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Abstract—Many-user MAC is an important model for under-
standing energy efficiency of massive random access in 5G and
beyond. Introduced in Polyanskiy’2017 for the AWGN channel,
subsequent works have provided improved bounds on the asymp-
totic minimum energy-per-bit required to achieve a target per-
user error at a given user density and payload, going beyond the
AWGN setting. The best known rigorous bounds use spatially
coupled codes along with the optimal AMP algorithm. But these
bounds are infeasible to compute beyond a few (around 10) bits
of payload. In this paper, we provide new achievability bounds
for the many-user AWGN and quasi-static Rayleigh fading MACs
using the spatially coupled codebook design along with a scalar

AMP algorithm. The obtained bounds are computable even up
to 100 bits and outperform the previous ones at this payload.

Index Terms—many-user MAC, massive multiple access, fun-
damental limit, AMP, spatial coupling

I. INTRODUCTION

Massive machine type communication (mMTC) is an impor-

tant paradigm in 5G and beyond [1, 2] where a large number

of transmitters with small payloads communicate sporadically

with the base station. This problem of massive multiple access

was given an information theoretic footing in [3]. Compared

to the classical information theory of multiple access channels

(MAC), the new formulation is distinguished in at least three

aspects: 1) massive number of users compared to blocklength,

2) per-user probability of error (PUPE) metric and 3) random

access.

In particular, [3] provided finite blocklength (FBL) bounds

on minimum energy-per-bitEb/N0 required to achieve a target

per-user error for the random access additive white Gaussian

noise (AWGN) channel. This is also called the unsourced

MAC. Further, it also considered the many-user asymptotics

(also called the many-user MAC) where the number of users

grow linearly with blocklength for fixed payload per user

(without random access). The fundamental limit of minimum

Eb/N0 required to achieve a target PUPE on the many-user

AWGN MAC, as a function of user density, was demonstrated

in [3, 4] to undergo an interesting phase transition: for small

values of user density, the minimum Eb/N0 is almost constant

i.e., nearly the same as if there was a single user in the system.

This corresponds to an almost perfect multi-user interference

(MUI) cancellation. More importantly, the asymptotic perfor-

mance turns out to be a reasonable proxy for the FBL behavior

in the random-access setting as observed in [3]. Later, the
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almost perfect MUI cancellation was observed for the many-

user quasi-static Rayleigh fading (QSF) channel in [5, 6].

Recently there is a series of works that aim at constructing

explicit practical coding schemes to achieve this MUI cancel-

lation: see [6–14] and references therein. But here we focus

on the many-user MAC (i.e., the asymptotics) with the goal

of obtaining improved and computable rigorous achievability

bounds. To this end, [15] used the approximate message

passing (AMP) algorithm along with spatially coupled coding

matrices to obtain improved achievability bounds for the

many-user AWGN MAC. But those bounds are infeasible to

evaluate for payload sizes exceeding 10 bits. Further, [16]

considered practical schemes for many-user AWGN MAC

based on interference cancellation and also provided asymp-

totic bounds, albeit in a non rigorous way.

Main contribution: We build on the spatial coupling

idea from [15] and the scalar AMP from [5] to provide

new achievability bounds for the many-user AWGN and QSF

MACs that are computable up to at least 100 bits of payload,

which is now a standard in the unsourced MAC [3, 8, 14].

The structure of the paper is as follows. We define the

system model in II. The AMP algorithm is reviewed in III,

main results are provided in IV and numerical computations

are presented in V.

Notation: We denote by N, R and C the sets of natural,

real and complex numbers, respectively. For n ∈ N we let

[n] = {1, 2, · · ·n}. Euclidean norm is denoted as ‖ · ‖. For

a matrix A, we use A⊤ and A∗ to denote the transpose and

the Hermitian conjugate, respectively. Standard normal and

circularly symmetric complex normal distributions are denoted

by N (0, 1) and CN (0, 1), respectively. For p ∈ [0, 1], BER(p)
denotes Bernoulli distribution with parameter p. BG(σ2, p)
denotes the (complex) Bernoulli-Gaussian distribution i.e., it

is zero with probability 1− p and it is CN (0, σ2) otherwise.

