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Abstract—In this paper we analyze the joint rate distortion
function (RDF), for a tuple of correlated sources taking values in
abstract alphabet spaces (i.e., continuous) subject to two individ-
ual distortion criteria. First, we derive structural properties of the
realizations of the reproduction Random Variables (RVs), which
induce the corresponding optimal test channel distributions
of the joint RDF. Second, we consider a tuple of correlated
multivariate jointly Gaussian RVs, X1 : Ω→ Rp1 ,X2 : Ω→ Rp2

with two square-error fidelity criteria, and we derive additional
structural properties of the optimal realizations, and use these
to characterize the RDF as a convex optimization problem with
respect to the parameters of the realizations. We show that the
computation of the joint RDF can be performed by semidefinite
programming. Further, we derive closed-form expressions of the
joint RDF, such that Gray’s [1] lower bounds hold with equality,
and verify their consistency with the semidefinite programming
computations.

I. LITERATURE REVIEW, PROBLEM FORMULATION, AND
MAIN CONTRIBUTIONS

A. Literature Review

Gray [1, Theorem 3.1, Corollary 3.1] derived lower bounds
on the joint rate distortion functions (RDFs), of a tuple of
Random Variables (RVs) taking values in arbitrary, abstract
spaces, X1 : Ω→X1, X2 : Ω→X2, with a weighted distortion,
expressed in terms of conditional RDFs, and marginal RDFs.
Gray and Wyner in [2], characterized the rate distortion region
of a tuple of correlated RVs, using the joint, conditional
and marginal RDFs. Xiao and Luo [3, Theorem 6] derived
the closed-form expression of the joint RDF for a tuple of
scalar-valued correlated Gaussian RVs, with two square-error
distortion criteria, while Lapidoth and Tinguely [4] re-derived
Xiao’s and Luo’s joint RDF using an alternative method.
Xu, Liu and Chen [5] and Viswanatha, Akyol and Rose [6],
generalized Wyner’s common information [7] to its lossy
counterpart, as the minimum common message rate on the
Gray and Wyner rate region with sum rate equal to the joint
RDF with two individual distortion functions. The analysis in
[5], [6], includes the application of a tuple of scalar-valued,
jointly Gaussian RVs. More recent work on rates that lie on
the Gray and Wyner rate region are found in [8].
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Fig. I.1. Lossy Compression of correlated sources with individual distortion
criteria.

B. Problem Formulation
1) The Joint RDF with Individual Distortion Functions:

This paper is concerned with the joint RDF of a tuple of RVs
taking values in abstract spaces (i.e., continuous-valued RVs),
X1 : Ω→X1,X2 : Ω→X2 of reconstructing Xi by X̂i : Ω→ X̂i,
for i= 1,2, , subject to two distortion functions dXi :Xi×X̂i→
[0,∞), i = 1,2, defined by

RX1,X2(∆1,∆2) = inf
M(∆1,∆2)

I(X1,X2; X̂1, X̂2) (I.1)

where I(X1,X2; X̂1, X̂2) is the mutual information of RVs
(X1,X2) and (X̂1, X̂2), the set M(∆1,∆2) is specified by

M(∆1,∆2) =
{

X̂1 : Ω→ X̂1, X̂2 : Ω→ X̂2

∣∣∣ PX1,X2,X̂1,X̂2
has

(X1,X2)-marginal PX1,X2 ,E
{

dXi(Xi, X̂i)
}
≤ ∆i, i = 1,2

}
(I.2)

and the level of distortions are ∆i ∈ [0,∞), i = 1,2. The joint
RDF characterizes the infimum of all achievable rates of
a sequence of rate distortion codes, ( fE ,gD), as depicted
in Figure I.1, of reconstructing (Xn

1 ,X
n
2 )
4
= {(X1,t ,X2,t) : t =

1,2, . . . ,n}, by (X̂n
1 , X̂

n
2 )
4
= {(X̂1,t , X̂2,t) : t = 1,2, . . . ,n}, where

X̂i,t : Ω→ X̂i i = 1,2, t = 1,2, . . . ,n and PX1,t ,X2,t = PX1,X2 , ∀t,
with distortion 1

n E{dXi(X
n
i , X̂

n
i )} ≤ ∆i, i = 1,2, for sufficiently

large n. The computation of RX1,X2(∆1,∆2) is indispensable in
the characterization of the Gray and Wyner rate region, and
in the above mentioned applications.

