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Multiple Support Recovery Using Very Few Measurements

Per Sample

Lekshmi Ramesh Chandra R. Murthy Himanshu Tyagi

Abstract

In the problem of multiple support recovery, we are given access to linear measurements of
multiple sparse samples in Rd. These samples can be partitioned into ℓ groups, with samples
having the same support belonging to the same group. For a given budget of m measurements
per sample, the goal is to recover the ℓ underlying supports, in the absence of the knowledge
of group labels. We study this problem with a focus on the measurement-constrained regime
where m is smaller than the support size k of each sample. We design a two-step procedure
that estimates the union of the underlying supports first, and then uses a spectral algorithm
to estimate the individual supports. Our proposed estimator can recover the supports with
m < k measurements per sample, from Õ(k4ℓ4/m4) samples. Our guarantees hold for a
general, generative model assumption on the samples and measurement matrices. We also
provide results from experiments conducted on synthetic data and on the MNIST dataset.

1 Introduction

We study the problem of multiple support recovery using linear measurements, where there are n
random samples X1, . . . , Xn taking values in Rd, such that for each i ∈ [n], supp(Xi) ∈ {S1, . . . ,Sℓ}
almost surely,1 with Si ⊂ [d] and Si ∩ Sj = ∅ for all i 6= j. That is, the support of each sample
is one out of a small set of ℓ allowed supports. We assume that the samples Xi are sparse and
that |Si| = k ≪ d, i ∈ [ℓ]. We are given low dimensional projections of these samples using m× d
matrices Φ1, . . . ,Φn. In our setting, we focus on the regime where we have access to very few
measurements per sample, namely, when m < k. Given access to the projections Yi = ΦiXi, i ∈ [n],
and the projection matrices, we seek to recover the underlying supports {S1, . . . ,Sℓ}.

This is a generalization of the well-studied problem of recovering a single unknown support from
multiple linear measurements [1–5], which has been applied to solve inverse problems in imaging,
source localization, and anomaly detection [6–9]. It is also related to the study of sparse random
effects in mixed linear models [10, 11]. Mixed linear models are a generalization of linear models
where an additional additive correction component is included to model a class-specific correction
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1The support of a vector x ∈ Rd is the set {u ∈ [d] : xu 6= 0}.
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to the average behavior. This residual correction term is commonly known as the random effect
term. It is often assumed to be generated from an unknown prior distribution with zero-mean,
coming from a parametric family whose parameters are estimated by using the class-specific data.
The problem of multiple support recovery is also discussed in [12,13] under the assumption of slowly
varying supports.

There are two sets of unknowns in the setting described above – the labels, indicating which
support was chosen for each sample, and the ℓ supports S1, . . . ,Sℓ. Note that given the knowledge
of the labels, one could group together samples with the same support, and use standard algorithms
to recover the support. However, in the absence of labels, the problem of recovering the supports
is much harder. A naive scheme could be to just estimate each support individually, which requires
m = O(k log(d − k)) measurements per sample [14, 15]. But can we do better if we exploit the
joint structure present across the samples, since there will be several samples that have the same
support? In this work, we show that one can operate in the measurement-constrained regime of
m < k, when a sufficiently large number of samples is available.

1.1 Prior work

For the special case with n = ℓ = 1, when there is a single k-sparse sample of length d, it is known
that m = Θ(k log(d−k)) measurements are necessary and sufficient to recover the support [14] with
noisy measurements, when the inputs are worst-case. For the case with a single common support
across multiple samples (i.e., ℓ = 1 and n > 1), several previous works have studied the question of
support recovery in the m > k setting [2–4].

On the other hand, in them < k regime, it was shown recently in [5,16] that n = Θ((k2/m2) log d)
samples are necessary and sufficient, assuming a subgaussian generative model on the samples and
measurement matrices and that the measurement matrices are drawn independently across samples.
In fact, the lower bound of [5] applies to the worst-case setting as well, showing that while k overall
measurements2 suffice when m exceeds k, at least (roughly) k2/m measurements are required when
m < k.

In [17], the problem of recovering the union of supports from linear measurements is considered.
The setting allows for overlaps in the supports, but otherwise places no constraints. The results
when applied to the case of disjoint supports lead to a requirement of m = O(k log d) measurements
per sample, and therefore are not applicable to our setting. Another line of related works is on multi-
task learning/multi-task sparse estimation [18–20] that use hierarchical Bayesian models and focus
on recovering the samples, rather than the supports, and so still require at least k measurements
per sample. However, none of these results shed light on how to recover multiple supports when we
are constrained to observe less than k measurements per sample.

We note that there has been some recent work in the literature on mixture of sparse linear
regressions that considers the related problem of recovering multiple sparse vectors from linear
measurements [20–25]. The model shares some similarities with the m = 1 case in our setting,
but there are some important differences. Unlike our setting, these works consider the samples
to be deterministic and do a worst-case analysis. Further, when ℓ = 1 in the mixture of sparse
linear regressions setting, we have multiple observations from the same unknown sparse vector,
thus reducing the problem to the standard compressed sensing problem. On the other hand, with
ℓ = m = 1 in our setting, we obtain a single observation from different sparse vectors sharing

2The overall measurements in our model are nm.
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a common support. The latter setting is harder and requires Ω(k2 log d) samples to recover the
common support [5].

1.2 Contributions and Techniques

Our approach builds on the following simple but crucial observation: since each sample is k-sparse
with support equal to one of the Si (with the Si being disjoint), the sample covariance matrix
(1/n)

∑n
i=1 XiX

⊤
i exhibits a block structure under an unknown permutation of rows and columns.

This motivates the use of spectral clustering to recover the underlying supports. However, we only
have access to low-dimensional projections of the data. To circumvent this difficulty, we compute
Φ⊤

i Yi and use these as a proxy for the data, and form an estimate of the diagonal entries of the
covariance matrix of the samples. We build further on this idea and propose an estimator that first
determines the union of the ℓ supports from Φ⊤

i Yi using the estimator in [5]. We then construct an
affinity matrix using the proxy samples Φ⊤

i Yi and apply spectral clustering to estimate individual
supports from the union.

This clustering based approach to support recovery is new, and very different from traditional
approaches to sparse recovery in the multiple sample setting. It reduces the support recovery prob-
lem to that of recovering the structure of a certain block matrix, a question which has been studied
in the literature on community detection on graphs [26–29], and for which many algorithms are
known. However, unlike the community detection problem where an instance of the adjacency ma-
trix is available as an observation, the affinity matrix constructed in our case has a more complicated
structure and requires a separate, careful analysis.

We show that using our algorithm, it is possible to recover all the supports with fewer than k
measurements per sample. Our algorithm is easy to implement and has computational complexity
that scales linearly with ambient dimension d and number of samples n. Our main result is an upper
bound on the sample complexity of the multiple support recovery problem, stated in Theorem 1.
In similar spirit to [5], which studied the case of a single unknown support in the measurement-
constrained regime of m < k, our work provides an algorithm for the multiple support recovery
problem in this regime. The analysis of our algorithm involves studying spectral properties of
the (random) affinity matrix that has dependent and heavy-tailed entries. We characterize these
spectral quantities for the expected affinity matrix, which we show has a block structure, and then
use results from matrix perturbation and matrix concentration to obtain performance guarantees
for our algorithm.

Also, we provide experimental results on synthetic and real datasets, and show that the proposed
algorithm is able to recover the unknown supports with very few measurements per sample. While
our guarantees are for the case of disjoint supports, some simple heuristics can be used to handle
the case of overlapping supports in practice, as we show in Section 5.

1.3 Organization

In the next section, we formally state the problem and the assumptions we make in our generative
model setting. This is followed by a statement of our main result, which provides an upper bound
on the sample complexity of multiple support recovery. We describe the estimator in Section 3, and
analyze its performance in Section 4. We provide experimental results in Section 5. The technical
results required for the proofs in Section 4 are available in the appendices.
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1.4 Notation

For a matrix A, we denote its (u, v)th entry by Auv. For a collection of matrices {Ai}ni=1, we
use Ai(u, v) to denote the (u, v)th entry of the ith matrix. Also, for a vector Xj, Xji denotes
the ith component of Xj . For sets S and S ′, S∆S ′ = (S\S ′) ∪ (S ′\S) denotes their symmetric
difference. For a vector a ∈ Rd, supp (a) denotes the subset {i ∈ [d] : ai 6= 0}, diag(a) denotes
the d × d diagonal matrix with entries of a on the diagonal, and [d] denotes the set {1, 2, . . . , d}.
For a matrix A, we use ‖A‖op def

= sup‖x‖2=1 ‖Ax‖2 to denote the operator norm of A. When A is
symmetric, ‖A‖op equals the magnitude of the largest eigenvalue of A. We use the shorthand Zn

1

to denote independent and identically distributed random variables Z1, . . . , Zn. For u > 0, we use

Γ(u)
def
=
∫∞
0

xu−1e−xdx to denote the gamma function.

2 Problem formulation and main result

We consider a Bayesian setup for modeling samplesX1, . . . , Xn taking values inRd with supp (Xi)
def
=

{j ∈ [d] : Xij 6= 0} ∈ {S1, . . . ,Sℓ}, where Si ⊂ [d] are unknown sets such that |Si| = k. Specifically,
we consider distributions P(1), . . . ,P(ℓ) with3

supp

(

P(i)
)

= {x ∈ Rd : supp(x) = Si}, i ∈ [ℓ],

and n i.i.d. samples X1, . . . , Xn taking values in Rd and generated from a common mixture distri-
bution

PS1,...,Sℓ
=

1

ℓ

ℓ
∑

i=1

P(i), (1)

parameterized by the tuple (S1 . . . ,Sℓ). In fact, we assume that P(i) is a multivariate subgaussian
distribution (see Appendix B for the definition of a subgaussian random variable) with zero mean
and diagonal covariance matrix Kλi

= diag (λi), where the parameter λi is a d-dimensional vector
for which supp (λi) = Si, i ∈ [ℓ]. More concretely, we make the following assumption.

Assumption 1. For a sample Xj ∼ P(i), j ∈ [n], i ∈ [ℓ], and an absolute constant c, EP(i)

[

XjX
T
j

]

=

diag (λi) with λi ∈ Rd
+, supp (λi) = Si, and Xj has independent, zero mean entries with its tth en-

try Xjt satisfying Xjt ∼ subG(cλit), t ∈ [d]. Furthermore, for each i ∈ [ℓ] and t ∈ Si, λit = λ0 > 0,
and EP(i)

[

X4
jt

]

= ρ.

For samples X1, . . . , Xn generated as above, we are given access to projections Yi = ΦiXi,
i ∈ [n], where the matrices Φi ∈ Rm×d are random and independent for different i ∈ [n]. Our
analysis requires handling higher order moments of the entries of the measurement matrices, which
motivates the following assumption.