Lastly, for a vector X ∈ R
n we let Xi:j (with i ≤ j) denote

the sub-vector (Xi, Xi+1, · · · , Xj)
⊤.

II. SYSTEM MODEL

Let K denote the number of users and n denote the

blocklength. Let {PY n|Xn
1 ,··· ,Xn

K
:
∏K

u=1 Xn
i → Yn}∞n=1

denote a K-user MAC. Let k be the payload size of each

user (in bits) and M = 2k is the total number of messages of

each user. We let Wu ∈ [M ] denote the message of user u.

The encoders and decoder are denoted by fu : [M ] → Xn
u and

g : Yn → [M ]K , respectively. Let Xn
u = fu(Wu) denote the
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codeword transmitted by user u and (Ŵ1, · · · , ŴK) = g(Y n)
denote the decoded messages. In this work we consider the

following two multiple access channels.

1) AWGN MAC: The channel PY n|Xn
1 ,···Xn

K
is given by

Y n =
K
∑

u=1

Xn
u + Zn (1)

where Xn
u ∈ Rn and Zn∼N (0, In) is the additive noise.

2) QSF MAC: The channel PY n|Xn
1 ,···Xn

K
is given by

Y n =

K
∑

u=1

HuX
n
u + Zn (2)

where Xn
u ∈ C

n and Zn ∼ CN (0, In). Further Hu
i.i.d.∼

CN (0, 1) are the fading coefficients. We assume that

both the transmitters and the receiver know the distri-

bution of the fading coefficients, but the realizations are

unknown – this is a no-CSI fading channel.

For both channels, we impose a natural power constraint

‖Xn
u‖2 ≤ nP, ∀u ∈ [K]. The error metric is the per-user

probability of error (PUPE)

Pe =
1

K

K
∑

u=1

P

[

Wu 6= Ŵu

]

. (3)

Remark 1. We use the subscript u to index users and i, j etc.

to denote a particular entry in a vector unless the distinction

is unclear. Also we will suppress the superscript n for brevity.

A. Formulation as a compressed sensing problem

It is well known that the MAC can also be modelled as a

compressed sensing problem [4, 5, 15, 17, 18]. We describe

this connection here since it forms the basis of our results.

Let p = KM and A = [A1, · · · , AK ] be the n× p matrix

formed by the concatenation of the codebooks of all users.

Here columns of Au denote the codewords of user u. Let U
denote a length p vector. Let S ∈ {0, 1}p denote the support

vector of U i.e., Si = 1[Ui 6= 0]. U is block-sparse: for each

u ∈ [K],
∑uM

j=(u−1)M+1 Sj ≤ 1. The system models for the

two channels can be equivalently described by

Y = AU + Z (4)

where Z is the noise described after (1) and (2) for the AWGN

and QSF MAC, respectively. The specifications of the nonzero

entry in each block or section of U (of size M ) are:

1) AWGN MAC: U ∈ {0, 1}p with
∑iM

j=(i−1)M+1 Uj = 1.

2) QSF MAC: U ∈ Cp with the nonzero entry in section

u ∈ [K] of U to be set to Hu – the fading coefficient

of user u. Thus
∑uM

j=(u−1)M+1 Sj = 1 a.s.

Thus the MAC decoding reduces to support recovery in (4).

Letting Ŝ denote estimated support, the PUPE is the expected

section error rate SER

SER =
1

K

K
∑

u=1

1[S(u−1)M+1:uM 6= Ŝ(u−1)M+1:uM ] (5)

B. Many-user limit

As alluded to in the introduction, we aim to understand the

fundamental limit when K = µn and n → ∞ with fixed

energy-per-bit Eb/N0 denoted by E . Recall that k = log2M
is the payload size. The Eb/N0 is defined as:

1) AWGN MAC: E = nP
2k . The corresponding power con-

straint is ‖Xu‖2 ≤ 2Ek.

2) QSF MAC: E = nP
k

. The corresponding power con-

straint is ‖Xu‖2 ≤ Ek.