Our first objective is to identify structural properties of
realizations of the tuple of RVs (X̂1, X̂2) in the setM(∆1,∆2),
and structural properties of corresponding induced forward test
channel distributions PX̂1,X̂2|X1,X2

or backward test channel dis-
tributions PX1,X2|X̂1,X̂2

, such that E
{

dXi(Xi, X̂i)
}
≤ ∆i, i = 1,2,

i.e., to characterize RX1,X2(∆1,∆2).
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2) The Joint RDF of a Tuple of Multivariate Gaussian
Sources: Our second objective is to compute the joint RDF
RX1,X2(∆1,∆2), of a tuple of jointly independent and identically

distributed multivariate Gaussian RVs, (Xn
1 ,X

n
2 )
4
= {(X1,t ,X2,t) :

t = 1,2, . . . ,n}, where Xi,t : Ω→ Rpi , i = 1,2, t = 1,2, . . . ,n,
i.e., PX1,t ,X2,t = PX1,X2 , ∀t is a multivariate jointly Gaussian
distribution and denoted by (X1,X2) ∈ G(0,Q(X1,X2)), subject
to two square-error distortion functions, all defined by

Q(X1,t ,X2,t ) = E
{(

X1,t

X2,t

)(
X1,t

X2,t

)T}
=

(
QX1 QX1,X2

QT
X1,X2

QX2

)
(I.3)

X1,t ∈ G(0,QX1), X2,t ∈ G(0,QX2), ∀t, (I.4)

X̂1,t : Ω→ X̂1
4
= Rp1 , X̂2,t : Ω→ X̂2

4
= Rp2 ∀t, (I.5)

dXi(x
n
i , x̂

n
i ) =

1
n

n

∑
t=1
||xi,t − x̂i,t ||2Rpi , i = 1,2, (I.6)

where pi are positive integers for i = 1,2. Here X ∈G(0,QX )
means X is a Gaussian RV, with zero mean and symmetric
nonnegative definite covariance matrix QX � 0.

C. Main Contributions

1) The derivation of structural properties of test channel
distributions PX̂1,X̂2|X1,X2

, and corresponding realizations
of the reproduction RVs (X̂1, X̂2) which induce these
distributions, and characterize RX1,X2(∆1,∆2).

2) The characterization of RX1,X2(∆1,∆2) for jointly Gaussian
multivariate sources, X1 : Ω → Rp1 ,X2 : Ω → Rp2 , with
square-error distortion criteria, (I.3)-(I.6), parametriza-
tion of reproduction RVs (X̂1, X̂2) and corresponding test
channels, and calculation of RX1,X2(∆1,∆2) using convex
numerical algorithms. Further, derivation of closed-form
expressions for RX1,X2(∆1,∆2), to verify the numerical
algorithms. This includes the distortion region D(X1,X2),
such that Gray’s lower bound [1] holds with equality,

RX1,X2(∆1,∆2) = RX1(∆1)+RX2(∆2)− I(X1;X2). (I.7)

the value of the RDF derived by Xiao and Luo [3]. The
tools used in this paper have been used to derive structural
properties of the nonanticipative RDF of multivariate Gaussian
Markov [9] and autoregressive [10] processes.

II. PROPERTIES OF REALIZATIONS OF TEST CHANNELS

Let Z and Z+ be the set of integers and positive integers,
respectively. Let R be the set of real numbers. The expression
Rn×m denotes the set of n by m matrices with elements the real
numbers, for n, m ∈ Z+. For the symmetric matrix Q ∈Rn×n,
inequality Q � 0 (resp. Q � 0) means the matrix is positive
definite (resp. semi-definite). The notation Q2�Q1 means that
Q2−Q1 � 0. For any matrix A ∈Rp×m,(p,m) ∈ Z+×Z+, we
denote its transpose by AT, and for m = p, we denote its trace
and its determinant by tr(A) and det

