 1
2
H
O(ε2)
min (A′′

0 |A′′
1 )σ+O(log k) + 12kε

)

:= 2δenc(1),
∥

∥

∥
ω̃C1R1
2 − ψC1R1

∥

∥

∥

1
≤2 ·

(

k · 2 1
2
H
f(ε)
max (A1)ψ− 1

2
H
f(ε)
min (A′′

1 )Ω + 12kf(ε)
)

:= 2δenc(2),
∥

∥

∥

∥

∥

TrB′ FB→B′
(φBDS)

Tr[F(φ)] − φDS
∥

∥

1

≤2 ·
(

k · 2 1
2
H

(fε)
max (B)φ− 1

2
H
f(ε)
min (B′′)∆ + 12kf(ε)

)

:=2δenc(3).

Decoding

∥

∥

∥

∥

∥

TrCC0 UA
′B′→CE

N (E ⊗ F) · (η ⊗ ψ ⊗ φ)
Tr [(E ⊗ F) · (η ⊗ ψ ⊗ φ)] − ηR0 ⊗ ω̃DSC1R1E

12

∥

∥

∥

1

≤2 ·
(

2−
1
2
Hε

min(A0|R0)η− 1
2
Hε

min(A
′′
0 |A′′

1BE)UN ·σ+O(log k) + 12kε
)

:=2δdec(1),
∥

∥

∥
TrA′′

0CD

[

ω̃
DSC1R1A′′

0CE
12

]

− φS ⊗ ω̃C1R1E
3

∥

∥

∥

1

≤2 ·
(

2−
1
2
Hε

min(B|S)φ− 1
2
Hε

min(B
′′|A′′

1E)UN ·σ+O(log k) + 12kε
)

:=2δdec(2),
∥

∥

∥
TrA′′

0B
′′CC1

[

ω̃
B′′A′′

0C1R1CE
3

]

− ψR1 ⊗ σE
∥

∥

1

≤2 ·
(

2−
1
2
Hε

min(A1|R1)ψ− 1
2
Hε

min(A
′′
1 |E)UN ·σ + 12kε

)

:=2δdec(3).

Uhlmann’s Theorem

From the first two inequalities in the encoding part, by using the triangle inequality we see that

∥

∥

∥

∥

∥

TrA′ EA0A1→A′
(ηA0R0C0 ⊗ ψA1R1C1)

Tr[E(η ⊗ ψ)] − ηR0C0 ⊗ ψR1C1

∥

∥

∥

∥

∥

1

≤ 2δenc(1) + 2δenc(2).

The third equation in the encoding part gives

∥

∥

∥

∥

∥

TrB′ FB→B′
(φBDS)

Tr[F(φ)] − φDS
∥

∥

∥

∥

∥

1

≤ 2δenc(3).
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Uhlmann’s Theorem then implies that there exist isometries V A0A1→A′
Alice and V B→B′

Bob such that

∥

∥

∥

∥

∥

EA0A1→A′
(ηA0R0C0 ⊗ ψA1R1C1)

Tr[E(η ⊗ ψ)] − V A0A1→A′
Alice ·

(

ηA0R0C0 ⊗ ψA1R1C1
)

∥

∥

∥

∥

∥

1

≤ 2
√

2δenc(1) + 2δenc(2),

∥

∥

∥

∥

∥

FB→B′
(φBDS)

Tr[F(φ)] − V B→B′
Bob · φBDS

∥

∥

∥

∥

∥

1

≤ 2
√

2δenc(3).

Then

∥

∥

∥

∥

E ⊗ F(η ⊗ ψ ⊗ φ)
Tr[E ⊗ F(η ⊗ ψ ⊗ φ)] − VAlice ⊗ VBob · (η ⊗ ψ ⊗ φ)

∥

∥

∥

∥

1

≤
∥

∥

∥

∥

E ⊗ F(η ⊗ ψ ⊗ φ)
Tr[E ⊗ F(η ⊗ ψ ⊗ φ)] −

F(φ)
Tr[F(φ)] ⊗ VAlice · (η ⊗ ψ)

∥

∥

∥

∥

1

+

∥

∥

∥

∥

F(φ)
Tr[F(φ)] ⊗ VAlice · (η ⊗ ψ)− VAlice ⊗ VBob · (η ⊗ ψ ⊗ φ)

∥

∥

∥

∥

1

=

∥

∥

∥

∥

E(η ⊗ ψ)
Tr[E(η ⊗ ψ)] − VAlice · (η ⊗ ψ)

∥

∥

∥

∥

1

+

∥

∥

∥

∥

F(φ)
Tr[F(φ)] − VBob · φ

∥

∥

∥

∥

1

≤2
√

2δenc(3) + 2
√

2δenc(1) + 2δenc(1)

:=δenc.