We let E = nP be the total energy. That is E = 2Ek for the

AWGN MAC and E = Ek for the quasi-static fading MAC.

Definiton 1. An (n,M, ǫ, E ,K) code for the K-user MAC (1)

or (2) is a collection of codebooks {Cu : u ∈ [K]} of size M
each, along with a decoder such that the codewords satisfy the

power constraints (set by E) and the PUPE is smaller than ǫ.

This leads to the following fundamental limit.

Definiton 2. The fundamental limit of Eb/N0 for a given

payload k, target PUPE ǫ and user density µ is defined as

E∗ = lim sup
n→∞

inf{E : ∃(n,M, ǫ, E ,K = µn)− code} (6)

Next we describe AMP and provide new upper bounds on

E∗.

III. APPROXIMATE MESSAGE PASSING (AMP)

AMP are a class of low complexity iterative algorithms

introduced in [19] for signal recover in compressed sensing,

or more generally for statistical inference on models based

on dense factor graphs. The behavior of AMP in the high

dimensional limit is tracked by the state evolution equations.

The convergence of AMP parameters to the state evolution

has been proved under various assumptions (see [20–26]).

Furthermore AMP has been successful as a near optimal

decoder for sparse superposition codes [25, 27–30].

In the context of massive multiple access, AMP algorithms

have found applications in unsourced MAC [10, 31], but also

to provide achievability bounds in the many-user asymptotics

[5, 15]. In this work we build upon [5, 15] to provide new,

improved and computable achievability bounds for the two

channels considered. In particular, [15] in essence provided

bounds on the Bayes optimal decoder (for the i.i.d. Gaussian

coding matrix, see [15, Remark 3.3]) for the many-user

AWGN channel using the spatially coupled coding matrix

A along with the AMP algorithm that uses the the optimal

section wise denoiser. The same bounds are also directly

obtained (but non-rigorously) from [30]. But these bounds

can only be computed for small values of k since it involves

evaluating M = 2k dimensional integrals. On the other hand,

[5] considered a scalar AMP algorithm that ignores the block

sparse structure of U in (4) along with i.i.d Gaussian coding

matrix A. The bounds obtained this way are near optimal only

for small values of µ.

In this paper we use scalar AMP idea from [5] and spatial

coupling from [15] to obtain improved achievability bounds



that are computable for moderate values of k (like k = 100 bits

that is a standard in massive and unsourced MAC [3, 8, 31]).

A. Spatially coupled codebook

Now we describe the spatially coupled codebook design

based on [15]. Let R,C ∈ N be such that R divides n and C
divides p = KM . The codebook A is divided into blocks of

size n
R
× p

C
and hence can be considered as a block matrix

of size R × C. Let B ∈ RR×C be the base matrix with

nonnegative entries Br,c such that
∑R

r=1Br,c = 1 for all

c ∈ [C]. Further, with abuse of notation, let r : [n] → [R]
and c : p→ [C] denote functions that map a particular row or

column index to its corresponding block. Then the matrix A
is constructed as

1) AWGN MAC: Ai,j
i.i.d.∼ N

(

0, E(R/n)Br(i),c(j)

)

2) QSF MAC: Ai,j
i.i.d.∼ CN

(

0, E(R/n)Br(i),c(j)

)

In particular we use the (ω,Λ, ρ) base matrix from [15] as the

choice of B which is as follows. Let ρ ∈ [0, 1), ω ≥ 1 and

Λ ≥ 2ω − 1. Then we choose R = Λ + ω − 1 and C = Λ.

Finally we have

Br,c =

{

1−ρ
ω
, c ≤ r ≤ c+ ω − 1

ρ
Λ−1 , o/w

(7)

Let µ̃ = R
C
µ be the effective user density. Since usually

ω > 1 we have that µ̃ > µ.

B. Scalar equivalent channel

We define the equivalent scalar channel necessary to de-

scribe the AMP and the state evolution. It is a scalar AWGN

channel parameterized in terms of noise variance σ2:

Vσ2 = X + σW (8)

where X independent of W , and

1) AWGN MAC: X ∼ BER(1/M), W ∼N (0, 1).
2) QSF MAC: X ∼ BG(1, 1/M), W ∼ CN (0, 1).