(
A
)
, respectively. The n

by n identity (resp. zero) matrix is represented by In (resp.
0n). For matrix A ∈Rp×p, diag(A) is the matrix with diagonal
entries those of A and zero elsewhere. Block-diag(A,B) is a

square diagonal matrix in which the diagonal elements are
square matrices A ∈ Rp1×p1 and B ∈ Rp2×p2 , and the off-
diagonal elements are zero. Given a triple of real-valued RVs
Xi : Ω→Xi, i= 1,2,3, we say that RVs (X2,X3) are conditional
independent given RV X1 if PX2,X3|X1 = PX2|X1PX3|X1−a.s (al-
most surely); the specification a.s is often omitted. The mutual
information between RV X and RV Y is denoted by I(X ;Y ).
The conditional covariance of the two-component vector RV
X = (X T

1 ,X
T
2)

T, Xi : Ω→ Rpi , i = 1,2, conditioned on the two-
component vector X̂ = (X̂ T

1 , X̂
T
2)

T, X̂i : Ω → Rpi , i = 1,2, is

denoted by Q(X1,X2)|X̂
4
= cov

(
X ,X

∣∣∣X̂)� 0, where

Q(X1,X2)|X̂ =

(
QX1|X̂ QX1,X2|X̂

QT

X1,X2|X̂
QX2|X̂

)
∈ R(p1+p2)×(p1+p2),

QX1,X2|X̂
4
=cov

(
X1,X2

∣∣∣X̂).
(1)
=E
{(

X1−E
{

X1

∣∣∣X̂})(X2−E
{

X2

∣∣∣X̂})T}
=E
{

E1ET
2

}
, Ei

4
= Xi−E

{
Xi

∣∣∣X̂}, i = 1,2

and where (1) holds if (X1,X2, X̂1, X̂2) is jointly Gaussian.
Similarly for QXi|X̂ , i = 1,2. Consequently, for jointly Gaus-
sian RVs (X1,X2, X̂1, X̂2), and the two-component vector RV
E
4
= (ET

1,E
T
2)

T, we have Q(X1,X2)|X̂ = Σ(E1,E2) (unconditional).
In Theorem II.1 we identify a structural property of the tuple

(X̂1, X̂2) to achieve a lower bound on I(X1,X2; X̂1, X̂2), for any
tuple of RVs (X1,X2) with arbitrary distribution PX1,X2 .

Theorem II.1. Let (X1,X2, X̂1, X̂2) be arbitrary RVs taking
values in the abstract spaces X1×X2×X̂1×X̂2, with arbitrary
joint distribution PX1,X2,X̂1,X̂2

, and X1×X2−joint marginal the
fixed distribution PX1,X2 of (X1,X2).
(a) Define

Xcm
i = gcm

i
(
X̂1, X̂2

) 4
= E

{
Xi

∣∣∣X̂}, i = 1,2, (II.8)

gcm
i : X̂1× X̂2→ X̂i, gcm

i (·) are measurable functions, i = 1,2.

Then, the following inequality holds:

I(X1,X2; X̂1, X̂2)≥ I
(
X1,X2;gcm

1 (X̂1, X̂2),gcm
2 (X̂1, X̂2)

)
. (II.9)

Moreover, if there exist RVs (X̂1, X̂2) such that the functions
gcm

i (·, ·) satisfy gcm
i (X̂1, X̂2) = X̂i − a.s for i = 1,2, then the

inequality in (II.9) holds with equality.
(b) Let X1×X2× X̂1× X̂2 =Rp1×Rp2×Rp1×Rp2 , p1, p2 ∈
Z+. For all measurable functions gi(X̂1, X̂2), i = 1,2 then

E
{∣∣∣∣Xi−gi(X̂1, X̂2)

∣∣∣∣2
Rpi

}
≥ E

{∣∣∣∣Xi−E
{

Xi

∣∣∣X̂}∣∣∣∣2Rpi

}
, i = 1,2.

(c) If X1×X2×X̂1×X̂2 =Rp1×Rp2×Rp1×Rp2 , p1, p2 ∈Z+,
dXi(xi, x̂i) = ||xi− x̂i||2Rpi , i = 1,2, gcm

i (X̂1, X̂2) = X̂i− a.s, i =
1,2, then the joint RDF of (I.1) is characterized by

RX1,X2(∆1,∆2) = inf
Mcm(∆1,∆2)

I(X1,X2; X̂1, X̂2) (II.10)

where Mcm(∆1,∆2) is specified by the subset of M(∆1,∆2),
with the additional restriction X̂i = E

{
Xi

∣∣∣X̂}, i = 1,2.