Again, from the decoding inequalities, by applying Uhlmann’s theorem we see that there exist isometries

V
CC0→A′′

0CC0A0

dec 1 ,

V
A′′

0CD→A′′
0B

′′CBD
dec 2

and

V
A′′

0B
′′CC1→A1C1F

dec 3

such that

∥

∥

∥

∥

∥

V
CC0→A′′

0CC0A0

dec 1 · U
A′B′→CE
N (E ⊗ F) · (η ⊗ ψ ⊗ φ)
Tr [(E ⊗ F) · (η ⊗ ψ ⊗ φ)] − ηA0R0C0 ⊗ ω̃DSC1R1A′′

0CE
12

∥

∥

∥

∥

∥

1

≤2
√

2δdec(1),
∥

∥

∥
V
A′′

0CD→A′′
0B

′′CBD
dec 2 · ω̃DSC1R1A′′

0CE
12 − φBDS ⊗ ω̃B

′′A′′
0C1R1CE

3

∥

∥

∥

1
≤ 2

√

2δdec(2),
∥

∥

∥
V
A′′

0B
′′CC1→A1C1F

dec 3 · ω̃B
′′A′′

0C1R1CE
3 − ψA1R1C1 ⊗ σEF

∥

∥

∥

1
≤ 2

√

2δdec(3).

Finally, defining

V CC0DC1→A0C0BDA1C1F
dec

:= Vdec 3 ◦ Vdec 2 ◦ Vdec 1,
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and using the triangle inequality shows that

∥

∥

∥

∥

∥

Vdec ·
UA′B′→CE
N (E ⊗ F) · (η ⊗ ψ ⊗ φ)
Tr [(E ⊗ F) · (η ⊗ ψ ⊗ φ)] − ηA0R0C0 ⊗ φBDS ⊗ ψA1R1C1 ⊗ σEF

∥

∥

∥

∥

∥

1

≤2
√

2δdec(1) + 2
√

2δdec(2) + 2
√

2δdec(3)

:=δdec.

Tracing out the systems EF from the above inequality gives us the promised decoding map

CCC0DC1→A0C0BDA1C1 .

A further triangle inequality with the encoding condition shows that

∥

∥

∥
C ◦ NA′B′→C ◦ (VAlice ⊗ VBob) · (η ⊗ ψ ⊗ φ)− η ⊗ ψ ⊗ φ

∥

∥

∥

1
≤ δenc + δdec.

Successive Cancellation

The decoding algorithm is now clear:

1. Alice creates a state close to
E(η⊗ψ)

Tr[E(η⊗ψ)] by using the encoding isometry VAlice.

2. Bob creates a state close to
F(φ)

Tr[F(φ)] by using the isometric encoder VBob.

3. They then enter the A′ and B′ parts of their respective encoded states into the channel.

4. Charlie first decodes for |η〉A0R0C0 by using the map Vdec 1 on the systems CC0, and also locally prepares the

system A′′
0 and a copy of C .

5. He then decodes for |φ〉BDS by using the decoder Vdec 2 on the systems A′′
0CD which also locally prepares the

systems A′′
0B

′′ and also another copy of C .

6. Finally, Charlie decodes for the state |ψ〉A1R1C1 by using the map Vdec 3 on the systems A′′
0B

′′C1.

7. The composition of all three decoding maps and disregarding the environment E and the junk system F gives

us the decoder C.

This concludes the proof of the theorem.

6.2 The QIC

In this section, we prove inner bounds for rate-limited entanglement assisted entanglement transmission through the

Quantum Interference Channel (QIC) NA′B′→CD. We wish for Alice to send EPR pairs to Charlie and for Bob to

send EPR pairs to Damru. Note that, for a fixed control state |σ〉A′′A′B′′B′
:= |Ω〉A′′A′ |∆〉B′′B′

, one can consider

this situation as two point-to-point channels, one from Alice to Charlie and one from Bob to Damru. In that case,

the achievable region becomes a rectangle of all non negative rate pairs less than
(

Iεmin(A
′′〉C)σ, I

ε
min(B

′′〉D))σ
)

(suppressing the additive log terms).
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Bob

Alice

(I
O(ε2)
min (A〉C), I

O(ε2)
min (B〉D))

(I
O(ε2)
min (A0〉C), I

O(ε2)
min (B〉A1D))

(I
O(ε2)
min (A〉B1C), I

O(ε2)
min (B0〉D))

n = 1

Figure 9: One-shot achievable rate region (for single channel use only) for the unassisted QIC. The trivial region is

shown dotted. Alice can sacrifice her rate in order to boost Bob’s rate with respect to the trivial region, as shown

by the solid rectangle. The dashed rectangle can be similarly obtained by Bob sacrificing his rate in order to boost

Alice’s. O(log ε) additive factors have been ignored in the figure. The above region is with respect to a fixed control

state. The actual achievable rate region is a union over all such regions.