We denote the joint distribution of X and Vσ2 by PX,V
σ2 . For

each of the above scalar channels, the corresponding denoising

function is

η(v, σ2) = E [X |Vσ2 = v] = E [X |X + σW = v] . (9)

The minimum mean squared error of estimating X from V is

given by

mmse(σ2) = E
[

(X − η(Vσ2 , σ2))2
]

(10)

Lastly we define the equivalent of support recovery. Let

S0 = 1[X 6= 0]. Let Ŝ0(θ) be an estimate of S0 based on

observation Vσ2 . In particular we use the following estimators

1) AWGN MAC: Ŝ0(θ) = 1[Vσ2 > θ]
2) QSF MAC: Ŝ0(θ) = 1[|Vσ2 |2 > θ]

Then we denote the probability of error in support recovery

by ψ:

ψ(σ2, θ,M) = P

[

S0 6= Ŝ0(θ)
]

(11)

C. Algorithm

We describe the AMP algorithm for both AWGN MAC and

QSF MAC. The variables appearing in the descriptions must

be interpreted accordingly. The version of AMP described here

is adapted from [15].

Start with U (0) = 0 ∈ Cp, R(0) = Y . Then for t = 1, 2, · · ·
we have the following iterations

U (t) = η(t)
(

(Q̃(t−1) ⊙A)∗R(t−1) + U (t−1)
)

(12)

R(t) = Y −AU (t) +
R

C
µM(b̃(t) ⊙R(t−1)) (13)

where ⊙ denotes element wise product, and matrix Q̃(t),

vector b̃(t) and denoiser η(t) will be defined next via the state

evolution.

Let ψ
(0)
c = ∞. Then for t ≥ 1, for each r ∈ [R] and c ∈ [C]

we define

γ(t)r =
C
∑

c=1

Br,cψ
(t)
c , φ(t)r =

1

E
+ µ̃Mγ(t)r (14)

τ (t)c =
1

∑R
r=1Br,c

(

φ
(t)
r

)−1 , ψ(t+1)
c = mmse(τ (t)c ) (15)

where mmse(·) is defined in (10). Now the matrices Q̃(t) and

vectors b̃(t) are defined as follows. For each i ∈ [n] and j ∈
[KM ]

b̃
(t)
i = µ̃M

γ
(t)
r(i)

φ
(t−1)
r(i)

Q̃
(t)
i,j =

τ
(t)
c(j)

φ
(t)
r(i)

(16)

The denoiser at time t is given by η(t) = (η
(t)
1 , · · · , η(t)p ) with

η
(t)
i (z) = η(z, τ

(t)
c(i)) and η defined in (9). The estimate of U

after t steps is given by (see [15] for details on hard decision

estimate)

Û (t) = (Q̃t ⊙A)∗R(t) + U (t) (17)

To convert Û (t) into support Ŝ(t) we perform a simple

thresholding for each c ∈ [C] i.e., for each i

1) AWGN MAC:

Ŝ
(t)
i (θc(i)) = 1[Û

(t)
i > θc(i)] (18)

2) QSF MAC:

Ŝ
(t)
i (θc(i)) = 1[|Û (t)

i |2 > θc(i)] (19)

where {θc : c ∈ [C]} is a set of thresholds.

IV. MAIN RESULTS

First we state a lemma that follows directly from [15,

Theorem 2] (with B = 1 in their notation which in turn relies

on [32]). Define the replica potential

FQSF(τ) = (µM)I(X ;Vτ ) +

(

ln τ +
1

τE
− 1

)

(20)

where (X,Vτ )∼ PX,Vτ
. Further, let M denote the maximum

of the global minimizers of F :

MQSF(µ,E,M) = max(arg min
τ> 1

E

FQSF(τ)) (21)



Similarly, we have the potential for the AWGN MAC

FAWGN(τ) = (µM)I(X ;Vτ ) +
1

2

(

ln τ +
1

τE
− 1

)

(22)

where (X,Vτ ) ∼ PX,Vτ
(corresponding to AWGN). We let

MAWGN denote the maximum of the global minimizers of

FAWGN.