Assumption 2. The m × d measurement matrices Φ1, . . . ,Φn are independent, with entries that
are independent and zero-mean. Furthermore, Φi(u, v) ∼ subG(c′/m), and the moment conditions
E
[

Φi(u, v)
2
]

= 1/m and E
[

Φi(u, v)
2q
]

= cq/m
q hold for q ∈ {2, 3, 4}, where cq and c′ are absolute

constants.

3We consider distributions P with densities fP with respect to the Lebesgue measure and define supp (P) = {x ∈
R

d : fP(x) > 0}.
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The assumption above holds, for example, when Φi(u, v) ∼ N (0, 1/m) or when Φi(u, v) are
Rademacher, i.e., take values from {1/√m,−1/

√
m} with equal probability. Also, these mo-

ment assumptions can be relaxed to hold up to constant factors from above and below, i.e.,
E
[

Φi(u, v)
2q
]

= Θ(1/mq).
Our goal is to recover the supports {S1, . . . ,Sℓ} using {Yi,Φi}ni=1. The error criterion will be the

average of the per support errors, measured using the set difference between the true and estimated
supports. Specifically, denote by Σ′

ℓ,d the set consisting of all ℓ tuples of subsets (S1, . . . ,Sℓ) such
that Si ⊂ [d], i ∈ [ℓ], and Si ∩ Sj = ∅, for all i 6= j. Let Σk,ℓ,d ⊂ Σ′

ℓ,d be such that |Si| = k, for all

i ∈ [ℓ]. Denote by Gℓ
def
= {σ : [ℓ] → [ℓ]} the set of all permutations on [ℓ]. We have the following

definition.

Definition 1. An (n, ε, δ)-estimator for Σk,ℓ,d is a mapping e : (Y n
1 ,Φn

1 ) 7→ (Ŝ1, . . . , Ŝℓ) ∈ Σ′
ℓ,d for

which

PS1,...,Sℓ

(

∃σ ∈ Gℓ s.t.

ℓ
∑

i=1

∣

∣

∣Si∆Ŝσ(i)

∣

∣

∣ < kεℓ2
)

≥ 1− δ, (2)

for all (S1, . . . ,Sℓ) ∈ Σk,ℓ,d, where S1∆S2 denotes the symmetric difference between sets S1 and S2.

For fixed ℓ,m, k, d, ε, and δ, the least n such that we can find an (n, ε, δ)-estimator for Σk,ℓ,d is
termed the sample complexity of multiple support recovery, which we denote by n∗(ℓ,m, k, d, ε, δ).
In our main result stated below, we provide an upper bound on n∗(ℓ,m, k, d, ε, δ).

Theorem 1. Let m, k, d, ℓ ∈ N with log k ≥ 2. Further, let (log kℓ)2 ≤ m < k, and 1/kℓ ≤ ε ≤ 1/ℓ.
Then, under Assumptions 1 and 2, the sample complexity of multiple support recovery satisfies

n∗(ℓ,m, k, d, ε, δ) = O

(

max

{

1

ε

(

kℓ

m

)4

(log k)4 log kℓ log
1

δ
,
k2ℓ2

m2
log

kℓ(d− kℓ)

δ

})

.

Remark 1. For values of ε lower than 1/ℓk, the result from Theorem 1 continues to hold with ε set
to 1/ℓk. This is because ε = 1/ℓk corresponds to exact recovery of the supports.

We present the algorithm that attains this performance in the next section, and prove the
theorem in Section 4.3.

Our estimator works in two steps by estimating the union of supports first and then estimating
each support, and the sample complexity bound above is obtained by analyzing each of the two
steps. To the best of our knowledge, this is the first estimator that can recover multiple supports
under the constraint of m < k linear measurements per sample. We also note that for the problem
of recovering a single support exactly, it was shown in [5] that roughly Ω((k/m)2 log k(d − k))
samples are necessary. Thus, our sample complexity upper bound above matches this lower bound
quadratically. However, there is a gap between the lower bound and the upper bound, which is an
interesting problem for future research.

3 The estimator

Our first step will be to recover the union of the ℓ underlying supports, and then refine this estimate
to finally recover the individual supports. To estimate the union, we use the estimator described
in [16]. Following this, we use a spectral clustering based approach to recover the individual
supports. We provide more details in the next two subsections.
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3.1 Recovering the union of supports

We first observe that the samples Xi have an effective covariance matrix whose diagonal has support
equal to the union of the supports, which allows us to use the results from [5] to recover the union.
Specifically, we form “proxy samples” X̂i = Φ⊤

i Yi = Φ⊤
i ΦiXi and use the diagonal of the sample

covariance matrix of X̂i as an estimate for the diagonal of the covariance matrix for Xi. We will
show that the kℓ largest entries of the recovered diagonal correspond to the union of the supports.

Formally, define Sun
def
= ∪ℓ

i=1Si to be the union of the ℓ unknown disjoint supports and note
that |Sun| = kℓ. We use the estimator described in [5] and form the statistic λ̃ ∈ Rd as follows.
First, define vectors a′1, . . . , a

′
n with entries

a′ji
def
= (Φ⊤

jiYj)
2, i ∈ [d]. (3)

Each a′j , j ∈ [n], can be thought of as a crude estimate for the variances along the d coordinates
obtained using the jth sample. We then define the average of these vectors as

λ̃
def
=

1

n

n
∑

j=1

a′j . (4)

This statistic captures the variance along each coordinate of Xi. Due to the averaging across
samples, we expect a larger value of the statistic along coordinates that are present in at least one
of the supports. On the other hand, coordinates that are not present any support should result in a
smaller value of the statistic. As shown in [5], such a separation between the estimate values indeed
occurs when n is sufficiently large. The algorithm declares the indices of the kℓ largest entries of λ̃
as the estimate for Sun. Letting λ̃(1) ≥ · · · ≥ λ̃(kℓ) represent the sorted entries of λ̃, the estimate

Ŝun for the union is

Ŝun = {(1), . . . , (kℓ)}, (5)

where we assume the size of the union to be known. In practice, λ̃ can be used to estimate the size
of the union as well by sorting the entries of λ̃ and using the index where there is a sharp decrease
in the values as the estimate for kℓ, similar to the approach of using scree plots to determine model
order in problems such as PCA [30].

3.2 Recovering individual supports

We now describe the main step of our algorithm where we partition the coordinates in Ŝun recovered
in the first step into disjoint support estimates Ŝ1, . . . , Ŝℓ. We will use a′1, . . . , a

′
n described in (3)

for this purpose. Since we now have an estimate for the union, we will restrict a′i to coordinates in

Ŝun, and denote them as ai ∈ Rkℓ
+ . Also, without loss of generality, we set Ŝun = [kℓ].4

Our approach is the following: we construct a kℓ × kℓ affinity matrix T and perform spectral
clustering using this matrix, which will partition the coordinates in [kℓ] into ℓ groups. The main
step here is to construct an affinity matrix T that can provide reliable clustering, and we will use
the per-sample variance estimates a1, . . . , an for this purpose. The idea is that for any coordinate

4This is to keep notation simple. For a general Ŝun, we can have a function g : [kℓ] → Ŝun that provides the

mapping of each coordinate of ai to its corresponding value in Ŝun as indicated in step 7 of Algorithm 1.

6



E [T ] =

µ0 µs µd µd

µs µ0 µd µd

µd µd µ0 µs

µd µd µs µ0













































}

S1

}

S2

Figure 1: Block structure of the expected clustering matrix when ℓ = 2 and the supports are
disjoint, under appropriate permutation of rows and columns.

pair (u, v) ∈ [kℓ] × [kℓ], if both u and v belong to the same support, then we expect the product
aiuaiv to have a “large” value for most of the sample indices i ∈ [n]. On the other hand, if u and
v belong to different supports, then aiuaiv will be close to zero for most i ∈ [n]. Although each ai
individually is not a good estimate for the support of Xi, the averaging over n makes the estimate
reliable. Formally, we construct the kℓ× kℓ matrix T with entries

Tuv
def
=

1

n

n
∑

j=1

ajuajv , (u, v) ∈ [kℓ]× [kℓ]. (6)

The key observation here is that the expected value of the random matrix T has a block structure
when the rows and columns are appropriately permuted, and this block structure corresponds to
memberships of each of the indices in [kℓ] to one of the underlying supports. This is illustrated in
Figure 1 for ℓ = 2, and we will examine this structure in detail in the next section. A well-known
method to find these memberships is to use spectral clustering [27, 31], which uses properties of
the eigenvectors of block-structured matrices to determine the partition. For instance, when ℓ = 2,
the sign of the second leading eigenvector of E [T ] provides a way to partition the coordinates in
[kℓ] into two groups. When ℓ > 2, spectral clustering makes use of multiple eigenvectors and a
nearest neighbor step to identify the partition. A full description of the solution in the general case
is provided in Algorithm 1.

In practice, we only have access to T , and not E [T ] to which the discussion above applies. In
what follows, we show that the eigenvectors of T itself suffice, provided we have sufficiently many
samples. At a high level, our analysis follows that of spectral clustering in the stochastic block
model (SBM) setting and the goal is to show that the eigenvectors of E [T ] and its “perturbed”
version T are close to each other. This can be shown using the Davis-Kahan theorem from matrix
perturbation theory, which states that the angle between any two corresponding eigenvectors of T
and E [T ] is small provided the error matrix T −E [T ] has small spectral norm. The key challenge,
therefore, is to control ‖T − E [T ] ‖op.

Unlike typical settings, the entries of T are not independent, in addition to being heavy tailed.
Standard methods based on the ε-net argument are, therefore, difficult to apply in this setting.
One strategy could be to show exponential concentration around the mean for each entry of T .
Once each entry of T is bounded with high probability, one can bound the Frobenius norm and
therefore the spectral norm of the error matrix. However, the moment generating function (MGF)
of each summand in (6) is unbounded, so deriving a tail bound for the sum requires a more careful
tail splitting method (see, for example, [32, Exercise 2.1.7]), and leads to measurement matrix
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dependent quantities that are difficult to handle. Due to the same reason, techniques from matrix
concentration that involve bounding the MGF of the summands [33, Theorem 6.1, Theorem 6.2]
cannot be used in our setting.

To circumvent this difficulty, we turn to a beautiful result by Rudelson [34], that characterizes
the expected value of the quantity ‖T−E [T ] ‖op, when T is a sum of independent rank-one matrices
and only requires certain moment assumptions on the summands. This is exactly our setting since
(6) can equivalently be represented as T = (1/n)

∑n
i=1 aia

⊤
i . An application of Markov inequality

followed by the Davis-Kahan theorem then shows that the eigenvectors of T and E [T ] are close to
each other. We provide more details about the analysis in the next section.

Algorithm 1: Multiple support recovery

Input: Measurements {Yi}ni=1, Measurement matrices {Φi}ni=1, k, ℓ

Output: Support estimates Ŝ1, . . . , Ŝℓ

1 Form variance estimates a′1, . . . , a
′
n with entries

a′ji = (Φ⊤
jiYj)

2, i ∈ [d].