The trivial inner bound treats the QIC as two independent unassisted point-to-point channels from Alice to Charlie

and Bob to Damru. Rate splitting and successive cancellation can be similarly used to obtain non-trivial rate regions

for the unassisted QIC where one party, say Alice, sacrifices her rate in order to boost Bob’s rate with respect to the

trivial inner bound. The situation is summarised in Figure 9.

In order to show that a larger region is achievable, we use splitting schemes and successive cancellation. Essen-

tially, we split Alice into two senders, Alice0 and Alice1, and we require Alice0’s input to be decoded by Damru

instead of Charlie. This allows Damru to treat Alice0’s input as side information while decoding Bob’s input, which

allows us to boost Bob’s rate. Alice’s rate to Charlie, however, takes a hit because of this. Using a splitting scheme

to do this allows us to adjust the amount of resources that Alice dedicates towards boosting Bob’s rate, with the ex-

treme cases θ ∈ {0, 1} corresponding to situations when either Alice does not help Bob at all (the case of the two

point-to-point channels) to when Alice dedicates all her resources to help Bob while her own rates drops to 0.

The precise statements can be found in Proposition 6.8 and Theorem 6.10.

Proposition 6.8. Consider the quantum interference channelNA′B′→CD. Consider a pure ‘control state’ |σ〉A′′B′′A′B′
:=

|Ω〉A′′A′ |∆〉B′′B′
. Let |ψ〉A1C1R1 and |η〉A0R0 be the states that are to be sent by Alice to Charlie and Damru respec-

tively and let |φ〉BD0S be the state to be sent from Bob to Damru, where C1, D0 model the side information about the

respective messages A1, B that Charlie and Damru possess and R0, R1, S are reference systems that are untouched

by channel and coding operators. Let I denote the identity superoperator. For θ ∈ [0, 1], let
{

UA
′′

θ

}

be a splitting

scheme. We define |σ(θ)〉A′′
0A

′′
1A

′B′′B′
:= Uθ |Ω〉A

′′A′ |∆〉B′′B′
and

σ(θ)A
′′
0A

′′
1B

′′CD := (NA′B′→CD ⊗ I
A′′

0A
′′
1B

′′
)(σ(θ)A

′′
0A

′′
1A

′B′′B′
).

Then there exist encoding mapsAA0A1→A′
and BB→B′

and decoding maps CCC1→A1C1 and DDD0→A0BD0 such that

∥

∥

(

C ⊗ D
)

◦ N ◦
(

A⊗ B
)

·
(

ψ ⊗ η ⊗ ϕ
)

− ψ ⊗ η ⊗ ϕ
∥

∥

1
≤ δ.

Here, δ = δenc + δdec where,

δenc = 2
√

2δenc(3) + 2
√

2δenc(2) + 2δenc(1),

δdec = 4
√

2δdec(0) + 4
√

2δdec(1) + 2
√

2δdec(2),
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and

δenc(0) = 2 · 2 1
2
Hε

max(A0)η− 1
2
H
O(ε2)
min (A′′

0 |A′′
1 )σ(θ)+O(1) +O(ε)

δenc(1) = 2 · 2 1
2
H
f(ε)
max (A1)ψ− 1

2
H
f(ε)
min (A′′

1 )σ(θ)+O(1) +O(ε),

δenc(2) = 2 · 2 1
2
H
f(ε)
max (B)ϕ− 1

2
H
f(ε)
min (B′′)σ(θ)+O(1) +O(ε),

δdec(0) = 2 · 2− 1
2
Hε

min(A0|R0)η− 1
2
I
O(ε2)
min (A′′

0 〉D)σ(θ)+O(1) +O(ε),

δdec(1) = 2 · 2− 1
2
Hε

2(B|S)ϕ− 1
2
I
O(ε2)
min (B′′〉DA′′

0 )σ(θ)+O(1) +O(ε),

δdec(2) = 2 · 2− 1
2
Hε

2(A1|R1)ψ− 1
2
I
O(ε2)
min (A′′

1 〉C)σ(θ)+O(1) +O(ε),

where f(ε) = O(ε2).

Remark 6.9. The O(1) in the bounds in Proposition 6.8 hide the log k terms, as in Proposition 6.1, where k is some

constant integer.

We are now ready to state our main one-shot coding theorem. In this case, we denote by Q0 the number of qubits

available to Alice for sending to Damru, to use as side information to boost Bob’s rate. The quantities of interest

however are (QA, EA, QB , EB) which denote, in order, the number of message qubits and ebits available to Alice,

and the analogous quantities for Bob.

