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Abstract—We investigate the quantize and binning scheme,
known as the Shimokawa-Han-Amari (SHA) scheme, for the
distributed hypothesis testing. We develop tools to evaluate the
critical rate attainable by the SHA scheme. For a product of
binary symmetric double sources, we present a sequential scheme
that improves upon the SHA scheme.

I. INTRODUCTION

In [1], Berger introduced a framework of statistical decision

problems under communication constraint. Inspired by his

work, many researchers studied various problems of this kind

[2], [3], [4], [5], [6], [7], [8]; see [9] for a thorough review until

90s. More recently, the problem of communication constrained

statistics has regained interest of researchers; see [10], [11],

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],

[23], [24] and references therein.

In this paper, we are interested in the most basic setting

of hypothesis testing in which the sender and the receiver

observe correlated sources Xn and Y n, respectively, and the

observation (Xn, Y n) is distributed according to the product

of the null hypothesis PXY or the alternative hypothesis QXY ;

the sender transmit a message at rate R, and the receiver decide

the hypotheses based on the message and its observation.

In [2], Ahlswede and Csiszár introduced the so-called

quantization scheme, and showed that the quantization scheme

is optimal for the testing against independence, i.e., the alterna-

tive hypothesis is QXY = PX×PY . In [3], Han introduced an

improved version of the quantization scheme that fully exploit

the knowledge of the marginal types. In [25], Shimokawa,

Han, and Amari introduced the quantize and binning scheme,

which we shall call the SHA scheme in the following. For a

long time, it has not been known if the SHA is optimal or not.

In [13], Rahman and Wagner showed that the SHA scheme

is optimal for the testing against conditional independence.1

More recently, Weinberger and Kochman [17] (see also [26])

derived the optimal exponential trade-off between the type I

and type II error probabilities of the quantize and binning

scheme. Since the decision is conducted based on the optimal

likelihood decision rule in [17], their scheme may potentially

provide a better performance than the SHA scheme; however,

since the expression involves complicated optimization over

multiple parameters, and a strict improvement has not been

clarified so far.

1In fact, for the testing against conditional independence, it suffices to
consider a simpler version of quantize and binning scheme than the SHA
scheme.

A main objective of this paper is to investigate if the SHA

scheme is optimal or not. In fact, it turns out that the answer

is negative, and there exists a scheme that improves upon the

SHA scheme. Since the general SHA scheme is involved, we

focus on the critical rate, i.e., the minimum rate that is required

to attain the same type II exponent as the Stein exponent of

the centralized testing. Then, under a certain non-degeneracy

condition, we will prove that the auxiliary random variable in

the SHA scheme must coincide with the source X itself, i.e.,

we must use the binning without quantization. By leveraging

this simplification, for the binary symmetric double sources

(BSDS), we derive a closed form expression of the critical

rate attainable by the SHA scheme. Next, we will consider

a product of the BSDS such that each component of the

null hypothesis and the alternative hypothesis is “reversely

aligned.” Perhaps surprisingly, it turns out that the SHA is

sub-optimal for such hypotheses. Our improved scheme is

simple, and it uses the SHA scheme for each component in a

sequential manner; however, it should be emphasized that we

need to conduct binning of each component separately, and

our scheme is not a naive random binning.

II. PROBLEM FORMULATION

We consider the statistical problem of testing the null

hypothesis H0 : PXY on finite alphabets X × Y versus

the alternative hypothesis H1 : QXY on the same alphabet.

The i.i.d. random variables (Xn, Y n) distributed according

to either Pn
XY or Qn

XY are observed by the sender and the

receiver; the sender encodes the observation Xn to a message

by an encoding function

ϕn : Xn → Mn,

and the receiver decides whether to accept the null hypothesis

or not by a decoding function

ψn : Mn × Yn → {H0, H1}.