Proof. (a) By properties of mutual information, we have

I(X1,X2; X̂1, X̂2)
(1)
= I(X1,X2; X̂1, X̂2,X

cm
1 ,Xcm

2 )
(2)
= I(X1,X2; X̂1, X̂2|X

cm
1 ,Xcm

2 )

+ I(X1,X2;Xcm
1 ,Xcm

2 )
(3)
≥ I(X1,X2;Xcm

1 ,Xcm
2 ), (II.11)

where (1) is due to Xcm
i , i = 1,2, are functions of (X̂1, X̂2),

(2) is due to the chain rule of mutual information, and
(3) is due to I(X1,X2; X̂1, X̂2|X

cm
1 ,Xcm

2 ) ≥ 0. Thus, (II.9)
is obtained. If gcm

i (X̂1, X̂2) = X̂i − a.s, i = 1,2, hold, then
I(X1,X2; X̂1, X̂2|X

cm
1 ,Xcm

2 ) = 0, and hence the inequality (II.11)
become equality. (b) The inequality is well-known, due to the
orthogonal projection theorem. (c) This is due to (a), (b).

III. STRUCTURAL PROPERTIES OF TEST CHANNELS AND
CHARACTERIZATION OF JOINT RDF FOR MULTIVARIATE

JOINTLY GAUSSIAN SOURCES

This section makes use of Theorem II.1 to derive addi-
tional structural properties of test channels for the joint RDF
RX1,X2(∆1,∆2) of jointly Gaussian sources with square-error
distortions, defined by (I.3)-(I.6).

Theorem III.1 (Sufficient conditions for the lower bounds
of Theorem II.1 to be achieved). Consider the quadruple of
zero mean RVs (X1,X2, X̂1, X̂2) taking values in Rp1 ×Rp2 ×
Rp1×Rp2 , p1, p2 ∈ Z+, with jointly Gaussian distribution i.e,
PX1,X2,X̂1,X̂2

= PG
X1,X2,X̂1,X̂2

and X1×X2−joint marginal the fixed
distribution PX1,X2 of (X1,X2). Define the vectors,

X =

(
X1

X2

)
, X̂ =

(
X̂1

X̂2

)
, Xcm 4

= E

{(
X1

X2

)∣∣∣X̂}=

(
Xcm

1
Xcm

2

)
.

(a) If the vector of conditional means satisfy,

Xcm
= E

{
X
}
+ cov

(
X , X̂

){
cov
(
X̂ , X̂

)}†
(

X̂−E
{

X̂
})

= X̂

where † denotes pseudoinvesrse, then the equalities hold:

Xcm
1
4
= E

{
X1

∣∣∣X̂}= X̂1, Xcm
2
4
= E

{
X2

∣∣∣X̂}= X̂2. (III.12)

(b) If the inverse of cov
(
X̂ , X̂

)
exists and E

{
X
}
= E

{
X̂
}
= 0,

then (III.12) holds if Condition 1 holds:

Condition 1. cov
(
X , X̂

){
cov
(
X̂ , X̂

)}−1
= Ip1+p2 . (III.13)

(c) The lower bounds of Theorem II.1 are achieved, if there
exist (X̂1, X̂2) such that Xcm

= X̂ , or the statement of (b) holds.

Proof. Follows by properties of jointly Gaussian RVs.

In the next lemma, we apply Theorem II.1 and Theo-
rem III.1 to find a parametric jointly Gaussian realization of
(X̂1, X̂2), that induces the set of test channels of the joint RDF
RX1,X2(∆1,∆2) for (I.3)-(I.6).

Lemma III.1 (Preliminary parametrization of test channel).
Consider the joint RDF RX1,X2(∆1,∆2) for (I.3)-(I.6). The
following hold.