Theorem 6.10. Consider the setting of Proposition 6.8. Let QA, EA, QB , EB be the number of message qubits and

number of available ebits of Alice and Bob respectively. Additionally, let Q0 denote the number of message qubits

available to Alice for transmission to Damru. Let θ, ε ∈ [0, 1] and ε0 := O(ε2). Then there exist encoding and

decoding maps such that any message cum ebit rate 4-tuple satisfying the following inequalities, is achievable with

error at most O(
√
ε) achievable for partial entanglement assisted entanglement transmission

Q0 < Iε0min(A
′′
0〉D)σ(θ) +O(log ε)−O(1),

Q0 < Hε0
min(A

′′
0 |A′′

1)σ(θ) +O(log ε)−O(1),

QA + EA < H
f(ε)
min (A

′′
1)σ(θ) +O(log ε)

QA − EA < Iε0min(A
′′
1〉C)σ(θ) +O(log ε)−O(1),

QB +EB < H
f(ε)
min (B

′′)σ(θ) +O(log ε),

QB −EB < Iε0min(B
′′〉A′′

0D)σ(θ) +O(log ε)−O(1).

The proof of Theorem 6.10 follows from Proposition 6.8 using the arguments in Section 5. We present the proof

of Proposition 6.8 below.

Proof. As mentioned before, the idea is for Alice to use some part of her input to boost Bob’s rate to Damru. to do

this we split Alice into Alice0 and Alice1. We can then treat the interference channel as a QMAC from Alice0 and

Bob to Damru, and as a point-to-point quantum channel from Alice1 to Charlie. We will use the techniques used

to prove Proposition 6.1 to derive achievable rates for entanglement transmission from Bob to Charlie. Note that in

this case, we assume that Alice0 shares no pre-shared entanglement with Damru. The inner bound for entanglement
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transmission from Alice1 to Charlie can be derived by considering the coding scheme for entanglement transmission

over a point-to-point channel.

Note that the above analysis will give us two separate 1-norm expressions, one for the QMAC among Alice0,

Bob and Damru and the other for the point-to-point channel from Alice1 to Charlie. To combine these two expres-

sions we will need the following fact, whose proof can be found in the appendix. This fact appears in [18, Lemma 5.1]:

Fact 6.11. Given density operators ρABC , σA, ωBC , τAB, ηC such that

∥

∥ρABC − σA ⊗ ωBC
∥

∥

1
≤ ε1,

∥

∥ρABC − τAB ⊗ ηC
∥

∥

1
≤ ε2,

then
∥

∥ρABC − σA ⊗ τB ⊗ ηC
∥

∥

1
≤ 2ε1 + ε2.

We denote by UA′B′→CDE
N the Stinespring dilation of the interference channel NA′B′→CD. We define our en-

coding maps EA0A1→A′
and FB→B′

as in the proof of Proposition 6.1. First, we repeat the decoding protocol for the

QMAC, where Damru decodes Alice0 first and then Bob. The intermediate states used for this part of the protocol are

as follows:

|ω12〉A
′′
0A

′B′C1R1D0S :=
√

|B′′A′′
1|opA

′′
1B

′′→A′′
0A

′B′
(|σ〉)

(

UA
′′
1 ⊗ UB′′

)

W
A1→A′′

1
1 |ψ〉A1R1C1 WB→B′′

2 |ϕ〉B′′
1D0S ,

|ω3〉B
′′A′′

0A
′B′C1R1 :=

√

A′′
1opA

′′
1→B′′A′′

0A
′B′

(|σ〉)UA′′
1W

A1→A′′
1

1 |ψ〉A1R1C1 ,

where W1 and W2 are isometric embeddings, as before. Damru decodes Alice0’s message and then Bob’s. Damru

is not required to decode Alice1’s message. In fact, for the protocol to work, we will treat Damru as part of the

environment so that Charlie can decode Alice1’s message, effectively making it impossible for Damru to decode

Alice1’s message. We can then show the existence of a decoding isometry

V
DD0→A′′

0B
′′DD0A0B

BOB

such that

∥

∥

∥

∥

∥

V
DD0→A′′

0B
′′DD0A0B

BOB

UA′B′→CDE
N (E ⊗ F) · (η ⊗ φ⊗ ψ))

Tr[(E ⊗ F) · (η ⊗ φ⊗ ψ)] − ηA0R0 ⊗ φBD0S ⊗ ω̃B
′′A′′

0C1R1DCE
3

∥

∥

∥

∥

∥

1

≤2
√

2δdec(0) + 2
√

2δdec(1).