2 Compute

λ̃ =
1

n

n
∑

i=1

a′i.

Sort entries of λ̃ to get λ̃(1) ≥ · · · ≥ λ̃(d) and output estimate for union

Ŝun = {(1), . . . , (kℓ)}.

3 Restrict a′1, . . . , a
′
n to the coordinates in Ŝun, to get a1, . . . , an. Also, let g : [kℓ] → Ŝun

denote the mapping from the coordinates of ai to the true coordinate in Ŝun.
4 Construct affinity matrix T ∈ Rkℓ×kℓ as

T =
1

n

n
∑

i=1

aia
⊤
i .

5 Compute the ℓ leading eigenvectors v̂1, . . . , v̂ℓ of T and let these be the columns of

V̂ ∈ Rkℓ×l.
6 (The ℓ-means step) Find C = argminU∈Uℓ

‖U − V̂ ‖2F , where Uℓ is the set of all kℓ× ℓ
matrices with at most ℓ distinct rows.

7 Denote the indices of identical rows of C as sets Ŝ ′
1, . . . , Ŝ ′

ℓ. Declare

Ŝi = {g(j) ∈ Ŝun : j ∈ Ŝ ′
i}.
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4 Analysis of the estimator

4.1 Recovering the union: Analysis

Our analysis of the probability of exactly recovering Sun using the estimator in (5) follows the
approach in [5]. The key difference is that the samples are now drawn from a mixture of subgaussian
distributions. In the next result, we show that if X is drawn from the mixture described in (1),
then it is subgaussian with covariance matrix Kλun where λun = λ1 ∨ · · · ∨ λℓ, where ∨ denotes
entrywise maximum. This helps us to determine the effective parameter that characterizes the
input distribution, after which we can use the result from [5]. We prove this result for the two
component mixture; it can be extended easily to the general case.

Lemma 2. Let X and Y be zero-mean subgaussian random variables with parameters a2 and b2,
respectively. Further, let PX and PY denote the distributions of X and Y . Then, the random
variable Z with distribution given by the mixture qPX + (1 − q)PY with q ∈ [0, 1] is subgaussian
with parameter max{a2, b2}.

Proof. Upon bounding the MGF of Z, we see that

E
[

eθZ
]

= qE
[

eθX
]

+ (1− q)E
[

eθY
]

≤ qe
θ2a2

2 + (1− q)e
θ2b2

2

≤ e
θ2c2

2 ,

where c = max{a, b}.

Thus, the samples X1, X2, . . . , Xn have entries that are independent and subgaussian with co-
variance matrix Kλun , where λun = λ1 ∨ · · · ∨ λℓ. Therefore, results from [5] imply that we can
recover Sun from the variance estimate (4) by retaining the kℓ largest entries. In particular, a direct
application of [5, Theorem 3] with support size set to kℓ, gives us the following result.

Theorem 3. Let Ŝun described in (5) be the estimate for the union Sun. Then, for every δ > 0,

Pr
(

Ŝun 6= Sun

)

≤ δ,

provided m ≥ (log kℓ)2 > 1, and

n ≥ c

(

k2ℓ2

m2
log

kℓ(d− kℓ)

δ

)

,

for an absolute constant c.

As we discussed in the introduction, if we had labels for each sample indicating which support
it belongs to, we could directly use the estimator from [5] after grouping the samples with the same
support together. This would require O((k2ℓ/m2) log k(d− k)) samples. On the other hand, when
the labels are unknown, the number of samples required even to estimate the union of the supports
is higher, as seen from the theorem above.
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4.2 Recovering individual supports: Analysis

Our analysis is based on the fact that the expected affinity matrix has a block structure (under an
appropriate permutation of its rows and columns), which we prove in the next lemma.

Lemma 4 (Block structure of E [T ]). Under Assumptions 1 and 2, for the matrix T ∈ Rkℓ×kℓ in
(6), E [T ] has entries given by

E [Tuv] =











µ0, if u = v,

µs, if u 6= v, (u, v) ∈ Si × Si for any i ∈ [ℓ],

µd, otherwise,

where the parameters µ0, µs, and µd depend on k, m, and ℓ and can be explicitly calculated.

The proof of Lemma 4 appears in Appendix A.5 and involves computing the expected values of
expressions containing higher order terms in Φi and Xi. Before we proceed, we note the following
extension of the “median trick” (see, for example, [35]) which shows that the dependence of sample
complexity on δ is at most a factor of O(log 1/δ), provided we can find an (n, ε, 1/4)-estimator.

Lemma 5 (Probability of error boosting). For δ ∈ (0, 1) and ℓ ∈ N, if we can find an (n, ε, 1/4)-
estimator for Σk,ℓ,d, then we can find an

(

n⌈8 log 1
δ ⌉, 3ε, δ

)

-estimator for Σk,ℓ,d.

We provide the proof in Appendix A.1.
Thus, from here on, we fix our error requirement to δ = 1/4 and seek (n, ε, 1/4)-estimators

with the least possible n. We characterize the performance of the clustering step in the following
theorem. The analysis of this step is conditioned on exact recovery of the union Sun in the first
step.

Theorem 6. Let ν1 ≥ · · · ≥ νkℓ denote the ordered eigenvalues of E [T ] ∈ Rkℓ×kℓ, and define
∆ℓ = νℓ − νℓ+1 when ℓ ≥ 2. For every ε ∈ [1/ℓk, 1/ℓ), we can find an (n, ε, 1/4)-estimator for
Σk,ℓ,kℓ provided

n ≥ c
max{1, ‖E [T ] ‖op}

ε∆2
ℓ

· E
[

max
i∈[n]

‖ai‖22
]

· log kℓ,

for an absolute constant c.

The result above applies to any setting where we have i.i.d. samples a1, . . . , an whose covariance
has a block structure under permutation, and the goal is to group the coordinates of ai based on
the unknown block structure. We provide the proof of Theorem 6 at the end of this section.

The next two results provide us with bounds on the spectral quantities ‖E [T ] ‖op and ∆ℓ, and
on E

[

maxi∈[n] ‖ai‖22
]

appearing in Theorem 6.

Lemma 7. Under Assumptions 1 and 2, we have

‖E [T ] ‖op ≤ ρ
k2ℓ

m2
+ λ2

0

k3ℓ

m2
, and ∆ℓ ≥

λ2
0k

ℓ
.

Lemma 8. For every q ∈ N and i ∈ [n], we have E [‖ai‖q2] ≤ cq0(Γ(q))
2λq

0

(

k
√
kℓ

m

)q

. Further, when

log k ≥ 2, it follows that E
[

maxi∈[n]‖ai‖22
]

≤ n
2

log kE

[

‖a1‖log k
2

]
2

log k

.

10



The proof of Lemma 7 is provided in Appendix A.6 and the proof of Lemma 8 appears in
Appendix A.2. We close this section with the proof of Theorem 6.

Proof of Theorem 6. Recall that the proof is conditioned on exact recovery of the union Sun. Fur-
ther, for notational simplicity, we set Sun = [kℓ]. We divide the proof into two steps.
Step 1. Relating probability of error to perturbation. Denote the event that Algorithm 1 labels more
than εkℓ coordinates incorrectly by E . An upper bound on Pr (E) would imply an upper bound on
the probability of the error event implied by (2). The per support errors across the ℓ labels can
have significant overlap or even be equal, so the criterion in (2) is a good indicator of the number
of misclustered coordinates determined by E . Additionally, it satisfies the triangle inequality, a
property we will use later in proving Lemma 5.

The following result relates the error probability to a perturbation bound.

Lemma 9 (Error to perturbation bound). Let V and V̂ , respectively, be kℓ × ℓ matrices with
ith column given by vi and v̂i, 1 ≤ i ≤ ℓ, where v1, . . . , vℓ and v̂1, . . . , v̂ℓ denote the normalized
eigenvectors of E [T ] and T , respectively, corresponding to their ℓ largest eigenvalues. Then,

Pr (E) ≤ Pr

(

‖V̂ − V O‖F ≥ 1

2

√

εℓ

2

)

, (7)

where O ∈ Rℓ×ℓ is a random orthonormal matrix and the probability on the right hand side is over
the joint distribution of V̂ and O.

The proof of this lemma builds on the analysis in [31] and requires us to use some properties of
V , which we note in the lemma below.

Lemma 10 (Properties of V ). For 1 ≤ i ≤ kℓ, denote by vi the ith row of V . Then, the following
properties hold:

1. (Identity of rows of V capture the partition) vi = vj if and only if i and j belong to the same
support, i.e., i, j ∈ St for some t ∈ [ℓ].

2. (Minimum distance property) For any two distinct rows vi and vj, ‖vi − vj‖22 ≥ 2/k.

We provide the proof of Lemma 10 in Appendix A.3.

Proof of Lemma 9. We begin by observing that it suffices to show that

Pr (E) ≤ Pr

(

‖C − V O‖F ≥
√

εℓ

2

)

, (8)

where C is the matrix found in Step 6 of Algorithm 1 and is random since V̂ is random. Indeed,
by Lemma 10, V has ℓ distinct rows, whereby V O, too, has ℓ distinct rows since O is orthonormal.
That is, V O ∈ Uℓ. Therefore, by triangle inequality, we get

‖C − V O‖F ≤ ‖C − V̂ ‖F + ‖V O − V̂ ‖F (9)

= min
U∈Uℓ

‖U − V̂ ‖F + ‖V O − V̂ ‖F (10)

≤ 2‖V O − V̂ ‖F , (11)
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where the final bound holds since V O belongs to Uℓ. Thus, (8) will imply (7). Note that even if
the matrix O were to depend on V and V̂ and therefore be random, the result above holds with
probability one, and the only property we require from O is orthonormality.

It remains to establish (8). To that end, we define

I def
= {i ∈ [kℓ] : ‖viO − ci‖2 < 1/

√
2k}, (12)

where vi and ci are the ith row of V and C, respectively. Our claim is that Algorithm 1 does not
make an error in labeling the coordinates in I, unless |Ic| > εkℓ. To see this, note that for any two
distinct indices i, j ∈ I we have

‖viO − vjO‖2 ≤ ‖viO − cj‖2 + ‖vjO − cj‖2 (13)

≤ ‖viO − ci‖2 + ‖ci − cj‖2 + ‖vjO − cj‖2 (14)

<

√

2

k
+ ‖ci − cj‖2. (15)

Thus, if ci = cj , we must have ‖viO − vjO‖2 <
√

2/k, which by the second property in Lemma 10
implies that viO = vjO. Therefore, when the labels given by the algorithm for coordinates i and
j coincide (this happens only when ci = cj), then viO = vjO. But then, by the first property in
Lemma 10, the coordinates i and j must have been in the same part of S.