(a) A jointly Gaussian distribution PX1,X2,X̂1,X̂2
minimizes

I(X1,X2; X̂1, X̂2), subject to two average distortions.
(b) The test channel distribution PX̂1,X̂2|X1,X2

of the joint
RDF RX1,X2(∆1,∆2) is induced by the parametric Gaussian
realization of (X̂1, X̂2), in terms of the matrices (H,QV ), as

X̂ = HX +V (III.14)

H ∈ R(p1+p2)×(p1+p2), V : Ω→ R(p1+p2), (III.15)
V ∈ G(0,Q(V1,V2)), Q(V1,V2) � 0, V and X indep., (III.16)

(c) Consider part (b) and suppose there exist matrices
(H,Q(V1,V2)) such that Theorem III.1.(a) holds, i.e., Xcm

= X̂-
a.s., or in the special case Condition 1 holds. Then the infimum
in RX1,X2(∆1,∆2) is taken over the subset Mcm,G(∆1,∆2) ⊆
Mcm(∆1,∆2),

Mcm,G(∆1,∆2)
4
=
{

X̂ : Ω→ R(p1+p2)
∣∣∣ (III.14)− (III.16) hold,

Xcm
i = X̂i, E

{
||Xi− X̂i||2Rpi

}
≤ ∆i, i = 1,2

}
(III.17)

Proof. (a) This is similar to the classical RDF RX (∆) of
a Gaussian RV X ∈ G(0,QX ) with square-error distortion.
(b) By part (a), the test channel distribution PX̂1,X̂2|X1,X2

is
conditionally Gaussian with linear conditional mean E

{
X |X̂

}
and non-random covariance cov(X , X̂ |X). Such a distribution
is induced by the realizations (III.14)-(III.16). (c) Follows from
Theorem III.1.(c).

Next, we construct (H,Q(V1,V2)) such that Xcm
i =E

{
Xi|X̂

}
=

X̂i−a.s for i = 1,2, and characterize RX1,X2(∆1,∆2).

Theorem III.2 (Realization of optimal test channels and
characterization of joint RDF). Consider the joint RDF
RX1,X2(∆1,∆2) for (I.3)-(I.6).
(a) The test channel distribution PX̂1,X̂2|X1,X2

of the RDF
RX1,X2(∆1,∆2) is induced by the parametric realization
(III.14)-(III.16), where the matrices, (H,QV ) satisfy,

HQ(X1,X2) = Q(X1,X2)−Σ(E1,E2) = Q(X1,X2)H
T � 0, (III.18)

Q(V1,V2) = HQ(X1,X2)−HQ(X1,X2)H
T � 0. (III.19)

Moreover, RX1,X2(∆1,∆2) is characterized by,

RX1,X2(∆1,∆2) = inf
Q†(∆1,∆2)

1
2

log
{det

(
Q(X1,X2)

)
det
(
Σ(E1,E2)

)}, (III.20)

Q†(∆1,∆2)
4
=
{

Σ(E1,E2) : (H,Q(V1,V2)) satisfy (III.18), (III.19),

tr
(
ΣE1

)
≤ ∆1, tr

(
ΣE2

)
≤ ∆2

}
. (III.21)

(b) Suppose Q(X1,X2) � 0. If RX1,X2(∆1,∆2) < ∞, then the
matrices, (H,Q(V1,V2)), of part (a) reduce to,

H = Ip1+p2 −Σ(E1,E2)Q
−1
(X1,X2)

, (III.22)

Q(V1,V2) = Σ(E1,E2)−Σ(E1,E2)Q
−1
(X1,X2)

Σ(E1,E2) � 0, (III.23)

Q(X1,X2)−Σ(E1,E2) � 0, ⇐⇒ (III.24)

Σ(E1,E2)−Σ(E1,E2)Q
−1
(X1,X2)

Σ(E1,E2) � 0. (III.25)



and Q†(∆1,∆2) in (III.20) is replaced by
◦
Q (∆1,∆2), given by

◦
Q (∆1,∆2)

4
=
{

Σ(E1,E2) : Q(X1,X2) � Σ(E1,E2) � 0,

tr
(
ΣE1

)
≤ ∆1, tr

(
ΣE2

)
≤ ∆2

}
. (III.26)

Proof. See Appendix VI.