We now consider the channel from Alice1 to Charlie. We will need the following intermediate state:

|ω4〉A
′′
1A

′B′R0D0S :=
√

|A′′
0B

′′|opA
′′
0B

′′→A′′
1A

′B′
(|σ〉)

(

UA
′′
0 ⊗ UB′′

)

W
A0→A′′

0
0 |η〉A0R0 WB→B′′

2 |ϕ〉B′′
1D0S .

We can then show the existence of an isometric decoder

V
CC1→CC1A′′

1A1

ALICE
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such that

∥

∥

∥

∥

∥

V
CC1→CC1A′′

1A1

ALICE

UA′B′→CDE
N (E ⊗ F) · (η ⊗ φ⊗ ψ))

Tr[(E ⊗ F) · (η ⊗ φ⊗ ψ)] − ψA1C1R1 ⊗ ω̃DD0ESR0A′′
1C

4

∥

∥

∥

∥

∥

1

≤2
√

2δ(2).

Next, through some standard algebraic manipulation, we see that the two inequalities above are equivalent to

∥

∥

∥

∥

∥

VALICE ⊗ VBOB

UA′B′→CDE
N (E ⊗ F) · (η ⊗ φ⊗ ψ))

Tr[(E ⊗ F) · (η ⊗ φ⊗ ψ)] − ηA0R0 ⊗ φBD0S ⊗ ζB
′′A′′

0A
′′
1A1CC1R1DE

1

∥

∥

∥

∥

∥

1

≤2
√

2δdec(0) + 2
√

2δdec(1),
∥

∥

∥

∥

∥

VBOB ⊗ VALICE

UA′B′→CDE
N (E ⊗ F) · (η ⊗ φ⊗ ψ))

Tr[(E ⊗ F) · (η ⊗ φ⊗ ψ)] − ψA1C1R1 ⊗ ζDD0A′′
0B

′′A0BESR0A′′
1C

2

∥

∥

∥

∥

∥

1

≤2
√

2δ(2),

where

|ζ1〉B
′′A′′

0A
′′
1A1CC1R1DE := VALICE |ω̃3〉B

′′A′′
0C1R1DCE ,

|ζ2〉DD0A′′
0B

′′A0BESR0A′′
1C := VBOB |ω̃4〉A

′′
1DCER0D0S .

We can now use Fact 6.11 to conclude that:

∥

∥

∥

∥

∥

VALICE ⊗ VBOB

UA′B′→CDE
N (E ⊗ F) · (η ⊗ φ⊗ ψ))

Tr[(E ⊗ F) · (η ⊗ φ⊗ ψ)] − ηA0R0 ⊗ φBD0S ⊗ ζA
′′
0B

′′A′′
1DCE

2 ⊗ ψA1R1C1

∥

∥

∥

∥

∥

1

≤4
√

2δdec(0) + 4
√

2δdec(1) + 2
√

2δdec(2).

The rest of the proof is identical to the analysis of the encoding error in the proof of Proposition 6.1. This concludes

the proof.

7 Asymptotic IID Analysis

In this section we present the asymptotic iid versions of the one-shot achievability results presented in the previous

section. Based on the discussion so far, we have seen that we can achieve the following rate point for Alice0, Bob and

Alice1:
(

Hε
min(A

′′
0 |BA′′

1E),Hε
min(B

′′|A′′
1E),Hε

min(A
′′
1 |E))

)

for all values of the parameter θ. It is tempting to conclude using the Quantum Asymptotic Equipartition Property

[21] to the above rate point and conclude the achievability of the following rate point in the asymptotic iid setting:

(

H(A′′
0 |BA′′

1E),H(B′′|A′′
1E),H(A′′

1 |E)),
)

.

Things are not so simple however, due to the fact that after rate splitting, one of the terms in this rate point could

be negative. For example, if Alice0’s rate is negative, then the protocol no longer works for decoding Bob and Alice1.

First, note that we only have to worry about Alice0’s being negative. This is because Bob’s rate could never be
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negative due to the following data processing inequality:

Hε
min(B

′′|A′′E) = Hε
min(B

′′|A′′
0A

′′
1E) ≤ Hε

min(B
′′|A′′

1E) ≤ Hε
min(B

′′|E).

This also implies that Alice0 and Alice1’s combined rate cannot be negative, since the sum rate of Alice and Bob is

invariant. Thus, if Alice1’s rate is negative, that implies that Alice0’s rate is more than the combined rate given of

Alice0 and Alice1. This is a good situation since we could then simply perform the protocol for only Alice0 and Bob.

Thus, the difficulty lies in the case when Alice0’s rate is negative. We will show that we can achieve the desired

rate region in the asymptotic iid limit, with a small amount of pre-shared entanglement between Alice0 and Charlie.

These pre-shared EPR pairs will be used catalytically with the added advantage that the rate at which we require these

pre-shared EPR pairs go to 0 in the asymptotic iid limit.