We have shown that the indices in I that are assigned the same label by the algorithm must
come from the same part in S. We still need to verify that coordinates from the same part in S
do not get assigned to different parts. We show this cannot happen unless |Ic| > εkℓ, and this is
where we use the assumption that ε < 1/ℓ. Indeed, if |Ic| ≤ εkℓ < k, then at least one element
from each part S1, . . . ,Sℓ must be in I, since |Si| = k for every i. By our previous observation,
elements in each of these parts in I must be assigned different labels by the algorithm, which means
that it must assign at least ℓ different labels to the elements in I. Thus, if the algorithm assigns
two elements in the same part Si different labels, it will assign more that ℓ different labels, which
is not allowed.

Therefore, all the indices in I are correctly labeled when |Ic| ≤ εkℓ. Then, clearly, in this case
the error event E does not hold. It follows from the definition of I that

Pr (E) ≤ Pr (|Ic| > εkℓ) (16)

≤ Pr

(∣

∣

∣

∣

{

i : ‖ci − viO‖2 ≥ 1√
2k

} ∣

∣

∣

∣

> εkℓ

)

(17)

≤ Pr

(

‖C − V O‖2F >
εℓ

2

)

, (18)

where in the final step we used the fact that the second step implies ‖C − V O‖2F =
∑kℓ

i=1 ‖ci −
viO‖22 ≥ εkℓ/2k. This completes the proof of (8).

Step 2: Controlling the perturbation.
In view of Lemma 9, we only need to control the perturbation ‖V̂ − V O‖F . We do this using

the following extension of the Davis-Kahan theorem, which also fixes the choice of O.
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Theorem 11 (Perturbation of eigenspace). [36] Let A and Â be d × d symmetric matrices with
eigenvalues ν1 ≥ · · · ≥ νd and ν̂1 ≥ · · · ≥ ν̂d, respectively. Let V and V̂ be d× ℓ matrices consisting
of the ℓ leading normalized eigenvectors of A and Â, respectively. Then, there exists an orthonormal
matrix O ∈ Rℓ×ℓ such that

‖V̂ − V O‖2F ≤ 2
√
2
min{

√
ℓ‖Â−A‖op, ‖Â−A‖F }

νℓ − νℓ+1
. (19)

By applying this result with T and E [T ] in the role of Â and A, respectively, we get that there
exists an orthonormal matrix O such that

‖V̂ − V O‖F ≤ 2
√
2

∆ℓ
min{

√
ℓ‖T − E [T ] ‖op, ‖T − E [T ] ‖F }, (20)

where ∆ℓ
def
= νℓ − νℓ+1. Combining this bound with our earlier bound from Lemma 9, we get

Pr (E) ≤ Pr

(

‖T − E [T ] ‖op ≥ ∆ℓ
√
ε

8

)

(21)

≤ 8

∆ℓ
√
ε
· E [‖T − E [T ] ‖op] , (22)

where the last step uses Markov’s inequality.
To bound the expected value on the right hand side, we use the following extension of a result

of Rudelson [34]. As pointed out earlier, the original bound in [34] was restricted to isotropic Zis,
and we show that it extends to arbitrary i.i.d. Zis with an extra factor. The proof is provided in
Appendix A.4.

Theorem 12 (Extension of a result in [34]). Let Z ∈ RN be a random vector such that A =
E
[

ZZ⊤]. Let Z1, . . . , Zn be independent copies of Z. Then, there exists an absolute constant c
such that

E

[

∥

∥

∥

∥

1

n

n
∑

i=1

ZiZ
⊤
i −A

∥

∥

∥

∥

op

]

≤ 1

2

(

α2 + α
√

α2 + 4‖A‖op
)

, (23)

where

α = c

√

E
[

maxi∈[n] ‖Zi‖22
]

logN

n
.

Using this bound in (22) with N = kℓ, we obtain

Pr (E) ≤ 4

∆ℓ
√
ε

(

α2 + α
√

α2 + 4‖E [T ] ‖op
)

. (24)

The proof is completed upon noting that α can be made smaller than 1/2 using n ≥ cE
[

maxi∈[n] ‖ai‖22
]

log kℓ,

in which case α
√

α2 + 4‖E [T ] ‖op ≤ α
√

8max{1, ‖E [T ] ‖op}. The error probability above can thus
be made less than 1/4 if n ≥ c(log kℓ)max{1, ‖E [T ] ‖op}E

[

maxi∈[n] ‖ai‖22
]

/(∆2
ℓε).

In the next section, we combine the results from Theorems 3 and 6 to show the sample complexity
bound of Theorem 1.
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Figure 2: Probability of approximate support recovery with (a) varying k/m ratios, and (b) varying
ℓ.

4.3 Proof of Theorem 1

The proof of Theorem 1 now follows by combining guarantees for the union recovery step from
Theorem 3 and the clustering step from Theorem 6.

We begin by applying Theorem 3 to get that Ŝun coincides with Sun = ∪ℓ
i=1Si with probability

close to 1. Throughout, we condition on this event occurring. However, to avoid technical difficul-
ties, we assume that a different set of independent samples is used to recover Sun than those used to
recover S1, . . . ,Sℓ – thus, the overall number of samples needed will be the sum of samples needed
for union recovery in Theorem 3 and the sample complexity determined in our analysis below. In
particular, the clustering step dominates the sample complexity of our algorithm.

Next, upon substituting the bounds from Lemma 7 and Lemma 8 into Theorem 6, we see that
for ε-approximate recovery of the supports it suffices to have

n ≥ c

ε
λ2
0

k3ℓ

m2

ℓ2

λ4
0k

2
· n 2

log k ·
(

λ0
k
√
k
√
ℓ

m
(log k)2

)2

· log(kℓ)

=
c

ε

k4ℓ4

m4
n

2
log k (log k)4 log(kℓ). (25)

For n ≥ c((1/ε)(kℓ/m)4 · (log k)4 log(kℓ)), n 1
log k = O(1), which completes the proof in view of the

sufficient condition for n above.

5 Simulations

5.1 Synthetic data

In this subsection, we evaluate the performance of Algorithm 1 on synthetic data for various pa-
rameter values. Through these simulations, our goal is to see how the performance of the algorithm
varies as a function of the ratio k/m and ℓ for a fixed d.

We first choose d = 100, ℓ = 2 and consider three different values of k/m. We generate two
disjoint subsets S1 and S2 of [d], each of size k. Then, for a given n, we generate n/2 samples
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with each support, with values on the support drawn from the standard normal distribution in
R

k. Measurement matrices {Φi}ni=1 are generated independently with i.i.d. N (0, 1/m) entries and
multiplied with the samples to obtain measurements {Yi}ni=1. These measurements are given as
input to the support recovery algorithm, which produces estimates for the union, as well as the
individual supports, which we denote by Ŝ1 and Ŝ2. For each value of (k,m, n), we run 100 trials

and declare it a success if the error
∑2

i=1 |Ŝi∆Sσ(i)| < 2εk. The plot in Figure 2(a) shows the
success rate over the 100 trials as a function of the number of samples n, with ε set as 0.2. Note
that the number of measurements taken per sample, m, is much smaller than the support size, k,
of each sample. We can see from Figure 2(a) that for a fixed probability of success, the number of
samples required increases with k/m, which agrees with the result in Theorem 1. In Figure 2(b),
we show the variation in the probability of approximate recovery as a function of n for the number
of supports ℓ = {2, 3, 4, 5}, with k and m (and hence their ratio) held fixed. We can see that the
number of samples required to achieve a given probability of recovery increases with ℓ. Our current
experiments however do not reveal whether the dependence on these parameters is tight.

5.2 MNIST dataset

As an application involving natural data, we consider the problem of reconstructing handwritten
images from very few linear measurements. We apply the multiple support recovery algorithm to
the MNIST dataset [37], which consists of 60, 000 images of handwritten digits, each of size 28×28.
Each (grayscale) image is a sample in our setting, and the support of the sample essentially identifies
the digit. This dataset fits well into our hypothesis that there is a small set of unknown supports
underlying the data – handwritten images corresponding to the same digit can be thought of as
having roughly the same pattern (support) in the pixel domain. Thus, the vectorized version of
images of the same digit will have approximately the same support. We note that the task here is
to recover the images of the digits from low dimensional projections, and not to learn a classifier
using the dataset.

In our experiments, the vectorized version of each image (a 784 × 1 vector) is projected onto
m = 100, 200 or 500 dimensions using Gaussian measurement matrices described in Assumption 2.
Given these low dimensional projections, the goal is to identify the underlying digits. We fix ℓ = 2
and consider the example of digits 1 and 5 as shown in Figure 3. The support size of each digit
is roughly in the range 150− 200. It can be seen that Algorithm 1 can identify the distinct digits
even when m < k. For comparison, we used the Group LASSO algorithm on the projected samples,
which tries to recover the individual samples (images) itself. However, it requires a much larger
number of measurements per sample (for example, about m = 500 in this case). In fact, previously
known algorithms for sparse recovery do not perform well in the low measurement regime of m < k,
and we have used Group LASSO as an example to illustrate this fact.

We note that since these are handwritten digits, the support of samples coming from the same
digit can also vary to some extent. However, the averaging across samples in our estimator takes
care of this problem. Further, the supports from different digits need not be disjoint. To handle
overlaps, we use the observation that λ̃ can provide an estimate for the intersection of supports as
well. The plot of sorted entries of λ̃ shows a sharp drop in values at two locations, one around the
intersection and another around the union. We include this estimate of intersection of supports into
our final estimate. This method performs well in practice, as can be seen in the results of Figure
3, where digits 1 and 5 have significant overlap.
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(a) m = 100, n = 2000 (b) m = 100, n = 2000

(c) m = 200, n = 2000 (d) m = 200, n = 2000

(e) m = 500, n = 2000 (f) m = 500, n = 2000

Figure 3: Recovery performance of Algorithm 1 ((a),(c),(e)), and Group LASSO ((b),(d),(f)).

5.3 Computational complexity

The first step in our algorithm for estimating the union involves computing the average variance
along each of the d coordinates and requires O(mnd) operations. The clustering step involves
computing the T matrix and its ℓ leading eigenvectors which requires O(k3ℓ3 + k2ℓ2n) operations,
followed by the ℓ-means step which requires O(kℓ3) operations per iteration. Other algorithms for
recovering multiple supports do not perform well when m < k, and have computational complexity
that scales quadratically or worse with d. For instance, the sparse Bayesian learning based algorithm
from [18] has a complexity of O(d2) per iteration, and LASSO-based procedures have a complexity
of O(d2) or O(d3) per iteration, depending on the specific algorithm used.