Lemma IV.1. For any (ω,Λ, ρ) base matrix B, for each c ∈
[C], τ

(t)
c is non-increasing in t and converges to a fixed point

τ∞c . Furthermore, for any δ > 0, there exists ω0 < ∞, Λ0 <
∞ and ρ0 > 0 such that for all ω > ω0, Λ > Λ0 and ρ < ρ0,

the fixed points {τ∞c : c ∈ [C]} satisfy

τ∞c ≤ τ∞ (µ̃) + µ̃Mδ (23)

where τ (∞)(µ̃) = MQSF (µ̃, E,M) for the QSF MAC and

τ (∞)(µ̃) = MAWGN (µ̃, E,M) for the AWGN MAC.

τ
(t)
c tracks the noise variance (and hence also mmse) of

estimation in the scalar channel (8). Thus the fixed points

of the spatially coupled system are at least as good as the

uncoupled system (i.e., with A having i.i.d entries) but with

user density increased from µ to µ̃. If we take limits as Λ → ∞
and then ω → ∞ we obtain that τ∞(µ̃) → τ∞(µ). This is

known as threshold saturation (see [15, Remark 3.3]).

A. QSF MAC

We present the main achievability bound for the QSF MAC.

Theorem IV.2. Fix any µ > 0, E > 0 and k = log2M ≥
1. Then for every E > E

k
there exist a sequence of

(n,M, ǫn, E ,K = µn) codes for the QSF MAC such that

lim sup
n→∞

ǫn ≤ π∗(τ (∞)(µ),M) (24)

where π∗(τ,M) = 1− 1
1+τ

(

(M − 1)
(

1
τ
+ 1

))−τ
and

τ (∞)(µ) ≡ τ (∞)(µ;E,M) = MQSF(µ,E,M) (25)

Proof. The idea is to use random coding along with the

spatially coupled codebook described in III-A. The proof

is similar to that of [5, Theorem IV.6] but uses the result

on convergence of the empirical joint distribution of entries

in (U, Û (t)) in the spatially coupled systems from [21, 33]

(adapted to the complex number setting). For S, Ŝ ∈ {0, 1}p
the hamming distance is given by dH(S, Ŝ) = 1

p

∑p
i=1 1[Si 6=

Ŝi]. Recall that if S is the support of the true signal U ,

and Ŝ(t) ≡ (Ŝ
(t)
i (θc(i)))

p
i=1 (see (19)) is the estimate of the

support, then from [5, eqn. (119)] we have that

PUPE(Ŝ(t)) ≤ME

[

dH(S, Ŝ(t)))
]

(26)

Notice that

dH(S, Ŝ(t)) =
1

C

C
∑

c=1

[

C

p

c
p

C
∑

i=(c−1) p
C
+1

1[Si 6= Ŝ
(t)
i ]

]

Moreover, from [21, Theorem 1] (see proof of lemma 1

there) we have that for any Lipschitz function f : C2 → R

(or more generally any pseudo-Lipschitz function [20]) the

following holds almost surely (with K = µn):

lim
n→∞

C

p

c
p

C
∑

i=(c−1) p

C
+1

f(Ui, Û
(t)
i ) = E

[

f(X,V
τ
(t)
c
)
]

(27)

where (X,V
τ
(t)
c
) ∼ PX,V

τ
(t)
c

.

Remark 2. Although [21] deal only with real valued system,

as noted in [34, Sec 4.4], the proofs in [21] go through for

complex valued systems as well.