We will divide the n channels into
√
n blocks, where each block is of size

√
n. To avoid cumbersome notation,

we use the following convention:

Hε
min(A|B)ρ(n) := Hε

min(A
⊗n|B⊗n)ρAB⊗n .

We will consider two situations:

1. Hε
min(A0|A1)(

√
n) ≥ 0,

2. Hε
min(A0|A1)(

√
n) < 0.

Case I: Hε
min(A0|A1)(

√
n) ≥ 0.

For each block of size
√
n set:

Q
A

√
n

0

=0,

E
A

√
n

0

=|Hε
min(A

′′
0 |A′′

1BE)(
√
n)|.

Since Hε
min(A0|A1)(

√
n) is positive, this implies that there exists an isometric encoder for Alice and the protocol can

start. Note that at the end of the protocol, Alice1 shares a maximally entangled state with Charlie of rank

2H
ε
min(A

′′
1 |E)(

√
n).

Alice can now keep aside 2|H(A′′
0 |A′′

1BE)(
√
n)| EPR pairs and use them as the seed pre-shared EPR states for the next

block of
√
n channels. Repeating this argument for each block, we see that Alice’s rate for entanglement transmission

is
1

n

√
n
(

Hε
min(A

′′
1 |E)(

√
n) +H(A′′

0 |A′′
1BE)(

√
n))

)

.

In the asymptotic iid limit, the above quantity is equal to

H(A′′
1 |E) +H(A′′

0 |A′′
1B

′′E),

which is Alice’s desired rate. Note that we only needed to use 2H
ε
min(A

′′
1 |E)(

√
n) EPR pairs for the very first block, and
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thereafter these EPR pairs were regenerated by the protocol. This implies that the rate of seed EPR pairs is given by

1

n
Hε

min(A
′′
1 |E)(

√
n),

which is 0 in the asymptotic iid limit. Thus in this case, we can prove the following theorem:

Theorem 7.1. Given a quantum multiple access channel NA′B′→C all rate points in the closure of the following

region are achievable for partial entanglement assisted entanglement generation:

∞
⋃

k=1

1

k
Q(N⊗k),

where Q(N⊗k) is the set of non negative rate tuples (QA, EA, QB , EB) in the set

QA + EA < H(A
′′k)σk ,

QA − EA < I(A
′′k〉B′′kCk)UN ·σk ,

QB + EB < H(B
′′k)σk ,

QB − EB < I(B
′′k〉A′′kCk)UN ·σk ,

QA − EA +QB − EB < I(A
′′kB

′′k〉Ck)UN ·σk ,

where |σk〉A
′′kB

′′kA
′kB

′k
:= |Ω〉A

′′kA
′k |∆〉B

′′kB
′k

.

Case II: Hε
min(A0|A1)(

√
n) < 0.

In this case we cannot prove the existence of an isometric encoder for Alice. We get around this by using the state

merging protocol. To be precise, for the value for θ for which Case II occurs, Alice and Bob simply send the bipartite

pure state
(

|Ω〉A′′
0A

′′
1A

′ |∆〉B′′B′)⊗n
through n copies of the channel. This results in the following state:

(

|σ〉A′′
0A

′′
1B

′′CE
)⊗n

.

We divide this state into
√
n blocks, where each block corresponds to the state

(

|σ〉A′′
0A

′′
1B

′′CE
)⊗√

n
.

The parties then do a multi-party state merging protocol for this state [31], with parties Alice0, Bob and Alice1. Since

the expression H(A′′
0 |A′′

1BE)(
√
n) is assumed to be negative, Alice0 must use 2H(A′′

0 |A′′
1BE)(

√
n) pre-shared EPR pairs

with Charlie to merge her share of the state. The EPR pairs are regenerated when the protocol ends by Alice1 merging

her state with Charlie. Then, the same arguments as in Case I show that, with a vanishing amount of pre-shared seed,

the following rate point is achievable for unassisted state merging, in the asymptotic iid limit

QA <H(A′′
1 |E) +H(A′′

0 |A′′
1B

′′E),

QB <H(B′′|A′′
1E).
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It is known that entanglement generation and entanglement transmission are equivalent [16]. This implies that there

exists an unassisted entanglement transmission protocol which also achieves the above rates. Finally, one can obtain

the rates for the case when rate-limited entanglement assistance is available by simply time sharing between the

unassisted protocol above and the completely assisted protocol of Bennet et al. [29]. This implies that Theorem 7.1 is

true for all cases.

The arguments above can now be used to prove a similar theorem for the QIC as well:

Theorem 7.2. Given a quantum interference channel N⊗k, the control state |σ〉A′′A′B′′B′
the following regularised

rate region is achievable for partial entanglement assisted entanglement transmission:

∞
⋃

k=1

1

k
Q(N⊗k).