When the block length n is obvious from the context, we omit

the subscript n. For a given testing scheme Tn = (ϕ, ψ), the

type I error probability is defined by

α[Tn] := P

(

ψ(ϕ(Xn), Y n) = H1

)

and the type II error probability is defined by

β[Tn] := Q

(

ψ(ϕ(Xn), Y n) = H0

)

.
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In the following, P (·) (or Q(·)) means that (Xn, Y n) is

distributed according to Pn
XY (or Qn

XY ).

In the problem of distributed hypothesis testing, we are

interested in the trade-off among the communication rate and

the type I and type II error probabilities. Particularly, we focus

on the optimal trade-off between the communication rate and

the exponent of the type II error probability when the type

I error probability is vanishing, which is sometimes called

“Stein regime”.

Definition 1: A pair (R,E) of the communication rate and

the exponent is defined to be achievable if there exists a

sequence {Tn}
∞
n=1 of testing schemes such that

lim
n→∞

α[Tn] = 0

and

lim sup
n→∞

1

n
log |Mn| ≤ R,

lim inf
n→∞

−
1

n
log βn[Tn] ≥ E.

The achievable region R is the set of all achievable pair

(R,E).
For a given communication rate R, the maximum exponent

is denoted by

E(R) := max{E : (R,E) ∈ R}.

When there is no communication constraint, i.e., R ≥ log |X |,
the sender can send the full observation without any encoding,

and the receiver can use a scheme for the standard (central-

ized) hypothesis testing. In such a case, the Stein exponent

D(PXY ‖QXY ) is attainable. We define the critical rate as

the minimum communication rate required to attain the Stein

exponent:

Rcr := inf{R : E(R) = D(PXY ‖QXY )}.

III. ON EVALUATION OF SHA SCHEME

When the communication rate R is not sufficient to send X ,

the standard approach is to quantize X using a test channel

PU|X for some finite auxiliary alphabet U . For PUXY =
PU|XPXY and QUXY = QU|XQXY with QU|X = PU|X ,

let

E(PUXY ‖QUXY )

:= min
{

D(PŨX̃Ỹ ‖QUXY ) : PŨX̃ = PUX , PŨ Ỹ = PUY

}

.

In [3], a testing scheme based on quantization was proposed,

and the following achievability bound was derived: for any

test channel PU|X ,

E(R) ≥ E(PUXY ‖QUXY ).

In [25], a testing scheme based on quantization and binning

was proposed, and the following achievability bound was

derived: for any test channel PU|X such that R ≥ I(U∧X |Y ),

E(R) ≥ min

[

min
P

ŨX̃Ỹ
∈Pb(PU|X )

D(PŨX̃Ỹ ‖QUXY )

+ |R − I(U ∧X |Y )|+, E(PUXY ‖QUXY )

]

,

where |t|+ = max[t, 0], and

Pb(PU|X) :=
{

PŨX̃Ỹ :

PŨX̃ = PUX , PỸ = PY , H(Ũ |Ỹ ) ≥ H(U |Y )
}

.

Particularly, by taking PU|X to be noiseless test channel, i.e.,

U = X , we have

E(R) ≥ Eb(R) (1)

:= min

[

min
P

X̃Ỹ
∈Pb

D(PX̃Ỹ ‖QXY ) + |R −H(X |Y )|+,

D(PXY ‖QXY )

]

, (2)

where

Pb :=
{

PX̃Ỹ : PX̃ = PX , PỸ = PY , H(X̃|Ỹ ) ≥ H(X |Y )
}

.

In the following, we focus on the critical rate. Under some

mild conditions, in order to attain the Stein exponent, we

must take U = X in the quantization-bining bound, i.e., no

quantization. In the rest of this section, we prove this claim.