Lemma III.2. Consider RX1,X2(∆1,∆2) of Theorem III.2, de-
fined by (III.20) and assume Q(X1,X2)� 0, and RX1,X2(∆1,∆2)<
+∞. The Lagrange functional is,

L
4
=

1
2

log
{det

(
Q(X1,X2)

)
det
(
Σ(E1,E2)

)}+ tr
(

Θ

(
Σ(E1,E2)−Q(X1,X2)

))
+λ1

(
tr
(

ΣE1

)
−∆1

)
+λ2

(
tr
(

ΣE2

)
−∆2

)
− tr

(
V Σ(E1,E2)

)
where Θ � 0, V � 0, λi ∈ [0,∞), i = 1,2. The optimal

Σ(E1,E2) ∈
◦
Q (∆1,∆2) for RX1,X2(∆1,∆2) is found as follows.

(i) Stationarity:

−1
2

Σ
−1
(E1,E2)

+

[
λ1Ip1 0

0 λ2Ip2

]
+Θ+V = 0. (III.27)

(ii) Complementary Slackness:

λ1

(
tr
(

ΣE1

)
−∆1

)
= 0, λ2

(
tr
(

ΣE2

)
−∆2

)
= 0, (III.28)

tr
(

V Σ(E1,E2)

)
= 0, tr

(
Θ

(
Σ(E1,E2)−Q(X1,X2)

))
= 0. (III.29)

(iii) Primal Feasibility: Defined by
◦
Q (∆1,∆2).

(iv) Dual Feasibility: λ1 ≥ 0, λ2 ≥ 0, Θ� 0, V � 0.
Moreover, the following hold.
(a) V = 0, and

Σ(E1,E2) =
1
2

([
λ1Ip1 0

0 λ2Ip2

]
+Θ

)−1

� 0. (III.30)

(b) If Q(X1,X2)−Σ(E1,E2) � 0 then Θ = 0, and

Σ(E1,E2) =
1
2

([
λ1Ip1 0

0 λ2Ip2

])−1

� 0. (III.31)

Proof. The derivation is standard hence it is omitted.

The next two theorems are obtained from Lemma III.2.

Theorem III.3 (Joint RDF for a positive surface). Consider
the characterization of joint RDF RX1,X2(∆1,∆2) of Theo-
rem III.2, defined by (III.20), and assume Q(X1,X2) � 0 (i.e.,
this implies QX1 � 0,QX2 � 0). Define the set

D(X1,X2) =

{
(∆1,∆2) ∈ [0,∞)× [0,∞)

∣∣∣∣Q(X1,X2)−Σ(E1,E2) � 0
}
.

The joint RDF RX1,X2(∆1,∆2) for (∆1,∆2
)
∈D(X1,X2) is

RX1,X2

(
∆1,∆2

)
=

1
2

log
{

det
(
Q(X1,X2)

)
det
(
ΣE1

)
det
(
ΣE2

)}= (I.7)

ΣE1 = diag
(

∆1

p1
, . . . ,

∆1

p1

)
, ΣE2 = diag

(
∆2

p2
, . . . ,

∆2

p2

)

and this is achieved by the covariance matrix Σ(E1,E2) with
ΣE1,E2 = QX1,X2|X̂ = 0, and Gray’s lower bound (I.7) holds.

Proof. For any element of the set D(X1,X2) then Q(X1,X2) −
Σ(E1,E2) � 0, and the statements follow from Lemma III.2.

Remark III.1. For the scalar-valued RVs, i.e., p1 = p2 = 1,
we have verified that Lemma III.2 produces the closed-form
expression of RX1,X2(∆1,∆2) as derived in [3, Theorem 6].
However, for the multivariate case of Lemma III.2, to obtain
the closed-form expression is challenging. To make the prob-
lem tractable, in Theorem III.4, we use the canonical variable
form of the tuple (X1,X2), as described in [8] and [11].

The algorithm to transform the tuple (X1,X2) to the canonical
variable form is presented below [11, Algorithm 2.10].

Algorithm III.1. [11, Algorithm 2.10] Transformation of a
variance matrix to its canonical variable form.
Data : p1, p2 ∈ Z+, Q(X1,X2) ∈ R(p1+p2)×(p1+p2), satisfying
Q(X1,X2) = QT

(X1,X2)
� 0, with decomposition (I.3).