For each k ∈ N,

Q(N⊗k) =
⋃

Akθ
⋃ ⋃

Bkθ ,

where, for a fixed θ ∈ [0, 1], Akθ is the set of all non-negative tuples (QA, EA, QB , EB) such that

QA + EA < H(A
′′k
1 )σk(θ),

QA − EA < I(A
′′k
1 〉Ck1 )UN ·σk(θ),

QB + EB < H(B
′′k)σk(θ),

QB − EB < I(B
′′k〉A′′k

0 Ck2 )UN ·σk(θ),

where |σk〉A
′′kB

′′kA
′kB

′k
:= |Ω〉A

′′kA
′k |∆〉B

′′kB
′k

and |σk〉 := UA
′′k→A

′′k
0 A

′′k
1 |σk〉. We assume that {Uθ} is a split-

ting scheme. Analogously, Bkθ is the set of those points which are obtained when the splitting isometry acts on the

system B
′′k.

8 Conclusion

In this paper we use the technique of quantum rate splitting and successive cancellation decoding of entanglement

transmission codes to design entanglement transmission codes for the QMAC and QIC. We recover a non-trivial rate

region for the QMAC in the one-shot setting. Suitable adaptations of our techniques also achieve the ideal pentagonal

rate region in the asymptotic iid setting.

For the QIC, we show the existence of a non-trivial rate region both in the asymptotic iid and one-shot setting,

which is larger than the region one would obtain by considering the QIC as two point-to-point channels.
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46(1):18, Feb 2021.

[23] Pau Colomer Saus and Andreas Winter. Decoupling by local random unitaries without simultaneous smoothing,

and applications to multi-user quantum information tasks, 2023.

[24] M. Tomamichel, R. Colbeck, and R. Renner. Duality between smooth min- and max-entropies. IEEE Transac-

tions on Information Theory, 56(9):4674–4681, 2010.

[25] A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner. Chain rules for smooth min- and max-entropies. IEEE

Transactions on Information Theory, 59(5):2603–2612, 2013.

[26] Frédéric Dupuis, Mario Berta, Jürg Wullschleger, and Renato Renner. One-shot decoupling. Communications

in Mathematical Physics, 328(1):251–284, May 2014.

[27] Oleg Szehr, Frédéric Dupuis, Marco Tomamichel, and Renato Renner. Decoupling with unitary approximate

two-designs. New Journal of Physics, 15(5):053022, may 2013.

[28] H. Barnum, E. Knill, and M.A. Nielsen. On quantum fidelities and channel capacities. IEEE Transactions on

Information Theory, 46(4):1317–1329, 2000.

[29] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. Entanglement-assisted capacity of a quantum

channel and the reverse Shannon theorem. IEEE Transactions on Information Theory, 48(10):2637–2655, 2002.

[30] Anurag Anshu, Rahul Jain, and Naqueeb Ahmad Warsi. One shot entanglement assisted classical and quan-

tum communication over noisy quantum channels: A hypothesis testing and convex split approach. ArXiv,

abs/1702.01940, 2017.

[31] Nicolas Dutil and Patrick Hayden. One-shot multiparty state merging, 2010.

A Appendix

Lemma A.1. Given θ, θ′ ∈ [0, 1] such that |θ − θ′| ≤ δ, we have that

P
(

Ω′(θ)A
′′
0A

′′
1BE ,Ω′(θ′)A

′′
0A

′′
1BE

)

≤ O(
√
δ).
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Proof of Lemma A.1. For the course of the proof we will neglect to mention the registers in the superscript to ease the

notation, unless necessary. Since both Ω′(θ) and Ω′(θ′) are pure, we will use the identity :

P
(

Ω′(θ),Ω′(θ′)
)

=
√

1− |〈Ω′(θ)|Ω′(θ′)〉|2.

Recall that since

|Ω′〉A
′′
0A

′′
0BE (θ) = UA

′
N ◦ U

A′′
0A

′′
1A

′

f

(

∑

u∈A

√

P θU (u) |u〉A
′′
0

)

⊗
(

∑

v∈A

√

P θV (v) |v〉A
′′
0

)

|0〉A′

and similarly for |Ω′〉 (θ′),
〈Ω′(θ)|Ω′(θ′)〉 = F (P θU , P

θ′
U )F (P θV , P

θ′
V ).

It is thus sufficient to show that the distributions P θU and P θV are close to P θ
′

U and P θ
′

V respectively. Then, recalling the

explicit form of P θU observe that :

∥

∥

∥
P θ

′
U − P θU

∥

∥

∥

1
= |(1− θ + θPA(0))− (1− θ′ + θ′PA(0))| +

∑

i 6=0

|θPA(i)− θ′PA(i)|

≤ |θ − θ′|+ |θ − θ′|
∑

i∈A
PA(i)

≤ 2δ.