6 Discussion

Throughout in this work, we assumed that the distinct supports were pairwise disjoint sets. In
the case of overlapping supports, the structure of the expected affinity matrix, and consequently
its spectrum, changes. For the special case of ℓ = 2, overlapping supports can be handled by a
simple modification of the sign-based estimate. Instead of partitioning the coordinates in the union
estimate based on the sign of the eigenvector, we now use a threshold τ > 0 and declare coordinates
with values in [−τ, τ ] as belonging to both supports (values above τ or below −τ are assigned to
different supports). The optimal τ can be explicitly characterized in terms of the parameters of the
problem. Given our current algorithm, a simple way to handle this case for general ℓ would be to
use fuzzy ℓ-means, which returns scores for each coordinate indicating how likely it is to belong to a
certain support. However, choosing a threshold to decide the supports using the scores is difficult in
general. Some other approaches have been explored in the graph clustering literature, but these do
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not apply directly to our setting. Other extensions of this work include studying the performance
of the algorithm under different support sizes, and prior distribution with non-uniform mixing
weights. Also, our work shows a sufficient condition on the number of samples required for multiple
support recovery; obtaining the necessary condition is a challenging task in general and requires
characterizing the distance between mixture distributions. Using a component wise distance bound
leads to the same lower bound as in [5] (with an additional 1/ℓ factor), and obtaining a better lower
bound seems difficult.

Appendix A Remaining proofs from Section 4.2

A.1 Proof of Lemma 5 (Probability of error boosting)

Given an (n, ε, 1/4)-estimator for Σk,ℓ,d, we apply it to L independent blocks of data. Specifically,
denoting this estimator by e, consider independent copies (Y n(t),Φn(t)), 1 ≤ t ≤ L, of (Y n,Φn).
For t ∈ [L], let

(Ŝ1,t, . . . , Ŝℓ,t) := e(Y n(t),Φn(t))

denote the output for the estimator applied to the tth block.
We now describe a procedure to output a final estimate for the supports using the estimates

(Ŝ1,t, . . . , Ŝℓ,t) from the L blocks of samples. For each t ∈ [L], we check if there is a set I ⊆ [L]\{t}
of cardinality N ≥ L/2 satisfying

min
σt∈Gℓ

1

kℓ

ℓ
∑

i=1

|Ŝi,t∆Ŝσt(i),t′ | ≤ 2ε, ∀ t′ ∈ I. (26)

That is, we look for a t for which (Ŝ1,t, . . . , Ŝℓ,t) are close to L/2 other estimates. This indicates
“robustness” of the estimate from the tth block, making it an appropriate proxy for the median.
Our final estimate is (S̄1, . . . , S̄ℓ) = (Ŝ1,t, . . . , Ŝℓ,t), where t is an index which satisfies the property
above.

We show that for L ≥ ⌈8 ln 1
δ ⌉ the estimator above constitutes an (nL, 3ε, δ)-estimator for Σk,ℓ,d.

Indeed, denoting

Zt = 1

(

∃σ ∈ Gℓ s.t.
1

kℓ

ℓ
∑

i=1

|Si∆Ŝσ(i),t| ≤ ε

)

,

by our assumption for the estimator e we have

EP(S1,...,Sℓ)
[Zt] ≥

3

4
.

Furthermore, Zt are independent for different t ∈ [L]. Thus, by Hoeffding’s inequality,

P(S1,...,Sℓ)

(

L
∑

t=1

Zt ≤
L

2

)

≤ e−
L
8 , ∀ (S1, . . . ,Sℓ) ∈ Σk,ℓ,d.

In particular, for L ≥ ⌈8 ln 1
δ ⌉, with probability exceeding 1 − δ there exist5 M ≥ L/2 + 1 indices

5Without loss of generality, we assume L to be even.
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t1, . . . , tM ∈ [L] and permutations σ1, . . . , σM ∈ Gℓ such that

1

kℓ

ℓ
∑

i=1

|Si∆Ŝσj(i),tj | ≤ ε, ∀ j ∈ [M ]. (27)

Note that since |A∆B| is a metric for subsets of [d], the estimate (Ŝ1,t, . . . , Ŝℓ,t) for t = t1 satis-
fies (26) when (27) holds; in fact, any index among {t1, ..., tM} can serve this purpose. However,
the estimate described earlier need not select any of these indices. Yet, we now show that any other
index chosen by the procedure will work as well, provided (27) holds.

To that end, denote by I ′ the set {t1, . . . , tM} of indices satisfying (27), and recall the set I
found by our estimation procedure earlier. Then, when |I ′| ≥ L/2+1, which holds with probability
exceeding 1− δ,

|I ∩ I ′| ≥ |I|+ |I ′| − L ≥ 1,

whereby there exists an index t ∈ [L] and permutations σ, σ ∈ Gℓ such that

1

kℓ

ℓ
∑

i=1

|Si∆Ŝσ(i),t| ≤ ε and
1

kℓ

ℓ
∑

i=1

|Si∆Ŝσ(i),t| ≤ 2ε.

It follows that the permutation σ′ = σ ◦ σ−1 satisfies

1

kℓ

ℓ
∑

i=1

|Si∆Sσ′(i)| ≤ 3ε,

which completes the proof.

A.2 Proof of Lemma 8

As noted in the proof of Theorem 1, the clustering step in our algorithm is analyzed under the
assumption that the union of supports is exactly recovered in the first step, whereby we can set
Ŝun = Sun.

We will first show the bound on E
[

maxi∈[n] ‖ai‖22
]

, followed by the moment bound for E [‖ai‖q2].
We start by noting that for any q ≥ 2,

E

[

max
i∈[n]

‖ai‖22
]

= E

[

(

max
i∈[n]

‖ai‖q2
)

2
q

]

≤ E

[

( n
∑

i=1

‖ai‖q2
)

2
q

]

≤
(

E

[

n
∑

i=1

‖ai‖q2

]

)
2
q

= n
2
q

(

E [‖a1‖q2]
)

2
q

,
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where we used Jensen’s inequality in the third step. For log k ≥ 2, upon setting q = log k in the
inequality above, we get

E

[

max
i∈[n]

‖ai‖22
]

≤ n
2

log k

(

E

[

‖a1‖log k
2

]

)
2

log k

.

We now proceed to bound E [‖ai‖q2]. In the rest of the proof, we will denote ai ∈ Rd by a, and
with some abuse of notation, denote by Φi the ith column of Φ. By using the definition of a, we
have

‖a‖2q2 =

(

∑

i∈Sun

a2i

)q

=

(

∑

i∈Sun

(Φ⊤
i ΦSXS)

4

)q

=

(

∑

i∈Sun

(α⊤
i XS)

4

)q

=

(

∑

i∈Sun

(X⊤
S AiXS)

2

)q

,

where αi = Φ⊤
SΦi as defined before and Ai

def
= αiα

⊤
i . To compute the expectation of the term in

the last step, we first condition on Φ and note that

E

[(

∑

i∈Sun

(X⊤
S AiXS)

2

)q∣
∣

∣

∣

Φ

]

= (kℓ)qE

[(

1

kℓ

∑

i∈Sun

(X⊤
S AiXS)

2

)q∣
∣

∣

∣

Φ

]

≤ (kℓ)q−1
∑

i∈Sun

E
[

(X⊤
S AiXS)

2q|Φ
]

, (28)

where we used |Sun| = kℓ, and the convexity of the function xq for x ≥ 0, q ∈ N. The quantity on
the right essentially involves the (2q)th moment of a subexponential random variable (see Appendix
B for definition). To see that the quadratic form X⊤

S AiXS is subexponential, we use the Hanson-
Wright inequality (cf. [38]) to get

P(|X⊤
S AiXS − µ| ≥ t|Φ) ≤ 2 exp

(

−min

{

t2

λ2
0‖Ai‖2F

,
t

λ0‖Ai‖op

})

,

where µ = E
[

X⊤
S AiXS |Φ

]

= λ0‖αi‖22. Lemma 13 in Appendix B can now be used to bound the
moment in (28). Specifically, we get

E[(X⊤
S AiXS)

2q|Φ] ≤ 2q · (16)q
(

Γ(q)λ2q
0 ‖Ai‖2qF + Γ(2q)λ2q

0 ‖Ai‖2qop
)

+ 22qµ2q

≤ 3q · (16)qΓ(2q)λ2q
0 ‖αi‖4q2 ,

where we used ‖Ai‖F = ‖Ai‖op = ‖αi‖22. Next, taking expectation over Φ, we obtain

E
[

(X⊤
S AiXS)

2q
]

≤ c′qΓ(2q)λ
2q
0 E

[

‖αi‖4q2
]

, (29)
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where c′q = 3q · (16)q. Thus, combining the result above with (28), we get

E

[(

∑

i∈Sun

(X⊤
S AiXS)

2

)q]

≤ c′qΓ(2q)λ
2q
0 (kℓ)q

∑

i∈Sun

E

[

‖αi‖4q2
]

= c′qΓ(2q)λ
2q
0 (kℓ)q

(

∑

i∈S
E

[

‖αi‖4q2
]

+
∑

i∈Sun\S
E

[

‖αi‖4q2
]

)

. (30)

When i ∈ S,

E[‖αi‖4q2 ] = E





(

‖Φi‖42 +
∑

j∈S\{i}
(Φ⊤

i Φj)
2

)2q




≤ 22q



E

[

‖Φi‖8q2
]

+ E





(

∑

j∈S\{i}
(Φ⊤

i Φj)
2

)2q






 ,

and when i ∈ Sun\S,

E

[

‖αi‖4q2
]

≤ E





(

∑

j∈S
(Φ⊤

i Φj)
2

)2q


 .

Since Φi has independent, subgaussian entries with parameter 1/m, we see that ‖Φi‖22 ∼ subexp(c′/m, c′′/m)
with c′ = 128 and c′′ = 8 [5, Lemma D.2]. This gives, using Lemma 13,

E
[

(‖Φi‖22)4q
]

≤ 2q(16)q
(

Γ(2q)
c′2q

m2q
+ Γ(4q)

c′′4q

m4q

)

+ (E
[

‖Φi‖22
]

)4q

≤ 4q(16)qc′2qΓ(4q)
1

m2q
+ 1,

where we used c′ > c′′2. Using similar arguments, we note that Φ⊤
i Φj |Φi is subgaussian with

parameter ‖Φi‖22/m, which implies that, conditioned on Φi,
∑

j∈S\{i}(Φ
⊤
i Φj)

2 is subexp(c′(k −
1)‖Φi‖42/m2, c′′‖Φi‖22/m). Then, using Lemma 13 again, we get

E

[(

∑

j∈S\{i}
(Φ⊤

i Φj)
2

)2q]

≤ c′qEΦi

[

Γ(q)c′q
(

k − 1

m2

)q

‖Φi‖4q2 + Γ(2q)c′′2q
(‖Φi‖22

m

)2q
]

+ 22q
(

E





∑

j∈S\{i}
(Φ⊤

i Φj)
2





)2q

≤ c′qc
′qΓ(q)

(

k − 1

m2

)q(

1 + 2c′qc
′2qΓ(2q)

1

mq

)

+ c′qc
′′2qΓ(2q)

1

m2q

(

1 + c′qc
′2qΓ(2q)

1

mq

)

+ 22q
(

k − 1

m

)2q

≤ 5c′qc
′2qΓ(2q)

(

k

m

)2q

.
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Combining these results and substituting into (30), we get

E

[(

∑

i∈Sun

(X⊤
S AiXS)

2

)q]

≤ c′qΓ(2q)λ
2q
0 (kℓ)q−1

(

∑

i∈S

E

[

‖αi‖4q2
]

+
∑

i∈Sun\S
E

[

‖αi‖4q2
]

)

≤ 5c′2q c
′2qΓ(2q)λ2q

0 (kℓ)q−1

(

kΓ(2q)

(

k

m

)2q

+ (kℓ− k)Γ(2q)

(

k

m

)2q)

= 5c′2q c
′2q(Γ(2q))2λ2q

0

(

k
√
kℓ

m

)2q

.