Suppose that PXY and QXY have full support. Let Λ̂ be a

function on X × Y defined by2

Λ̂(x, y) := log
PXY (x, y)

QXY (x, y)
− log

PXY (x, 0)

QXY (x, 0)
. (3)

Proposition 2: Suppose that, for every x 6= x′, rows

Λ̂(x, ·) and Λ̂(x′, ·) are distinct. Then, E(PUXY ‖QUXY ) =
D(PXY ‖QXY ) only if there does not exist u ∈ U and x 6= x′

such that PU|X(u|x)PU|X(u|x′) > 0.

Proof: Since we assumed that PXY and QXY have full

support and since PU|X = QU|X , PUXY and QUXY have the

same support, which we denote by A. Let A′ = supp(PUX) =
supp(QUX). Note that PUY and QUY have full support.

Let L ⊆ P(A) be the linear family of distributions PŨX̃Ỹ

satisfying
∑

(u,x,y)∈A

PŨX̃Ỹ (u, x, y)δūx̄(u, x) = PUX(ū, x̄)

for every (ū, x̄) ∈ A′ and

∑

(u,x,y)∈A

PŨX̃Ỹ (u, x, y)δūȳ(u, y) = PUY (ū, ȳ),

for every (ū, ȳ) ∈ U × Y . Then, we can write

E(PUXY ‖QUXY ) as

E(PUXY ‖QUXY ) = min
P

ŨX̃Ỹ
∈L
D(PŨX̃Ỹ ‖QUXY ). (4)

If

E(PUXY ‖QUXY ) = D(PXY ‖QXY ) = D(PUXY ‖QUXY ),

then PUXY must be the (unique) minimizer in (4). Then, the

I-projection theorem (cf. [27, Theorem 3.2]) implies that the

2We suppose that alphabets are X = {0, . . . ,mx} and Y = {0, . . . ,my};
taking y = 0 as a special symbol in (3) is just notational convenience.



minimizer PUXY lies in the exponential family generated by

QUXY and the constraints of L, i.e., it has of the form

PUXY (u, x, y)

∝ QUXY (u, x, y) exp

[

∑

ū,x̄

θūx̄δūx̄(u, x) +
∑

ū,ȳ

θūȳδūȳ(u, y)

]

.

for some θūx̄, θūȳ ∈ R. Equivalently, this condition can be

written as

log
PUXY (u, x, y)

QUXY (u, x, y)
= g1(u, x) + g2(u, y)

for some functions g1 on A′ and g2 on U × Y . If there exist

u ∈ U and x 6= x′ such that PU|X(u|x)PU|X(u|x′) > 0, then,

for every y ∈ Y , we have

Λ̂(x, y)− Λ̂(x′, y)

=

[

log
PXY (x, y)

QXY (x, y)
− log

PXY (x, 0)

QXY (x, 0)

]

−

[

log
PXY (x

′, y)

QXY (x′, y)
− log

PXY (x
′, 0)

QXY (x′, 0)

]

=

[

log
PUXY (u, x, y)

QUXY (u, x, y)
− log

PUXY (u, x, 0)

QUXY (u, x, 0)

]

−

[

log
PUXY (u, x

′, y)

QUXY (u, x′, y)
− log

PUXY (u, x
′, 0)

QUXY (u, x′, 0)

]

=

[

g1(u, x) + g2(u, y)− g1(u, x)− g2(u, 0)

]

−

[

g1(u, x
′) + g2(u, y)− g1(u, x

′)− g2(u, 0)

]

= 0,

which contradict the assumption that Λ̂(x, ·) and Λ̂(x′, ·) are

distinct.