1) Perform singular value decompositions (SVD), QXi =
UiDiUT

i , i = 1,2 with Ui ∈ Rpi×p1 , orthogonal and Di =
diag(d1,1, . . . ,di,pi) ∈ Rp1×p1 , di,1 ≥ di,2 ≥ ·· · ≥ di,pi > 0.

2) Perform SVD of D
− 1

2
1 UT

1 QX1,X2U2D
− 1

2
2 = U3D3UT

4 with
U3 ∈ Rp1×p1 , U4 ∈ Rp2×p2 orthogonal and

D3 = Block-diag
(
Ip11 ,D4,0p13×p23

)
∈ Rp1×p2 ,

D4 = diag(d4,1, . . . ,d4,p12) ∈ Rp12×p22 , 1 > d4,1 ≥ ·· · ≥ d4,p12 > 0,
pi = pi1 + pi2 + pi3, i = 1,2, p11 = p21, p12 = p22

3) Compute the new variance matrix and the transformation to
the canonical variable representation (X1 7→ S1X1, X2 7→ S2X2)
according to

Qcvf =

(
Ip1 D3

DT
3 Ip2

)
, S1 =UT

3 D
− 1

2
1 UT

1 , S2 =UT
4 D
− 1

2
2 UT

2

Theorem III.4. Consider the statement of Theorem III.2.(b),
with (X1,X2) ∈ G(0,Q(X1,X2)),Q(X1,X2) � 0. Determine the
canonical variable form of the tuple (X1,X2), according to
[11, Definition 2.2] by using algorithm Algorithm III.1, and
restrict attention to indices, p11 = p21 = 0. Then, n = p12 =
p22 and p1 = p12 + p13, p2 = p22 + p23. Similarly, transform
(E1,E2)∈G(0,Σ(E1,E2)) with p11 = p21 = 0 and n= p12 = p22,
p1 = p12 + p13, p2 = p22 + p23.
The joint RDF RX1,X2(∆1,∆2) of Theorem III.2.(b), is equiva-
lently characterized by

RX1,X2(∆1,∆2) = inf
◦
Q(∆1,∆2)

1
2

log
{det

(
D1
)

det
(
D2
)

det
(
Qcvf

)
det
(
D1
)

det
(
D2
)

det
(
Σcvf

) }
where,
◦
Q (∆1,∆2)

4
=
{

n ∈ Z+, d4,i ∈ (0,1), i = 1, . . . ,n,

d1,i ∈ (0,∞), i = 1, . . . , p1, d2,i ∈ (0,∞), i = 1, . . . , p2 :
p1

∑
i=1

d1,i ≤ ∆1,
p2

∑
i=1

d2,i ≤ ∆2, Q(X1,X2)−Σ(E1,E2) � 0
}



Fig. III.2. Joint RDF RX1 ,X2 (∆1,∆2) of source of Section IV, p1 = p2 = 2.

and

det
(
Σcvf

)
= det

(
Ip1 −D3DT

3
)

=

{
1, if p13 > 0, p23 > 0, p12 = p22 = 0,

∏
n
i=1

(
1−d

2
4,i

)
, if p12 = p22 = n, p13 ≥ 0, p23 ≥ 0.

Proof. By Theorem III.2.(b) and applying [11, Definition 2.2]
and Algorithm III.1 we obtain the results.

Remark III.2. RX1,X2(∆1,∆2) of Theorem III.4, is much easier
to optimize, due to its structure.

IV. EVALUATION OF THE JOINT RDF VIA SDP

We can express the optimization problem of Theorem III.2
as a semidefinite program (SDP) as follows, define ΞT

1 =
Block-diag

(
Ip1 0p2

)
and ΞT

2 = Block-diag
(
0p1 Ip2

)
,

min
Σ(E1,E2)

1
2

log
{det

(
Q(X1,X2)

)
det
(
Σ(E1,E2)

)}
s.t. Q(X1,X2)−Σ(E1,E2) � 0, Σ(E1,E2) � 0,

tr
(
Ξ

T
i Σ(E1,E2)Ξi

)
≤ ∆i, i = 1,2

(IV.32)

Then, we can solve the SDP (IV.32) by using the CVX [12].
Below, we calculate the optimal Σ(E1,E2) for a multivariate
example Xi : Ω→ R2, i = 1,2, with covariance,

Q(X1,X2) =

3.929 −0.11 0.642 0.976
−0.11 2.629 −0.859 0.337
0.642 −0.859 2.142 1.797
0.976 0.337 1.797 3.495

.