Next, observe that , for any i ∈ A

P θV (i) =
FA(i)

F θU (i)
− FA(i− 1)

F θU (i− 1)
.

It holds that

FA(i)F
θ
U (i− 1)− FA(i− 1)F θU (i) = (PA(i) + FA(i− 1))F θU (i− 1)− FA(i− 1)(θFA(i) + 1− θ)

= (PA(i) + FA(i− 1))F θU (i− 1)− FA(i− 1)(F θU (i− 1) + θPA(i))

= PA(i)(θFA(i− 1) + 1− θ)− θFA(i− 1)PA(i)

= (1− θ)PA(i).

Denote F θU (i)F
θ
U (i− 1) := g(θ). Then,

|g(θ)− g(θ′)|
= |F θU (i)F θU (i− 1)− F θ′U (i)F θ

′
U (i− 1)|

≤ |F θU (i)F θU (i− 1)− F θ′U (i)F θU (i− 1)|+ |F θ′U (i)F θU (i− 1)− F θ′U (i)F θ
′

U (i− 1)|
≤ 4δ.
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Let p∗ = min
i∈A

PA(i). Then,

g(θ) ≥ (1− θ + θp∗)2

≥ p∗2

|P θV (i)− P θ
′

V (i)| = PA(i)
∣

∣

∣

1− θ
g(θ)

− 1− θ′
g(θ′)

∣

∣

∣

=
PA(i)

|g(θ)g(θ′)| · |(1 − θ)g(θ
′)− (1− θ′)g(θ)|

(a)

≤ PA(i)

p∗4
· c · δ,

where c is some constant and we have used the triangle inequality and the lower bound for g(θ) in (a).

Then, the above bound implies that:
∥

∥

∥
P θV − P θ

′
V

∥

∥

∥

1
≤ O(δ).

Using the property that F (P,Q) ≥ 1− ‖P −Q‖1 for any two distributions P and Q, we see that

|〈Ω′(θ)|Ω′(θ′)〉|2 ≥ 1−O(δ).

This concludes the proof.

Lemma A.2. [Normalisation Lemma] Given a state ρ and any positive matrix σ, not necessarily of trace 1, given

‖σ − ρ‖1 ≤ δ,

then
∥

∥

∥

∥

σ

Tr[σ]
− ρ

∥

∥

∥

∥

1

≤ 2δ.

Proof. First note that for any positive matrix Ω,

‖σ‖1 = Tr[σ].

Then

∥

∥

∥

∥

σ

Tr[σ]
− ρ

∥

∥

∥

∥

1

≤
∥

∥

∥

∥

σ

Tr[σ]
− σ

∥

∥

∥

∥

1

+ ‖σ − ρ‖1

= | 1

Tr[σ]
− 1| · ‖σ‖1 + ‖σ − ρ‖1

= |Tr[σ]− 1|+ ‖σ − ρ‖1 .

Now, by the given condition,

‖σ − ρ‖1 ≤ δ
=⇒ |Tr[σ]− 1| ≤ δ
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by the monotonicity of 1-norm under trace. Thus, we see that

∥

∥

∥

∥

σ

Tr[σ]
− ρ

∥

∥

∥

∥

1

≤ 2δ.

This completes the proof.

Corollary A.3. [Purification Lemma] Given the setting of Lemma 5.10, define

κR0BR1E := |A′′
0 | TrC UN opA

′′
0→A′BR1(ω) UA

′′
0 · ηA′′

0R0

and

δ := 2−
1
2
H

ε2

26k
min (A′′

0 |A′′
1E)UN ·Ω− 1

2
Hε

min(A0|R0)η+O(log k) + 12kε.

Then
∥

∥

∥

∥

κR0BR1E

Tr[κ]
− ηR0 ⊗ ω̃BR1E

∥

∥

∥

∥

1

≤ 2δ.

Proof. Lemma 5.10 tells us that
∥

∥

∥

∥

κR0BR1E

Tr[ω]
− ηR0 ⊗ ω̃BR1E

∥

∥

∥

∥

1

≤ δ.

Then by Lemma A.2, we see that

∥

∥

∥

∥

∥

∥

1

Tr
[

κ
Tr[ω]

]

κR0BR1E

Tr[ω]
− ηR0 ⊗ ω̃BR1E

∥

∥

∥

∥

∥

∥

≤ 2δ,

which implies that
∥

∥

∥

∥

κR0BR1E

Tr[κ]
− ηR0 ⊗ ω̃BR1E

∥

∥

∥

∥

1

≤ 2δ.

This concludes the proof.
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