Since the quantization-binning bound is at most

E(PUXY ‖QUXY ), when the assumption of Proposition

2 is satisfied, U = X is the only choice of test channel to

attain the Stein exponent.3

In Proposition 2, the assumption that every raws of Λ̂(x, y)
are distinct cannot be replaced by the assumption that every

raws of the log-likelihood function

Λ(x, y) = log
PXY (x, y)

QXY (x, y)

are distinct; for instance, when PXY and QXY are given by

PXY =
1

24a







a 2a 3a

2a 3a 3a

a 3a 6a






,

QXY =
1

14a







2a a a

a a a

a 2a 4a







3Even though we can take a redundant test channel PU|X such that

supp(PU|X(·|x)) ∩ supp(PU|X(·|x′)) = ∅ for any x 6= x′, such a test
channel does not improve the attainable exponent.

for some a > 0, then every raws Λ(x, ·) are distinct but

Λ̂(1, ·) = Λ̂(2, ·). In fact, as is shown in the following

Proposition 3, the symbols x = 1 and x = 2 in this ex-

ample can be merged while maintaining E(PUXY ‖QUXY ) =
D(PXY ‖QXY ). Even though Proposition 3 is not used in the

rest of the paper, it may be of independent interest.

Proposition 3: Let κ : X → U be a function such that

κ(x) = κ(x′) if and only if Λ̂(x, ·) = Λ̂(x′, ·), and let

U = κ(X). Then, for any PŨX̃Ỹ satisfying PŨX̃ = PUX

and PŨỸ = PUY , we have

D(PŨX̃Ỹ ‖QUXY )

= D(PŨX̃Ỹ ‖PUXY ) +D(PUXY ‖QUXY ). (5)

Particularly, we have

E(PUXY ‖QUXY ) = D(PXY ‖QXY ). (6)

Proof: Since (6) follows from (5), it suffices to prove (5).

For each u, fix xu ∈ X such that κ(xu) = u. Then, we have

D(PŨX̃Ỹ ‖QUXY )−D(PŨX̃Ỹ ‖PUXY )−D(PUXY ‖QUXY )

=
∑

u,x,y

(

PŨX̃Ỹ (u, x, y)− PUXY (u, x, y)
)

log
PUXY (u, x, y)

QUXY (u, x, y)

=
∑

u,x,y

(

PŨX̃Ỹ (u, x, y)− PUXY (u, x, y)
)

log
PXY (x, y)

QXY (x, y)

=
∑

u,x,y

(

PŨX̃Ỹ (u, x, y)− PUXY (u, x, y)
)

Λ̂(x, y)

=
∑

u,x,y

(

PŨX̃Ỹ (u, x, y)− PUXY (u, x, y)
)

Λ̂(xu, y)

=
∑

u,y

(

PŨ Ỹ (u, y)− PUY (u, y)
)

Λ̂(xu, y)

= 0,

where the third equality follows from PX̃ = PX and the last

equality follows from PŨ Ỹ = PUY .

Remark 4: Introducing the function Λ(x, y) as in (3) is

motivated by the problem of distributed function computing.

Note that, in order to conduct the likelihood ratio test, the

receiver need not compute the log-likelihood ratios (Λ(xi, yi) :
1 ≤ i ≤ n) for a given observation (x,y) ∈ Xn×Yn; instead,

it suffices to compute the summation

Λn(x,y) =
n
∑

i=1

Λ(xi, yi).

In the terminology of distributed computing [28, Definition 4],

we can verify that the function Λn is X Λ̂-informative.

IV. BINARY SYMMETRIC DOUBLE SOURCE (BSDS)

Let X = Y = {0, 1}, and let PXY and QXY be given by

PXY =

[

1−p

2
p

2
p

2
1−p

2

]

, QXY =

[

1−q

2
q

2
q

2
1−q

2

]



for 0 ≤ p, q ≤ 1 and p 6= q. Since Λ̂(0, 0) = Λ̂(1, 0) = 0 and

Λ̂(0, 1) = log
(1− q)p

(1− p)q
6= log

(1− p)q

(1− q)p
= Λ̂(1, 1),

the assumption of Proposition 2 is satisfied. Thus, we need

to set U = X in the quantization-binning bound to at-

tain the Stein exponent. In the minimization of (1), since

PX̃ = PX and PỸ = PY are the uniform distribution, the

only free parameter is the crossover probability PỸ |X̃(1|0) =
PỸ |X̃(0|1) = p̃. Then, we can easily find that the binning

bound for BSDS is

Eb(R)