Fig. III.2 depicts RX1,X2(∆1,∆2),(∆1,∆2) ∈ [0,∞)× [0,∞). Be-
low we distinguish two cases.
Case 1. Given distortions (∆1,∆2) = (0.4,0.5), the solution
of (III.20), (III.26) is given by

Σ(E1,E2) = diag
(
0.2,0.2,0.25,0.25

)
, Q(X1,X2)−Σ(E1,E2) � 0

Distortions ∆1 and ∆2 are equally divided among the diagonal
elements of the first and second 2-by-2 diagonal blocks of
Σ(E1,E2) respectively, and the rest of the values are zero. Hence,
(0.4,0.5) ∈D(X1,X2); this re-confirms Theorem III.3.

Case 2. Given distortions (∆1,∆2) = (1.65,1.85), the optimal
error covariance matrix is given by,

Σ(E1,E2) =

 0.849 −0.0017 −0.0053 0.0036
−0.0017 0.801 −0.144 0.0961
−0.0053 −0.144 0.804 0.293
0.0036 0.0961 0.293 1.05


and Q(X1,X2) − Σ(E1,E2) � 0 but not positive definite. Unlike
Case 1, Σ(E1,E2) is not block-diagonal, i.e., ΣE1,E2 6= 0, as in
Theorem III.3, hence (1.65,1.85) /∈ D(X1,X2). This choice of
distortions corresponds to Lemma III.2.(b).

V. CONCLUSION

The joint RDF RX1,X2(∆1,∆2), with individual distortion cri-
teria, is analyzed, with emphasis on the structural properties of
realizations of the reproduction RVs (X̂1, X̂2) of (X1,X2), and
corresponding optimal test channel distribution, PX̂1,X̂2|X1,X2

.
Closed-form expressions of RX1,X2(∆1,∆2) are derived for
a strictly positive surface of the distortion region, and a
numerical technique is presented, which verifies the closed-
form expressions.

VI. APPENDICES

Proof of Theorem III.2. Consider (III.14)-(III.16). To iden-
tify (H,Q(V1,V2)) such that Xcm

i = E
{

Xi

∣∣∣X̂} = X̂i, i = 1,2,
we make use of the following preliminary calculations. The
covariance of X and X̂ is,

QX ,X̂ = E
{

X
(

HX +V
)T}

= Q(X1,X2)H
T. (VI.33)

By (III.14)-(III.16), the covariance of X̂ = HX +V is

QX̂ = E
{

X̂ X̂ T
}
= HQ(X1,X2)H

T +Q(V1,V2), (VI.34)

Consider the special case when Condition 1, (III.13) holds:

cov
(
X , X̂

){
cov
(
X̂ , X̂

)}−1
= Ip1+p2 ⇐⇒ QX ,X̂ Q−1

X̂
= Ip1+p2

=⇒ QX HT = HQX HT +Q(V1,V2) by (VI.33), (VI.34)

=⇒ Q(V1,V2) = Q(X1,X2)H
T−HQ(X1,X2)H

T. (VI.35)

Next, we turn to the identification of H. By the definition of
covariance of the errors, then Σ(E1,E2)

4
= cov(X ,X |X̂), and

Σ(E1,E2) = cov(X ,X)− cov(X , X̂)
{

cov(X̂ , X̂)
}−1cov(X , X̂)T

= Q(X1,X2)−HQ(X1,X2), by (III.13),(VI.33)

=⇒ HQ(X1,X2) = Q(X1,X2)−Σ(E1,E2) = Q(X1,X2)H
T (VI.36)

=⇒ H = Ip1+p2 −Σ(E1,E2)Q
−1
(X1,X2)

, if Q(X1,X2) � 0.

Using (VI.36) into (VI.35) then we have

Q(V1,V2) =Q(X1,X2)H
T−HQ(X1,X2)H

T = QT
(V1,V2)

(VI.37)

=Q(X1,X2)−Σ(E1,E2)−HQ(X1,X2)H
T. (VI.38)

Hence, (H,Q(V1,V2)) are obtained. The general case is shown
by using properties of pseudoinverse. The rest follow.
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