Rescaling the exponent, we get

E [‖a‖q2] = E

[

(

∑

i∈Sun

(X⊤
S AiXS)

2

)
q
2

]

≤ 5c2q/2c
′q(Γ(q))2λq

0

(

k
√
kℓ

m

)q

Noting that c′(5c2q/2)
1/q ≤ 45 · 8c′ = c0, we obtain the result.

A.3 Proof of Lemma 10

(i) To show the first property, we note that the true covariance matrix can be decomposed as
E [T ] = WBW⊤+(µ0−µs)I, whereW ∈ {0, 1}kℓ×ℓ encodes the block structure, and B ∈ Rℓ×ℓ

contains the distinct values from each block. In particular, for 1 ≤ i ≤ kℓ and 1 ≤ j ≤ ℓ,
define

Wij =

{

1, if i ∈ Sj ,

0, otherwise,

and, for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ ℓ, define

Bij =

{

µs, if i = j,

µd, otherwise.

Since E [T ] and WBW⊤ have the same set of eigenvectors, we will show that the matrix
V ∈ Rkℓ×ℓ consisting of the ℓ leading eigenvectors of WBW⊤ has the desired property. To
that end, first note that there are only ℓ unique rows in W , one unique row corresponding
to each block. We will show that V also consists of ℓ unique rows, in exact correspondence
with the rows of W . To do so, we will follow [31, Lemma 3.1] and show that V is essentially
a row-transformed version of W , i.e., there exists an invertible matrix H ∈ Rℓ×ℓ such that
WH = V . We start by considering the eigen decomposition

(W⊤W )
1
2B(W⊤W )

1
2 = UΛU,

where Λ ∈ Rℓ×ℓ is diagonal and U ∈ Rℓ×ℓ is an orthonormal matrix. Left multiplying by
W (W⊤W )−

1
2 and right multiplying by (W⊤W )−

1
2W⊤ in the equation above, we get,

WBW⊤ = WHΛ(WH)⊤,
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where H
def
= (W⊤W )−

1
2U . Finally, right multiplying by WH and noting that (WH)⊤WH =

I, we have

WBW⊤ ·WH = WH · Λ,

implying that the columns of WH are the normalized eigenvectors of WBW⊤.

We have thus shown that V = WH . Let vi and wi denote the ith row of V andW , respectively.
If vi = vj for some i 6= j, then wiH = wjH . Since H = (W⊤W )−

1
2U is invertible, this implies

wi = wj . Conversely, if wi = wj for some i 6= j, then wiH = wjH , which implies vi = vj .

(ii) Using the fact that V = WH from (i), we have for vi 6= vj ,

‖vi − vj‖2 = ‖(wi − wj)H‖2
≥

√
2νmin(H),

where νmin(H)
def
= min‖x‖2=1 ‖x⊤H‖2, and we used ‖wi − wj‖2 =

√
2 for wi 6= wj . Now,

min
‖x‖2=1

‖x⊤H‖22 = min
‖x‖2=1

x⊤HH⊤x

= min
‖x‖2=1

x⊤(WW⊤)−1x

=
1

k
,

where we used HH⊤ = (W⊤W )−
1
2UU⊤(WW⊤)−

1
2 = (WW⊤)−1 and the fact that WW⊤ =

k diag (I). Putting everything together, we get

‖vi − vj‖22 ≥ 2

k
.

A.4 Proof of Theorem 12

The proof is similar to that of [34], and we highlight the steps needed to extend the result to general
A. In particular, following similar arguments as in [34], it can be shown that

E

[∥

∥

∥

∥

1

n

n
∑

i=1

ZiZ
⊤
i −A

∥

∥

∥

∥

op

]

≤ c

√
logN

n

√

E

[

max
i∈[n]

‖Zi‖22
]

√

√

√

√E

[

∥

∥

∥

∥

n
∑

i=1

ZiZ⊤
i

∥

∥

∥

∥

op

]

, (31)

Now,

E

[

∥

∥

∥

∥

n
∑

i=1

ZiZ
⊤
i

∥

∥

∥

∥

op

]

≤ nE

[

∥

∥

∥

∥

1

n

n
∑

i=1

ZiZ
⊤
i −A

∥

∥

∥

∥

op

+ ‖A‖op
]

= n(β + ‖A‖op), (32)

where β
def
= E

[

∥

∥

∥

∥

1
n

∑n
i=1 ZiZ

⊤
i −A

∥

∥

∥

∥

op

]

. It follows from (31) and (32) that

β ≤ c

√

logN

n

√

E

[

max
i∈[n]

‖Zi‖22
]

√

β + ‖A‖op.
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Letting α = c
√

(logN)/n
√

E
[

maxi∈[n] ‖Zi‖22
]

, we have the solution

β ≤ 1

2

(

α2 + α
√

α2 + 4‖A‖op
)

,

which completes the proof.

A.5 Proof of Lemma 4

Our goal is to compute the expected value of the clustering matrix, denoted E [T ], and we will
do so by first conditioning on the measurement ensemble Φn

1 and noting that each entry of T is
then of the form (X⊤AX)2, where X is subgaussian and A is a fixed matrix (given Φn

1 ). This
conditional expectation can be calculated using Lemma 14. The next step is to average over the
distribution of Φn

1 , and our analysis will require the moment assumptions on the entries of Φn
1

described in Assumption 2. Although each entry of E [T ] can be explicitly characterized in terms of
the system parameters, we will sometimes only mention the leading terms. In fact, the analysis of
our algorithm in Theorem 1 only requires an upper bound on the diagonal entries and tight upper
and lower bounds on the off diagonal entries of E [T ].

Specifically, by the definition of T from (33), we note that

E [Tuv] =
1

n

n
∑

j=1

(Φ⊤
juΦjXj)

2 · (Φ⊤
jvΦjXj)

2, (33)

for (u, v) ∈ Sun×Sun. The expectation in the expression above is over the joint distribution of Xn
1 ,

Φn
1 and the labels Gn

1 (generating samples from the mixture PS = 1
ℓ

∑ℓ
i=1 P

(i) described in Section
II in the main file can be thought of as drawing the label G uniformly from [ℓ], and conditioned on
G = g, drawing a sample from P(g)). We will first condition on the labels (or, equivalently, on the

random subsets {I1, . . . , Iℓ} defined as Ii
def
= {j ∈ [n] : supp(Xj) = Si} and on the measurement

matrices. We focus on a single summand in (33), and drop the dependence on the sample index j.
With a slight abuse of notation, we let S = supp(X) denote the support of the sample we focus on
and note that

EX

[

(Φ⊤
uΦX)2 · (Φ⊤

v ΦX)2|Φ, G
]

= EX

[

(X⊤
S αuα

⊤
v XS)

2|Φ, G
]

,

where, αu
def
= Φ⊤

SΦu, u ∈ Sun. We can now use Lemma 14 to get

EX

[

(X⊤
S αuα

⊤
v XS)

2|Φ, G
]

= ρ
∑

i∈S
α2
uiα

2
vi + λ2

0

∑

i6=j

α2
uiα

2
vj + λ2

0

∑

i6=j

αuiαviαujαvj , (34)

where recall λ0 = E
[

X2
i

]

and ρ = E
[

X4
i

]

. We will first handle the u = v case, which will be used
to compute the diagonal entries of the mean matrix. We have, for every u ∈ Sun,

EX,Φ

[

(X⊤
S αuα

⊤
u XS)

2|G
]

= ρEΦ

[

∑

i∈S
α4
ui|G

]

+ 2λ2
0EΦ





∑

i6=j

α2
uiα

2
uj |G





= ρEΦ

[

∑

i∈S
(Φ⊤

uΦi)
4|G
]

+ 2λ2
0EΦ





∑

i6=j

(Φ⊤
uΦi)

2(Φ⊤
uΦj)

2|G



 .
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When u ∈ S,

µs
0

def
= EX,Φ

[

(X⊤
S αuα

⊤
u XS)

2|G
]

= ρEΦ



‖Φu‖82 +
∑

i∈S\{u}
(Φ⊤

uΦi)
4|G



+ 2λ2
0EΦ



2‖Φu‖42
∑

i∈S\{u}
(Φ⊤

uΦi)
2 +

∑

i6=j

(Φ⊤
uΦi)

2(Φ⊤
uΦj)

2|G





≤ cρ

(

1 +
k − 1

m2

)

+ c′λ2
0

(

k − 1

m
+

(k − 1)(k − 2)

m2

)

, (35)

where we used Lemma 14 in the second step and Lemma 15 in the third step, and retained the
leading terms.

When u ∈ Sun\S, using Lemmas 14 and 15 once again, we have

µd
0

def
= EX,Φ

[

(X⊤
S αuα

⊤
uXS)

2|G
]

= ρEΦ

[

∑

i∈S
(Φ⊤

u Φi)
4|G
]

+ 2λ2
0EΦ





∑

i6=j

(Φ⊤
uΦi)

2(Φ⊤
uΦj)

2|G





≤ cρ

(

k

m2

)

+ c′λ2
0

k(k − 1)

m2
. (36)

We now use these results to bound the diagonal entries of the mean matrix E [T ]. Using (33), (35)
and (36), we see that for u ∈ S1,

µ0
def
= E [Tuu] = EG



EX,Φ





1

n

(

∑

j∈I1

(Φ⊤
juΦjXj)

4 + · · ·+
∑

j∈Iℓ

(Φ⊤
juΦjXj)

4

)∣

∣

∣

∣

G









= EG

[

1

n

(

|I1|µs
0 +

ℓ
∑

i=2

|Ii|µd
0

)

]

=
1

ℓ
µs
0 +

ℓ− 1

ℓ
µd
0

≤ c

ℓ

{

ρ

(

1 +
k − 1

m2

)

+ λ2
0

(

k − 1

m
+

(k − 1)(k − 2)

m2

)}

+
c(ℓ− 1)

ℓ

{

ρ

(

k

m2

)

+ λ2
0

k(k − 1)

m2

}

,

(37)

where we used EG [|Ii|] = n/ℓ for all i ∈ [ℓ], under the uniform mixture assumption. The same
result holds for u ∈ Si for any i ∈ [ℓ].

The next step is to bound the off diagonal entries of E [T ]. Continuing from (34), we will handle
each of the three terms separately. For each of these terms, we will consider the case when both
u and v belong to the same support, and when they belong to different supports. Overall, these
calculations highlight the block structure of E [T ], with the diagonal entries all being equal, and
the off diagonal entries taking two different values based on whether the indices belong to the same
support or not.