=

{

min[|R− h(p)|+, D(p‖q)] if h(p) ≤ h(q)

D(p‖q) if h(p) > h(q)
(7)

for R ≥ h(p). Furthermore, this bound implies that the critical

rate attainable by the SHA scheme is

Rcr ≤

{

h(p) +D(p‖q) if h(p) ≤ h(q)

h(p) if h(p) > h(q)
. (8)

V. PRODUCT OF BSDS

Next, let us consider the case where PXY = PX1Y1
×PX2Y2

and QXY = QX1Y1
× QX2Y2

, and PXiYi
and QXiYi

for

i = 1, 2 are DSBSs with parameters 0 ≤ p1, p2, q1, q2 ≤ 1,

respectively. Particularly, we consider the case where p1 = q2,

p2 = q1, where p1 6= q1. Note that, for the product source, the

function defined by (3) can be decomposed as

Λ̂(x1x2, y1y2) = Λ̂1(x1, y1) + Λ̂2(x2, y2),

where

Λ̂i(xi, yi) = log
PXiYi

(xi, yi)

QXiYi
(xi, yi)

− log
PXiYi

(xi, 0)

QXiYi
(xi, 0)

.

Furthermore, we have Λ̂1(1, 1) = −Λ̂1(0, 1), Λ̂2(0, 1) =
−Λ̂1(0, 1), and Λ̂2(1, 1) = Λ̂1(0, 1). Thus, by denoting

a = Λ̂1(0, 1), we have

Λ̂(x1x2, y1y2) =











0 −a a 0

0 a a 2a

0 −a −a −2a

0 a −a 0











,

and the assumption of Proposition 2 is satisfied. Thus, we need

to set U = X in the quantization-binning bound to attain the

Stein exponent.

Since p1 = q2 and p2 = q1, the conditional entropies

HP (X |Y ) and HQ(X |Y ) with respect to PXY and QXY

satisfy HP (X |Y ) = HQ(X |Y ). Thus, we find that the inner

minimization of the binning bound is attained by PX̃Ỹ =
QXY , and

Eb(R)

= min
[

|R− h(p1)− h(p2)|
+, D(p1‖q1) +D(p2‖q2)

]

.

Furthermore, this bound implies that the critical rate attainable

by the SHA scheme is

Rcr ≤ h(p1) + h(p2) +D(p1‖q1) +D(p2‖q2). (9)

VI. SEQUENTIAL SCHEME FOR PRODUCT OF BSDS

Now, we describe a modified version of SHA scheme for

the product of BSDS. For i = 1, 2, let T
[i]
b = (ϕ[i], ψ[i])

be the SHA scheme (without quantization) for PXiYi
versus

QXiYi
. For a given rate R, we split the rate as R = R1 +

R2, and consider sequential scheme T̃b = (ϕ, ψ) constructed

from (T
[1]
b , T

[2]
b ) as follows. Upon observing x = (x1,x2), the

sender transmit m1 = ϕ[1](x1) and m2 = ϕ[2](x2).
4 Then,

upon receiving (m1,m2) and observing y = (y1,y2), the

receiver decides ψ(m1,m2,y) = H0 if ψ[1](m1,y1) = H0 and

ψ[2](m2,y2) = H0. The type I and type II error probabilities

of this sequential scheme T̃b can be evaluated as

α[T̃b]

= P

(

ψ[1](ϕ[1](Xn
1 ), Y

n
1 ) = H1 ∨ ψ

[2](ϕ[2](Xn
2 ), Y

n
2 ) = H1

)

≤

2
∑

i=1

P

(

ψ[i](ϕ[i](Xn
i ), Y

n
i ) = H1

)

by the union bound, and

β[T̃b]

= Q

(

ψ[1](ϕ[1](Xn
1 ), Y

n
1 ) = H0, ψ

[2](ϕ[2](Xn
2 ), Y

n
2 ) = H0

)

=

2
∏

i=1

Q

(

ψ[i](ϕ[i](Xn
i ), Y

n
i ) = H0

)

.