Standard approximation argument [15, Theorem 1(3)] gives

lim
n→∞

C

p

c
p

C
∑

i=(c−1) p

C
+1

P

[

Si 6= Ŝ
(t)
i

]

= ψ(τ (t)c , θc,M) (28)

where the ψ() is defined in (11) and {θc : c ∈ [C]} are

thresholds (19). Thus for any {θc > 0 : c ∈ [C]}

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C
∑

c=1

Mψ(τ (t)c , θc,M) (29)

Now we take t→ ∞ and use lemma IV.1 to obtain

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C
∑

c=1

Mψ(τ (∞)
c , θc,M) (30)

Since {θc} are arbitrary we can minimize over {θc > 0 : c ∈
[C]} and use [5, Claim 6] to obtain

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C
∑

c=1

π∗(τ (∞)
c ,M) (31)

where π∗(τ,M) is described in the statement of the theorem.

Since π∗ is non-decreasing in τ , from the second item in

lemma IV.1 we have that for any fixed δ > 0, for all large

enough ω and Λ, and all small enough ρ:

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ π∗(τ (∞)(µ̃) + µ̃Mδ,M) (32)

Taking limit as Λ → ∞ and then ω → ∞ we obtain that

for every δ > 0 there is a ρ0 > 0 such that for all 0 < ρ < ρ0,

lim
ω→∞

lim
Λ→∞

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ π∗(τ (∞)(µ)+µMδ,M)

(33)

The theorem is proved by noticing that δ > 0 is arbitrary.

B. AWGN MAC

Next we have the achievability bound for the AWGN MAC.

Theorem IV.3. Fix any µ > 0, E > 0 and k = log2M ≥
1. Then for every E > E

2k there exist a sequence of

(n,M, ǫn, E ,K = µn) codes for the AWGN MAC

lim sup
n→∞

ǫn ≤ 2ǫ∗(τ (∞)(µ),M) ,

where ǫ∗(τ,M) is the solution to

1√
τ
= Q−1 (ǫ∗) +Q−1

(

ǫ∗

M − 1

)

(34)



and τ (∞)(µ) = MAWGN(µ,E,M).

Proof. The proof follows from random coding using spatially

coupled codebooks from section III-A and is similar to that

of theorem IV.2 and hence we will only highlight key steps.

In particular, we have

PUPE(Ŝ(t)) ≤ME

[

dH(U, Ŝ(t)))
]

(35)

From state evolution, it can be shown that

lim
n→∞

C

p

c
p

C
∑

i=(c−1) p

C
+1

P

[

Ui 6= Ŝ
(t)
i

]

= P

[

X 6= Ŝ0

]

(36)

where Ŝ0 is from (18). Notice that the Bayes’ optimal estima-

tor for X is of the form Ŝ0 for some carefully chosen θc.

As in the proof of theorem IV.2, we take limit as t → ∞,

apply lemma IV.1 and then optimize over θc we obtain

lim
t→∞

lim
n→∞

PUPE(Ŝ(t)) ≤ 1

C

C
∑

c=1

Mǫ̃∗(τ (∞)
c ,M) (37)

where ǫ̃∗(τ,M) is the minimum probability of error for

decoding X from the scalar channel (8) corresponding to

AWGN MAC. It can be shown that ǫ̃∗(τ,M) satisfies

1√
τ
= Q−1

(

Mǫ̃∗

2

)

+Q−1

(

Mǫ̃∗

2(M − 1)

)

(38)

Let ǫ∗(τ,M) = Mǫ̃∗(τ,M)
2 . Using monotonicity of ǫ∗ with

respect to τ and lemma IV.1 (along with threshold saturation)

concludes the proof.
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Fig. 1. AWGN MAC: µ vs Eb/N0 for ǫ ≤ 10
−3, k = 100

V. NUMERICAL EVALUATION

Numerical evaluation of the bounds in theorems IV.3 and

IV.2 are shown in Fig. 1 and Fig. 2, respectively. The parame-

ters considered are similar to the previous works in many-user

MAC [3–5]: we set k = 100 bits and target PUPE ǫ = 10−3.

Our bounds outperform the previous bounds on QSF MAC

from [5]. For the AWGN MAC, our bounds are superior

compared to [4] in the vertical regime of the µ vs Eb/N0

curves. We emphasize here that this vertical portion is the most

relevant since in depicts almost perfect MUI cancellation.
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Fig. 2. QSF MAC: µ vs Eb/N0 for ǫ ≤ 10
−3, k = 100
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