For the first term in (34), when (u, v) ∈ S × S, u 6= v, we have

EΦ

[

∑

i∈S
α2
uiα

2
vi|G

]

=EΦ

[

‖Φu‖42(Φ⊤
u Φv)

2|G
]

+ EΦ

[

‖Φv‖42(Φ⊤
uΦv)

2|G
]

+ EΦ





∑

i∈S\{u}∪{v}
(Φ⊤

i Φu)
2(Φ⊤

i Φv)
2

∣

∣

∣

∣

G
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=
2

m

(

1 +
3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2)

)

+
k − 2

m2

(

1 +
1

m
(c2 − 1)

)

def
= γs

1 ,

(38)

using Lemma 15. On the other hand, when (u, v) ∈ S × Sun\S, we have

EΦ

[

∑

i∈S
α2
uiα

2
vi|G

]

=EΦ

[

‖Φu‖42(Φ⊤
uΦv)

2|G
]

+ EΦ





∑

i∈S\{u}
(Φ⊤

i Φu)
2(Φ⊤

i Φv)
2

∣

∣

∣

∣

G





=
1

m

(

1 +
3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2)

)

+
k − 1

m2

(

1 +
1

m
(c2 − 1)

)

def
= γsd

1 .

(39)

The same result holds when (u, v) ∈ Sun\S × S. Finally, when (u, v) ∈ Sun\S × Sun\S,

EΦ

[

∑

i∈S
α2
uiα

2
vi|G

]

= EΦ

[

∑

i∈S
(Φ⊤

i Φu)
2(Φ⊤

i Φv)
2|G
]

=
k

m2

(

1 +
1

m
(c2 − 1)

)

def
= γd

1 . (40)

For the second term in (34), when (u, v) ∈ S × S,

EΦ





∑

i6=j

α2
uiα

2
vj |G



 = EΦ



‖Φu‖42‖Φv‖42 + (Φ⊤
uΦv)

4 + ‖Φu‖42
∑

i∈S\{u}∪{v}
(Φ⊤

v Φi)
2

∣

∣

∣

∣

G





+ EΦ



‖Φv‖42
∑

i∈S\{u}∪{v}
(Φ⊤

uΦi)
2 + (Φ⊤

uΦv)
2

∑

i∈S\{u}∪{v}
(Φ⊤

v Φi)
2

∣

∣

∣

∣

G





+ EΦ









(Φ⊤
uΦv)

2
∑

i∈S\{u}∪{v}
(Φ⊤

u Φi)
2 +

∑

i,j∈S\{u}∪{v}
i6=j

(Φ⊤
u Φi)

2 · (Φ⊤
v Φj)

2

∣

∣

∣

∣

G









=

(

1 +
1

m
(c2 − 1)

)2

+

(

2

m2
+

1

m3
(c22 − 2)

)

+ 2

(

1 +
1

m
(c2 − 1)

)

k − 2

m

+ 2
(k − 2)

m2

(

1 +
1

m
(c2 − 1)

)

+
(k − 2)(k − 3)

m2

def
= γs

2 , (41)

where we used Lemma 15 in the second step. When (u, v) ∈ S × Sun\S,

EΦ





∑

i6=j

α2
uiα

2
vj |G



 = EΦ



‖Φu‖42
∑

i∈S\{u}
(Φ⊤

v Φi)
2|G



+ EΦ



(Φ⊤
u Φv)

2
∑

i∈S\{u}
(Φ⊤

uΦi)
2|G





+ EΦ









∑

i,j∈S\{u}
j 6=i

(Φ⊤
uΦi)

2 · (Φ⊤
v Φj)

2|G
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=

(

1 +
1

m
(c2 − 1)

)

k − 1

m
+

(k − 1)

m2

(

1 +
1

m
(c2 − 1)

)

+
(k − 1)(k − 2)

m2

def
= γsd

2 ,

(42)

and the same expression holds when (u, v) ∈ Sun\S × S. When (u, v) ∈ Sun\S × Sun\S,

EΦ





∑

i6=j

α2
uiα

2
vj |G



 = EΦ









∑

i,j∈S
j 6=i

(Φ⊤
u Φi)

2 · (Φ⊤
v Φj)

2|G









=
k(k − 1)

m2

def
= γd

2 , (43)

Finally, for the third term in (34), when (u, v) ∈ S × S,

EΦ





∑

i6=j

αuiαviαujαvj |G



 =EΦ

[

‖Φu‖22Φ⊤
uΦv · ‖Φv‖22Φ⊤

uΦv|G
]

+ EΦ



‖Φu‖22Φ⊤
uΦv

∑

j∈S\{u}∪{v}
(Φ⊤

uΦj) · (Φ⊤
v Φj)|G





+ EΦ



‖Φv‖22Φ⊤
uΦv

∑

j∈S\{u}∪{v}
(Φ⊤

uΦj) · (Φ⊤
v Φj)|G





+ EΦ









∑

i,j∈S\{u}∪{v}
j 6=i

(Φ⊤
u Φi)(Φ

⊤
v Φi)(Φ

⊤
u Φj)(Φ

⊤
v Φj)|G









=
1

m

(

1 +
c2 − 1

m

)2

+
2(k − 2)

m2

(

1 +
c2 − 1

m

)

+
(k − 2)(k − 3)

m3

def
= γs

3 .

(44)

When (u, v) ∈ S × Sun\S,

EΦ





∑

i6=j

αuiαviαujαvj |G



 =EΦ



‖Φu‖22Φ⊤
uΦv

∑

j∈S\{u}
(Φ⊤

uΦj) · (Φ⊤
v Φj)|G





+ EΦ









∑

i,j∈S\{u}
j 6=i

(Φ⊤
u Φi)(Φ

⊤
u Φj)(Φ

⊤
v Φi)(Φ

⊤
v Φj)

∣

∣

∣

∣

G









=
(k − 1)

m2

(

1 +
c2 − 1

m

)

+
(k − 1)(k − 2)

m3

def
= γsd

3 , (45)

and the same expression holds when (u, v) ∈ Sun\S × S. When (u, v) ∈ Sun\S × Sun\S,

EΦ





∑

i6=j

αuiαviαujαvj |G



 = EΦ









∑

i,j∈S
j 6=i

(Φ⊤
uΦi)(Φ

⊤
u Φj)(Φ

⊤
v Φi)(Φ

⊤
v Φj)

∣

∣

∣

∣

G
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=
k(k − 1)

m3

def
= γd

3 , (46)

We have thus computed the expected values of each of the three terms in (34).
Thus, combining (38), (41) and (44) and using (34) and (33), we have for (u, v) ∈ S1 × S1,

u 6= v,

E [Tuv] =EG

[

1

n

(

∑

j∈I1

ργs
1 + λ2

0(γ
s
2 + γs

3) +
∑

j∈I2

ργd
1 + λ2

0(γ
d
2 + γd

3 )

+ · · ·+
∑

j∈Iℓ

ργd
1 + λ2

0(γ
d
2 + γd

3 )

)]

=
1

ℓ

(

ργs
1 + λ2

0(γ
s
2 + γs

3)

)

+
ℓ− 1

ℓ

(

ργd
1 + λ2

0(γ
d
2 + γd

3 )

)

def
= µs, (47)

where again we used EG [|Ii|] = n/ℓ for all i ∈ [ℓ]. This holds for (u, v) ∈ Si × Si, for every i ∈ [ℓ].
For the case when (u, v) ∈ S1 × S2 or when (u, v) ∈ S2 × S1,

E [Tuv] =EG

[

1

n

(

∑

j∈I1

ργsd
1 + λ2

0(γ
sd
2 + γsd

3 ) +
∑

j∈I2

ργsd
1 + λ2

0(γ
sd
2 + γsd

3 )

+
∑

j∈I3

ργd
1 + λ2

0(γ
d
2 + γd

3 ) + · · ·+
∑

j∈Iℓ

ργd
1 + λ2

0(γ
d
2 + γd

3 )

)]

(48)

=
2

ℓ

(

ργsd
1 + λ2

0(γ
sd
2 + γsd

3 )

)

+
ℓ− 2

ℓ

(

ργd
1 + λ2

0(γ
d
2 + γd

3 )

)

def
= µd. (49)

Again, the same expression holds for E [Tuv] whenever (u, v) ∈ Si × Sj , i, j ∈ [ℓ], i 6= j. The mean
matrix E [T ] thus has a block structure with µ0 on the diagonal, µs on the remaining entries in the
diagonal blocks and µd on the off diagonal blocks as depicted in Figure 1.

A.6 Proof of Lemma 7

Using the structure of E [T ] derived in Lemma 4, we have,

‖E [T ] ‖op = µ0 + (k − 1)µs + k(ℓ− 1)µd

≤ ρ
k2ℓ

m2
+ λ2

0

k3ℓ

m2
,

where we have used the definitions in (37), (47) and (49), and simplified.
For the eigengap computation, we first note from the definitions in (47) and (49) that

µs − µd =
ρ

ℓ
(γs

1 + γd
1 − 2γsd

1 ) +
λ2
0

ℓ
(γs

2 + γd
2 − 2γsd

2 + γs
3 + γd

3 − 2γsd
3 )

=
ρ

ℓ
· 0 + λ2

0

ℓ

{(

1 +
c2 − 1

m

)2

+
1

m2

(

2 +
c22 − 2

m

)

+
1

m

(

1 +
c2 − 1

m

)2

− 2

m

(

1 +
c2 − 1

m

)(

1 +
2

m

)

+
4

m2

}
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≥λ2
0

ℓ
.

We therefore have,

∆ℓ = νℓ − νℓ+1 = k(µs − µd) ≥
λ2
0k

ℓ
.

Appendix B Useful lemmas

Definition 2. A random variable X is subgaussian with variance parameter σ2, denoted X ∼
subG(σ2), if

logE
[

eθ(X−E[X])
]

≤ θ2σ2/2,

for all θ ∈ R.

Definition 3. A random variable X is subexponential with parameters σ2 and b > 0, denoted
X ∼ subexp(σ2, b), if

logE
[

eθ(X−E[X])
]

≤ θ2σ2/2,

for all |θ| < 1/b.

Lemma 13. Let X be a subexponential random variable with parameters v2 and b > 0, i.e., for
every t > 0,

Pr (|X − E [X ] | ≥ t) ≤ 2 exp

(

−min

{

t2

2v2
,
t

2b

})

.

Then, for q ∈ N, and an absolute constant c,

E
[

|X − E [X ] |2q
]

≤ 2q · (16)q
(

Γ(q)v2q + b2qΓ(2q)

)

.

Proof. We first express the tail bound for X in a form that is easier to evaluate, and then use
standard arguments (see, for example, [39, Theorem 2.3]) to derive the moment bound. We have,

Pr (|X − E [X ] | ≥ t) ≤ 2 exp

(

−min

{

t2

2v2
,
t

2b

})

≤ 2 exp

( −t2

2(v2 + bt)

)

,

that is,

Pr
(

|X − E [X ] | ≥ bu+
√

b2u2 + 2v2u
)

≤ e−u.