Thus, if the type I error probabilities of each scheme is

vanishing, then the type I error probability α[T̃b] is also

vanishing. On the other hand, the type II exponent of the

sequential scheme is the summation of the type II exponent

of each scheme.

As in Section V, suppose that p1 = q2 and p2 = q1. Fur-

thermore, let h(q1) < h(p1). Then, from the above argument,

and (7), we find that the following exponent is attainable by

the sequential scheme:

Ẽb(R) = D(p1‖q1) + min[|R2 − h(p2)|
+, D(p2‖q2)] (10)

for R1 ≥ h(p1) and R2 ≥ h(p2). By setting R1 = h(p1) and

R2 = h(p2) +D(p2‖q2), we can derive the following bound

on the critical rate:

Rcr ≤ h(p1) + h(p2) +D(p2‖q2). (11)

Interestingly, the bound on the critical rate in (11) improves

upon the bound in (9).

From an operational point of view, this improvement can

be explained as follows. In the SHA scheme (without quanti-

zation), we use the minimum entropy decoder to compute an

estimate x̂ of Xn = x; then, if the joint type tx̂y is close to

PXY , we accept the null hypothesis. When the empirical con-

ditional entropy H(x|y) is such that HP (X |Y ) � H(x|y),
even if there exists x̂ satisfying H(x|y) ≥ H(x̂|y), the

type II testing error does not occur though the receiver may

4Note that m1 and m2 include indices of random binning as well as
marginal types of x1 and x2.



h(p2)

1

h(τ2)

(0, 0) 1
h(τ1)

h(p1)

(a)

h(p2)

1

h(τ2)

(0, 0) 1
h(τ1)

h(p1)

(b)

Fig. 1: The meshed area describes the range of h(τ1) and

h(τ2) such that the type II testing error may occur when

H(tx1+y1
) ≃ h(τ1) and H(tx2+y2

) ≃ h(τ2) for (a) SHA

scheme and (b) modified SHA scheme.

erroneously compute x̂ 6= x.5 Consequently, the type II

testing error may occur only if (Xn, Y n) = (x,y) satisfies

H(x|y) & HP (X |Y ).
For the product of BSDSs, when the types of modulo

sums x1 + y1 and x2 + y2 are H(tx1+y1
) ≃ h(τ1) and

H(tx2+y2
) ≃ h(τ2), the type II testing error may occur only

if h(τ1) + h(τ2) & h(p1) + h(p2); see Fig. 1(a). In the

modified SHA scheme, x1 and x2 are binned and estimated

separately. Because of this, the constraint of type II testing

error event become more stringent, i.e., h(τ1) & h(p1) and

h(τ2) & h(p2); see Fig. Fig. 1(b).

VII. DISCUSSION

In this paper, we have developed tools to evaluate the critical

rate attainable by the SHA scheme, and exemplified that the

SHA scheme is sub-optimal for a product of BSDSs. A future

5Note that HP (X|Y ) � H(x|y) ≥ H(x̂|y) implies that tx̂y is not close
to PXY .

problem is to generalize the idea of sequential scheme in

Section VI and develop a new achievability scheme for the

distributed hypothesis testing. Another future problem is a

potential utility of the scheme in [17]; as we mentioned in

Section I, it has a potential to improve upon the SHA scheme,

but strict improvement is not clear since the expression in-

volves complicated optimization over multiple parameters.

Lastly, it should be pointed out that certain kinds of “struc-

tured” random coding is known to improve upon the naive

random coding in the context of the mismatched decoding

problem; eg. see [29], [30] and references therein. Even though

there is no direct connection between the two problems, it

might be interesting to pursue a mathematical connection

between these problems.
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