With this tail bound, we can now derive the stated moment bound by using

E
[

|X − E [X ] |2q
]

= 2q

∫ ∞

0

Pr (|X − E [X ] | ≥ t) t2q−1dt.
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In particular, upon substituting t = bu+
√
b2u2 + 2v2u, we get

E

[

(X − E [X ])2q
]

≤ 2q

∫ ∞

0

e−u(bu+
√

b2u2 + 2v2u)2q−1

×
(

b+
b2u+ v2√
b2u2 + 2v2u

)

du,

which after simplification yields

E

[

(X − E [X ])2q
]

≤ 2q · (16)q
(

b2qΓ(2q) + v2qΓ(q)

)

.

Lemma 14. Let X ∈ Rd be a mean zero random vector with independent entries such that E
[

X2
i

]

=

λ0 and E
[

X4
i

]

= ρ for all i ∈ [d]. Then, for every a, b ∈ Rd,

E
[

(X⊤ab⊤X)2
]

= ρ

d
∑

i=1

a2i b
2
i + λ2

0

∑

i6=j

(a2i b
2
j + aibiajbj).

In particular,

E
[

(X⊤aa⊤X)2
]

= ρ

d
∑

i=1

a4i + 2λ2
0

∑

i6=j

a2i a
2
j .

Remark 2. If the second and fourth moments are related as ρ = 2λ2
0 = 2c for some absolute constant

c, then the result simplifies to E
[

(X⊤ab⊤X)2
]

= c((a⊤b)2 + ‖a‖22‖b‖22).

Proof. To start with, we note that the quadratic formX⊤ab⊤X is a subexponential random variable
since X is subgaussian. Although this fact can be used to derive upper bounds on the moments of
X⊤ab⊤X , we would like to explicitly compute the second moment. We have,

E
[

(X⊤ab⊤X)2
]

= E





( d
∑

i=1

aibiX
2
i +

∑

i6=j

aibjXiXj

)2




= E





( d
∑

i=1

aibiX
2
i

)2

+

(

∑

i6=j

aibjXiXj

)2

+ 2

d
∑

i=1

aibiX
2
i

∑

i6=j

aibjXiXj





= E





d
∑

i=1

a2i b
2
iX

4
i +

∑

i6=j

aibiajbjX
2
i X

2
j +

∑

i6=j

a2i b
2
jX

2
i X

2
j



 .

Using E
[

X2
i

]

= λ0 and E
[

X4
i

]

= ρ, we get

E
[

(X⊤ab⊤X)2
]

= ρ

d
∑

i=1

a2i b
2
i + λ2

0

∑

i6=j

(a2i b
2
j + aibiajbj).
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Lemma 15. Let X,Y, Z and W be independent random vectors taking values in Rm, with in-
dependent entries that are zero mean with variance 1/m. Additionally, for every i ∈ [m], let

E

[

Z2q
i

]

= cq/m
q, for q=2, 3, 4 and a constant cq that depends only on q. Then, the following

results hold:

(i) E
[

‖Z‖42
]

= 1 + 1
m (c2 − 1)

(ii) E
[

‖Z‖62
]

= 1 + 3
m (c2 − 1) + 1

m2 (c3 − 3c2 + 2)

(iii) E
[

‖Z‖82
]

= 1 + 6
m (c2 − 1) + 1

m2 (11− 18c2 + 6c22 + 4c3) +
1
m3 (c4 − 4c3 − 6c22 + 12c2 − 6)

(iv) E
[

(X⊤Y )4
]

= 2
m2 + 1

m3 (c
2
2 − 2)

(v) E
[

‖Z‖42(Z⊤W )2
]

= 1
m

(

1 + 3
m (c2 − 1) + 1

m2 (c3 − 3c2 + 2)

)

(vi) E
[

(X⊤Z)2(X⊤W )2
]

= 1
m2

(

1 + 1
m (c2 − 1)

)

(vii) E
[

‖Z‖22‖W‖22(Z⊤W )2
]

= 1
m

(

1 + 1
m (c2 − 1)

)2

(viii) E
[

‖Z‖22(W⊤Z)(X⊤Z)(X⊤W )
]

= 1
m2

(

1 + 1
m (c2 − 1)

)

(ix) E
[

(Z⊤X)(Z⊤Y )(W⊤X)(W⊤Y )
]

= 1
m3

(x) E
[

(X⊤Y )2
]

= 1
m .

Proof. (i)

E
[

‖Z‖42
]

= E





m
∑

i=1

Z4
i +

∑

i6=j

Z2
i Z

2
j





=
c2
m

+
m− 1

m
= 1 +

1

m
(c2 − 1).

(ii)

E
[

‖Z‖6
]

= E
[

(Z2
1 + . . .+ Z2

m)2(Z2
1 + . . .+ Z2

m)
]

= E





( m
∑

i=1

Z4
i +

∑

i6=j

Z2
i Z

2
j

)( m
∑

t=1

Z2
t

)





= E





m
∑

i=1

Z4
i

m
∑

t=1

Z2
t +

m
∑

t=1

Z2
t

∑

i6=j

Z2
i Z

2
j



 .
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For the first term,

E

[

m
∑

i=1

Z4
i

m
∑

t=1

Z2
t

]

= E





m
∑

i=1

Z6
i +

∑

i6=t

Z4
i Z

2
t





= m
c3
m3

+m(m− 1)
c2
m2

1

m
=

1

m2
(c3 − c2) +

c2
m

, (50)

and for the second term,

E





m
∑

t=1

Z2
t

∑

i6=j

Z2
i Z

2
j



 = E



2
∑

t6=i

Z4
t Z

2
i +

∑

t6=i6=j

Z2
t Z

2
i Z

2
j





= 2m(m− 1)
c2
m2

1

m
+m(m− 1)(m− 2)

1

m3

= 1 +
1

m
(2c2 − 3)− 2

m2
(c2 − 1)

Thus,

E
[

‖Z‖6
]

= 1 +
3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2).

(iii)

E
[

‖Z‖8
]

=E
[

(Z2
1 + · · ·+ Z2

m)4
]

=mE
[

Z8
1

]

+

(

m

2

)

4!

3!
2E
[

Z6
1Z

2
2

]

+

(

m

2

)

4!

2!2!
2E
[

Z4
1Z

4
2

]

+

(

m

3

)

4!

2!
3E
[

Z4
1Z

2
2Z

2
3

]

+

(

m

4

)

4!E
[

Z2
1Z

2
2Z

2
3Z

2
4

]

=1 +
6

m
(c2 − 1) +

1

m2
(11− 18c2 + 6c22 + 4c3) +

1

m3
(c4 − 4c3 − 6c22 + 12c2 − 6).

(iv) To compute E
[

(X⊤Y )4
]

, we first note that

E
[

(X⊤Y )4|X
]

= E
[

(Y ⊤XX⊤Y )2|X
]

= E
[

Y 4
1

]

m
∑

i=1

X4
i + 2(E

[

Y 2
1

]

)2
∑

i6=j

X2
i X

2
j

=
c2
m2

m
∑

i=1

X4
i + 2

(

1

m

)2
∑

i6=j

X2
i X

2
j ,

where we used Lemma 14 in the second step. This gives

E
[

(X⊤Y )4
]

=
c2
m
E
[

X4
1

]

+
2(m− 1)

m
(E
[

X2
1

]

)2

=
c22
m3

+
2(m− 1)

m3
=

2

m2
+

1

m3
(c22 − 2).
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(v) Similar to the previous calculation, we first compute the conditional expectation to get

E
[

‖Z‖42(Z⊤W )2|Z
]

= ‖Z‖42
( m
∑

i=1

E
[

Z2
i W

2
i |Z

]

+
∑

i6=j

E [ZiWiZjWj |Z]

)

= ‖Z‖42
‖Z‖22
m

,

which gives

E
[

‖Z‖42(Z⊤W )2
]

=
1

m
E
[

‖Z‖62
]

=
1

m

(

1 +
3

m
(c2 − 1) +

1

m2
(c3 − 3c2 + 2)

)

.

(vi) We have

E
[

(X⊤Z)2(X⊤W )2|X
]

= E
[

(X⊤Z)2|X
]

E
[

(X⊤W )2|X
]

=
‖X‖22
m

· ‖X‖22
m

.

Thus,

E
[

(X⊤Z)2(X⊤W )2
]

=
1

m2

(

1 +
1

m
(c2 − 1)

)

.

(vii)

E
[

‖Z‖22‖W‖22(Z⊤W )2|Z
]

=‖Z‖22 E
[

‖W‖22(Z⊤W )2|Z
]

=‖Z‖22
( m
∑

i=1

E
[

‖W‖22Z2
i W

2
i |Z

]

+
∑

i6=j

E
[

‖W‖22WiWjZiZj |Z
]

)

=‖Z‖22
m
∑

i=1

Z2
i E



W 4
i +

∑

l 6=i

W 2
i W

2
l





+ ‖Z‖22
∑

i6=j

ZiZjE



W 3
i Wj +W 3

j Wi +
∑

l 6=i, l 6=j

W 2
l WiWj





=‖Z‖22
m
∑

i=1

Z2
i

(

c2
m2

+
m− 1

m2

)

= ‖Z‖42
(

1

m
+

c2 − 1

m2

)

.

Thus,

E
[

‖Z‖22‖W‖22(Z⊤W )2
]

=
1

m

(

1 +
c2 − 1

m

)2

.

(viii)

E
[

‖Z‖22(W⊤Z)(X⊤Z)(X⊤W )|Z,W
]

= ‖Z‖22(W⊤Z)E
[

X⊤WZ⊤X |W,Z
]

= ‖Z‖22(W⊤Z)
Z⊤W

m
.

Using similar arguments as in the proof of (v),

E
[

‖Z‖22(W⊤Z)(X⊤Z)(X⊤W )
]

=
1

m2

(

1 +
c2 − 1

m

)

.
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(ix)

E
[

(Z⊤X)(Z⊤Y )(W⊤X)(W⊤Y )|X,Y,W
]

= (W⊤X)(W⊤Y )E
[

Z⊤XY ⊤Z|X,Y
]

= (W⊤X)(W⊤Y )
X⊤Y

m

Thus,

E
[

(Z⊤X)(Z⊤Y )(W⊤X)(W⊤Y )
]

=
1

m
EX,Y

[

EW

[

(W⊤X)(W⊤Y )(X⊤Y )|X,Y
]]

=
1

m
EX,Y

[

(X⊤Y )EW

[

W⊤XY ⊤W |X,Y
]]

=
1

m2
EX,Y

[

(X⊤Y )2
]

=
1

m3
.

(x)

E
[

(X⊤Y )2
]

=

m
∑

i=1

E
[

X2
i Y

2
i

]

+
∑

i6=j

E [XiYiXjYj ] =
1

m
.
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